

DISCRETE AND CONTINUOUS
FOURIER TRANSFORMS

ANALYSIS, APPLICATIONS
AND FAST ALGORITHMS

DISCRETE AND CONTINUOUS
FOURIER TRANSFORMS

ANALYSIS, APPLICATIONS
AND FAST ALGORITHMS

Eleanor Chu
University of Guelph

Guelph, Ontario, Canada

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® software.

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-6363-9 (Hardcover)

This book contains information obtained from authentic and highly regarded sources Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The Authors and Publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

List of Figures xi

List of Tables xv

Preface xvii

Acknowledgments xxi

About the Author xxiii

I Fundamentals, Analysis and Applications 1

1 Analytical and Graphical Representation of Function Contents 3
1.1 Time and Frequency Contents of a Function 3
1.2 The Frequency-Domain Plots as Graphical Tools 4
1.3 Identifying the Cosine and Sine Modes . 6
1.4 Using Complex Exponential Modes . 7
1.5 Using Cosine Modes with Phase or Time Shifts 9
1.6 Periodicity and Commensurate Frequencies 12
1.7 Review of Results and Techniques . 13

1.7.1 Practicing the techniques . 15
1.8 Expressing Single Component Signals . 19
1.9 General Form of a Sinusoid in Signal Application 20

1.9.1 Expressing sequences of discrete-time samples 21
1.9.2 Periodicity of sinusoidal sequences 22

1.10 Fourier Series: A Topic to Come . 23
1.11 Terminology . 25

2 Sampling and Reconstruction of Functions–Part I 27
2.1 DFT and Band-Limited Periodic Signal . 27
2.2 Frequencies Aliased by Sampling . 32
2.3 Connection: Anti-Aliasing Filter . 36
2.4 Alternate Notations and Formulas . 36
2.5 Sampling Period and Alternate Forms of DFT 38
2.6 Sample Size and Alternate Forms of DFT 41

v

vi CONTENTS

3 The Fourier Series 45
3.1 Formal Expansions . 45

3.1.1 Examples . 48
3.2 Time-Limited Functions . 50
3.3 Even and Odd Functions . 51
3.4 Half-Range Expansions . 53
3.5 Fourier Series Using Complex Exponential Modes 60
3.6 Complex-Valued Functions . 60
3.7 Fourier Series in Other Variables . 61
3.8 Truncated Fourier Series and Least Squares 61
3.9 Orthogonal Projections and Fourier Series 63

3.9.1 The Cauchy�Schw arz inequality . 68
3.9.2 The Minkowski inequality . 71
3.9.3 Projections . 72
3.9.4 Least-squares approximation . 74
3.9.5 Bessel� s inequality and Riemann� s lemma. 77

3.10 Convergence of the Fourier Series . 79
3.10.1 Starting with a concrete example . 79
3.10.2 Pointwise convergence� a local property 82
3.10.3 The rate of convergence� a global property 87
3.10.4 The Gibbs phenomenon . 89
3.10.5 The Dirichlet kernel perspective . 91
3.10.6 Eliminating the Gibbs effect by the Cesaro sum 95
3.10.7 Reducing the Gibbs effect by Lanczos smoothing 99
3.10.8 The modi� cation of Fourier series coef� cients 100

3.11 Accounting for Aliased Frequencies in DFT 102
3.11.1 Sampling functions with jump discontinuities 104

4 DFT and Sampled Signals 109
4.1 Deriving the DFT and IDFT Formulas . 109
4.2 Direct Conversion Between Alternate Forms 114
4.3 DFT of Concatenated Sample Sequences . 116
4.4 DFT Coef�c ients of a Commensurate Sum 117

4.4.1 DFT coef� cients of single-component signals 117
4.4.2 Making direct use of the digital frequencies 121
4.4.3 Common period of sampled composite signals 123

4.5 Frequency Distortion by Leakage . 126
4.5.1 Fourier series expansion of a nonharmonic component 128
4.5.2 Aliased DFT coef� cients of a nonharmonic component 129
4.5.3 Demonstrating leakage by numerical experiments 131
4.5.4 Mismatching periodic extensions . 131
4.5.5 Minimizing leakage in practice . 134

4.6 The Effects of Zero Padding . 134
4.6.1 Zero padding the signal . 134

CONTENTS vii

4.6.2 Zero padding the DFT . 141
4.7 Computing DFT De�n ing Formulas Per Se 147

4.7.1 Programming DFT in MATLAB R© 147

5 Sampling and Reconstruction of Functions–Part II 157
5.1 Sampling Nonperiodic Band-Limited Functions 158

5.1.1 Fourier series of frequency-limited X(f) 159
5.1.2 Inverse Fourier transform of frequency-limited X(f) 159
5.1.3 Recovering the signal analytically 160
5.1.4 Further discussion of the sampling theorem 161

5.2 Deriving the Fourier Transform Pair . 162
5.3 The Sine and Cosine Frequency Contents 164
5.4 Tabulating Two Sets of Fundamental Formulas 165
5.5 Connections with Time/Frequency Restrictions 165

5.5.1 Examples of Fourier transform pair 167
5.6 Fourier Transform Properties . 171

5.6.1 Deriving the properties . 172
5.6.2 Utilities of the properties . 175

5.7 Alternate Form of the Fourier Transform . 177
5.8 Computing the Fourier Transform from Discrete-Time Samples 178

5.8.1 Almost time-limited and band-limited functions 179
5.9 Computing the Fourier Coef� cients from Discrete-Time Samples 181

5.9.1 Periodic and almost band-limited function 182

6 Sampling and Reconstruction of Functions–Part III 185
6.1 Impulse Functions and Their Properties . 185
6.2 Generating the Fourier Transform Pairs . 188
6.3 Convolution and Fourier Transform . 189
6.4 Periodic Convolution and Fourier Series . 192
6.5 Convolution with the Impulse Function . 194
6.6 Impulse Train as a Generalized Function . 195
6.7 Impulse Sampling of Continuous-Time Signals 202
6.8 Nyquist Sampling Rate Rediscovered . 203
6.9 Sampling Theorem for Band-Limited Signal 207
6.10 Sampling of Band-Pass Signals . 209

7 Fourier Transform of a Sequence 211
7.1 Deriving the Fourier Transform of a Sequence 211
7.2 Properties of the Fourier Transform of a Sequence 215
7.3 Generating the Fourier Transform Pairs . 217

7.3.1 The Kronecker delta sequence . 217
7.3.2 Representing signals by Kronecker delta 218
7.3.3 Fourier transform pairs . 219

7.4 Duality in Connection with the Fourier Series 226

viii CONTENTS

7.4.1 Periodic convolution and discrete convolution 227
7.5 The Fourier Transform of a Periodic Sequence 229
7.6 The DFT Interpretation . 232

7.6.1 The interpreted DFT and the Fourier transform 234
7.6.2 Time-limited case . 235
7.6.3 Band-limited case . 236
7.6.4 Periodic and band-limited case . 237

8 The Discrete Fourier Transform of a Windowed Sequence 239
8.1 A Rectangular Window of In� nite Width . 239
8.2 A Rectangular Window of Appropriate Finite Width 241
8.3 Frequency Distortion by Improper Truncation 243
8.4 Windowing a General Nonperiodic Sequence 244
8.5 Frequency-Domain Properties of Windows 245

8.5.1 The rectangular window . 246
8.5.2 The triangular window . 247
8.5.3 The von Hann window . 248
8.5.4 The Hamming window . 250
8.5.5 The Blackman window . 251

8.6 Applications of the Windowed DFT . 252
8.6.1 Several scenarios . 252
8.6.2 Selecting the length of DFT in practice 263

9 Discrete Convolution and the DFT 267
9.1 Linear Discrete Convolution . 267

9.1.1 Linear convolution of two �n ite sequences 267
9.1.2 Sectioning a long sequence for linear convolution 273

9.2 Periodic Discrete Convolution . 273
9.2.1 De�n ition based on two periodic sequences 273
9.2.2 Converting linear to periodic convolution 275
9.2.3 De� ning the equivalent cyclic convolution 275
9.2.4 The cyclic convolution in matrix form 278
9.2.5 Converting linear to cyclic convolution 280
9.2.6 Two cyclic convolution theorems . 280
9.2.7 Implementing sectioned linear convolution 283

9.3 The Chirp Fourier Transform . 284
9.3.1 The scenario . 284
9.3.2 The equivalent partial linear convolution 285
9.3.3 The equivalent partial cyclic convolution 286

10 Applications of the DFT in Digital Filtering and Filters 291
10.1 The Background . 291
10.2 Application-Oriented Terminology . 292
10.3 Revisit Gibbs Phenomenon from the Filtering Viewpoint 294

CONTENTS ix

10.4 Experimenting with Digital Filtering and Filter Design 296

II Fast Algorithms 303

11 Index Mapping and Mixed-Radix FFTs 305
11.1 Algebraic DFT versus FFT-Computed DFT 305
11.2 The Role of Index Mapping . 306

11.2.1 The decoupling process� Stage I 307
11.2.2 The decoupling process� Stage II 309
11.2.3 The decoupling process� Stage III 311

11.3 The Recursive Equation Approach . 313
11.3.1 Counting short DFT or DFT-like transforms 313
11.3.2 The recursive equation for arbitrary composite N 313
11.3.3 Specialization to the radix-2 DIT FFT for N = 2ν 315

11.4 Other Forms by Alternate Index Splitting . 317
11.4.1 The recursive equation for arbitrary composite N 318
11.4.2 Specialization to the radix-2 DIF FFT for N = 2ν 319

12 Kronecker Product Factorization and FFTs 321
12.1 Reformulating the Two-Factor Mixed-Radix FFT 322
12.2 From Two-Factor to Multi-Factor Mixed-Radix FFT 328

12.2.1 Selected properties and rules for Kronecker products 329
12.2.2 Complete factorization of the DFT matrix 331

12.3 Other Forms by Alternate Index Splitting . 333
12.4 Factorization Results by Alternate Expansion 335

12.4.1 Unordered mixed-radix DIT FFT . 335
12.4.2 Unordered mixed-radix DIF FFT . 337

12.5 Unordered FFT for Scrambled Input . 337
12.6 Utilities of the Kronecker Product Factorization 339

13 The Family of Prime Factor FFT Algorithms 341
13.1 Connecting the Relevant Ideas . 342
13.2 Deriving the Two-Factor PFA . 343

13.2.1 Stage I: Nonstandard index mapping schemes 343
13.2.2 Stage II: Decoupling the DFT computation 345
13.2.3 Organizing the PFA computation�P art 1 346

13.3 Matrix Formulation of the Two-Factor PFA 348
13.3.1 Stage III: The Kronecker product factorization 348
13.3.2 Stage IV: De� ning permutation matrices 348
13.3.3 Stage V: Completing the matrix factorization 350

13.4 Matrix Formulation of the Multi-Factor PFA 350
13.4.1 Organizing the PFA computation� Part 2 352

13.5 Number Theory and Index Mapping by Permutations 353

x CONTENTS

13.5.1 Some fundamental properties of integers 354
13.5.2 A simple case of index mapping by permutation 363
13.5.3 The Chinese remainder theorem . 364
13.5.4 The ν-dimensional CRT index map 365
13.5.5 The ν-dimensional Ruritanian index map 366
13.5.6 Organizing the ν-factor PFA computation� Part 3 368

13.6 The In-Place and In-Order PFA . 368
13.6.1 The implementation-related concepts 368
13.6.2 The in-order algorithm based on Ruritanian map 371
13.6.3 The in-order algorithm based on CRT map 371

13.7 Ef� cient Implementation of the PFA . 372

14 Computing the DFT of Large Prime Length 375
14.1 Performance of FFT for Prime N . 376
14.2 Fast Algorithm I: Approximating the FFT 378

14.2.1 Array-smart implementation in MATLAB R© 379
14.2.2 Numerical results . 381

14.3 Fast Algorithm II: Using Bluestein�s FFT 382
14.3.1 Bluestein�s FFT and the chirp Fourier transform 382
14.3.2 The equivalent partial linear convolution 383
14.3.3 The equivalent partial cyclic convolution 384
14.3.4 The algorithm . 385
14.3.5 Array-smart implementation in MATLAB R© 386
14.3.6 Numerical results . 388

Bibliography 389

Index 393

List of Figures

1.1 A time-domain plot of x(t) = 5 cos(2πt) versus t. 3
1.2 A frequency-domain plot of x(t) = 5 cos(2πt). 4
1.3 Time-domain plots of x(t) and its components. 5
1.4 The time and frequency-domain plots of composite x(t). 6
1.5 An example: the sum of 11 cosine and 11 sine components. 7
1.6 Time plot and complex exponential-mode frequency plots. 8
1.7 Time plot and complex exponential-mode frequency plots. 10

2.1 Changing variable from t ∈ [0, T] to θ = 2πt/T ∈ [0, 2π]. 28
2.2 Equally-spaced samples and computed DFT coef� cients. 29
2.3 Analog frequency grids and corresponding digital frequency grids. 31
2.4 The function interpolating two samples is not unique. 33
2.5 Functions x(θ) and y(θ) have same values at 0 and π. 33
2.6 The aliasing of frequencies outside the Nyquist interval. 34
2.7 Sampling rate and Nyquist frequency. 35
2.8 Taking N = 2n+1 samples from a single period [0, T]. 39
2.9 Rearranging N = 2n+1 samples on the time grid. 40
2.10 The placement of samples after changing variable t to θ = 2πt/T 40
2.11 Rearranging N = 2n+2 samples on the time grid. 43
2.12 The placement of samples after changing variable t to θ = 2πt/T 43
2.13 Taking N = 2n+2 samples from the period [0, 2π] or [−π, π]. 44

3.1 Illustrating the convergence of the N -term Fourier series. 50
3.2 The behavior of the N -term Fourier series near a jump discontinuity. 50
3.3 The converging Fourier series of an even function. 55
3.4 The converging Fourier series of an odd function. 55
3.5 De� ning f(t) = t− t2 for the full range: −1 ≤ t ≤ 1. 56
3.6 The converging Fourier series of f(t) with jump discontinuities. 57
3.7 The converging Fourier series of f(t) with jump discontinuities. 58
3.8 The graphs of periodic (even) g1(t) and g′1(t). 80
3.9 The graphs of periodic (odd) g2(t) and g′2(t). 81
3.10 The graphs of three periods of g3(t). 82
3.11 Gibbs phenomenon and � nite Fourier series of the square wave. 90
3.12 The Dirichlet kernel Dn(λ) for n = 8, 12, 16, 20. 93
3.13 One period of the Dirichlet kernel Dn(λ) for n=8. 93
3.14 One period of the Fejer kernel Fn(λ) for n = 8. 98

xi

xii LIST OF FIGURES

3.15 Illustrating the convergence of the Cesaro sums of the square wave. 99
3.16 Fourier series with coef� cients modi� ed by the Lanzcos sigma factor. 101
3.17 The three N -point frequency-domain windows for N = 2n+1=11. 102
3.18 Graphs of f̃(t) reconstructed using N computed DFT coef� cients. 105

4.1 Mapping t� ∈ [0, T) to θ� = 2πt�/T ∈ [0, 2π) for 0 ≤ � ≤ 2n+1. 110
4.2 Sampling y(t) at 2 Hz (for three periods) and 3 Hz (for one period). 125
4.3 Signal reconstructed using computed DFT coef� cients from Table 4.1. 127
4.4 Sampling y(t) at 2 Hz for 1.5 periods. 127
4.5 Signal reconstructed using M =10 DFT coef� cients from Table 4.2. 133
4.6 Signal reconstructed using M =20 DFT coef� cients from Table 4.2. 133
4.7 The Gaussian function x(t) and its Fourier transform X(f). 138
4.8 Computing ten DFT coef� cients from ten signal samples. 139
4.9 Computing twenty DFT coef� cients by zero padding ten signal samples. 139
4.10 The effect of zero padding the DFT as done in Table 4.4. 146

5.1 The graphs of L�(t) for � = −3, 0, 1. 162
5.2 Time-domain and frequency-domain plots of x(t) = e−at. 167
5.3 Gaussian function and its real-valued Fourier transform. 169
5.4 Time-limited rectangular pulse and its Fourier transform. 169
5.5 Connecting Fourier series coef� cients to Fourier transform. 170
5.6 A band-limited Fourier transform pair. 172
5.7 Illustrating the time-shift property. 176
5.8 Illustrating the derivative of the transform property. 177
5.9 Illustrating the derivative of the transform property (n = 2). 178

6.1 De� ning the Dirac delta function. 186
6.2 Illustrating properties of the unit impulse function. 187
6.3 Fourier transform pairs involving the impulse function. 188
6.4 Illustrating the steps in convolving x(t) with h(t). 190
6.5 The result of continuous convolution w(t) = x(t) ∗ h(t). 190
6.6 The periodic signal resulted from convolving x(t) with an impulse train. 196
6.7 The relationship between impulse train and its Fourier transform. 199
6.8 Several more examples of z(t) = x(t) ∗ PT (t). 200
6.9 Fourier transform of the sequence sampled from x(t) = e−at. 206
6.10 Reducing the effect of aliasing by increasing sampling rate. 206

7.1 Discrete exponential function and its Fourier transform. 220
7.2 Obtaining Fourier transform pair by derivative of transform property. 220
7.3 Obtaining Fourier transform pair by the property of linearity. 221
7.4 The Fourier transform of a bilateral exponential function. 222
7.5 Connecting previously obtained results to new tasks. 223

8.1 The rectangular window and its magnitude spectrum. 247
8.2 The triangular window and its magnitude spectrum. 249
8.3 The von Hann window and its magnitude spectrum. 250
8.4 The Hamming window and its magnitude spectrum. 252

LIST OF FIGURES xiii

8.5 The Blackman window and its magnitude spectrum. 253
8.6 The one-sided spectrum of UI(f) = 1

NF{xI(t) · wrect(t)}. 256
8.7 Non-overlapped mainlobes and separate local maxima. 257
8.8 The merging of local maxima due to overlapped mainlobes. 258
8.9 A local maximum is smeared out by overlapped mainlobes. 259
8.10 Values of UI(fk) obtainable by the DFT, where fk = k/T (T = 2.2T). 260
8.11 Fourier transforms of zI(t) weighted by four different windows. 261
8.12 The computed DFT of zI(t) truncated by a rectangular window. 261
8.13 The computed DFT of zI(t) weighted by a triangular window. 262
8.14 The computed DFT of zI(t) weighted by a von Hann window. 262
8.15 The computed DFT of zI(t) weighted by a Blackman window. 263
8.16 The effects of zero padding a windowed sequence. 264
8.17 Improving UI(f) = 1

NF{zI(t)·wtri(t)} by changing window length. 265
8.18 The computed DFT of zI(t)·wtri(f) after doubling the window length. 265
8.19 Improving frequency detection by doubling the sampling rate. 266

9.1 The steps in performing continuous convolution u(t) = g(t) ∗ h(t). 268
9.2 The result of continuous convolution u(t) = g(t) ∗ h(t). 269
9.3 The steps in performing linear discrete convolution {u�} = {g�} ∗ {h�}. 270
9.4 The result of discrete convolution {uk} = {gk} ∗ {hk}. 271
9.5 The results of discrete convolution {uk} = {gk} ∗ {hk}. 272
9.6 Performing linear convolution {uk} = {gk} ∗ {hk} in two sections. 274
9.7 The steps in performing periodic discrete convolution. 276
9.8 Converting linear to periodic discrete convolution. 277
9.9 De� ning the equivalent cyclic convolution. 279
9.10 Converting linear to cyclic convolution. 281
9.11 Interpreting chirp Fourier transform as a partial linear convolution. 287
9.12 Interpreting chirp Fourier transform as a partial cyclic convolution. 288

10.1 Sampling H(f) to obtain impulse response of a FIR � lter. 297
10.2 Sampled noisy signal x(t) and its magnitude spectrum. 298
10.3 Discrete linear convolution of {x�} and FIR �lter {h�}. 299
10.4 Discrete periodic convolution of {x�} and FIR �lter {h�}. 300
10.5 Computed DFT coef� cients of the � ltered sample sequence. 301

List of Tables

2.1 Alternate symbols and alternate de� nitions/assumptions. 37
2.2 Constants resulting from assuming unit period or unit spacing. 37
2.3 Using analog frequency versus digital frequency. 38

3.1 The DFT coef� cients computed in Example 3.66 (N = 8, 16, 32). 106

4.1 Numerical values of M DFT coef� cients when TM = To and TM = 3To. . . . 126
4.2 Numerical values of M distorted DFT coef� cients when TM =1.5To. 132
4.3 Numerical values of the DFT coef� cients plotted in Figures 4.8 and 4.9. 140
4.4 Zero pad the DFT coef�cie nts computed in Example 3.66 (N = 8, 16). 145
4.5 Variable names in MATLAB code. 148
4.6 Testing function dft1 matrix.m using MATLAB 5.3 and 7.4. 149
4.7 Testing function dft2 matrix.m using MATLAB 5.3 and 7.4. 150
4.8 Testing function dft3 matrix.m using MATLAB 5.3 and 7.4. 152
4.9 Testing function dft.m using MATLAB 5.3 and 7.4. 155

5.1 Two sets of fundamental formulas in Fourier analysis. 166
5.2 Connections with time/frequency restrictions. 166
5.3 Fourier transform properties. 173
5.4 Fourier transform properties (expressed in ω = 2πf). 179
5.5 Connections with time-limited restriction. 182

7.1 Properties of the Fourier transform X̂I(F) of a sequence. 215
7.2 Properties of the Fourier transform X̃I(θ) of a sequence (θ=2πF). 217

8.1 Spectral characteristics of � ve windows (λ = Tf = (N�t)f). 253

14.1 Performance of MATLAB 5.3 built-in FFT. 376
14.2 Measuring error in computing ifft(fft(x)) in MATLAB 5.3. 377
14.3 Performance of MATLAB 7.4 built-in FFT. 377
14.4 Measuring error in computing ifft(fft(x)) in MATLAB 7.4. 378
14.5 Evaluating function M-� les Tfft.m and iTfft.m for large prime N 382
14.6 Performance of Bluestein� s FFT for large primeN 388

xv

Preface

The topics in this book were selected to build a solid foundation for the application of Fourier
analysis in the many diverging and continuously evolving areas in the digital signal processing
enterprise. While Fourier transforms have long been used systematically in electrical engi-
neering, the wide variety of modern-day applications of the discrete Fourier transform (DFT)
on digital computers (made feasible by the fast Fourier transform (FFT) algorithms) motivates
people in all branches of the physical sciences, computational sciences and engineering to learn
the DFT, the FFT algorithms, as well as the many applications that directly impact our life to-
day. To understand how the DFT can be deployed in any application area, one needs to have
the core knowledge of Fourier analysis, which connects the DFT to the continuous Fourier
transform, the Fourier series, and the all important sampling theorem. The tools offered by
Fourier analysis enable us to correctly deploy and interpret the DFT results.

This book presents the fundamentals of Fourier analysis and their deployment in signal
processing by way of the DFT and the FFT algorithms in a logically careful manner so that the
text is self-contained and accessible to senior undergraduate students, graduate students, and
researchers and professionals in mathematical science, numerical analysis, computer science,
physics, and the various disciplines in engineering and applied science. The contents of this
book are divided into two parts and fourteen chapters with the following features, and the cited
topics can be selected and combined in a number of suggested ways to suit one� s interest or the
need of a related course:
• From the very beginning of the text a large number of graphical illustrations and worked

examples are provided to help explain the many concepts and relationships; a detailed table
of contents makes explicit the logical arrangement of topics in each chapter, each section, and
each subsection.
• Readers of this book are not required to have prior knowledge of Fourier analysis or

signal processing. To provide background, the basic concepts of signals and signal sampling
together with a practical introduction to the DFT are presented in Chapters 1 and 2, while the
mathematical derivation of the DFT is deferred to Chapter 4.
• The coverage of the Fourier series in Chapter 3 (Sections 3.1� 3.8) is self-contained, and

its relationship to the DFT is explained in Section 3.11. Section 3.9 on orthogonal projections
and Section 3.10 on the convergence of Fourier series (including a detailed study of the Gibbs
phenomenon) are more mathematical, and they can be skipped in the � rst reading.
• The DFT is formally derived in Chapter 4, and a thorough discussion of the relationships

between the DFT spectra and sampled signals under various circumstances is presented with
supporting numerical results and graphical illustrations. In Section 4.7 I provide instructional
MATLAB R©1 codes for computing the DFT formulas per se, while the fast algorithms for

1MATLAB is a registered trademark of The MathWorks, Inc.

xvii

xviii PREFACE

computing the DFT are deferred to Part II of the book.
• The continuous Fourier transform is introduced in Chapter 5. The concepts and results

from Chapters 1 through 3 are used here to derive the sampling theorem and the Fourier trans-
form pair. Worked examples of the Fourier transform pair are then given and the properties of
Fourier transform are derived. The computing of Fourier transform from discrete-time sam-
ples is investigated, and the relationship between sampled Fourier transform and Fourier series
coef� cients is also established in this chapter.
• Chapter 6 is built on the material previously developed in Chapters 3 and 5. The topics

covered in Chapter 6 include the Dirac delta function, the convolution theorems concerning the
Fourier transform, and the periodic and discrete convolution theorems concerning the Fourier
series. I then show how these mathematical tools interplay to model the sampling process and
develop the sampling theorem directly.
• With the foundations laid in Chapters 1 through 6, the Fourier transform of an ideally

sampled signal is now formally de�n ed (in mathematical terms) in Chapter 7, which provides
the theoretical basis for appropriately constructing and deploying digital signal processing tools
and correctly interpreting the processed results in Chapters 8 through 10.
• In Chapter 8 the data-weighting window functions are introduced, the analysis of the

possibly distorted DFT spectra of windowed sequences is pursued, and the various scenarios
and consequences related to frequency detection are demonstrated graphically using numerical
examples.
• Chapter 9 covers discrete convolution algorithms, including the linear convolution algo-

rithm, the periodic (and the equivalent circular or cyclic) convolution algorithm, and their im-
plementation via the DFT (computed by the FFT). The relationship between the chirp Fourier
transform and the cyclic convolution is also established in this chapter.
• The application of the DFT in digital � ltering and � lters is the topic of Chapter 10. The

Gibbs phenomenon is also revisited in this chapter from a � ltering viewpoint.
• Since the FFTs are the fast algorithms for computing the DFT and the associated con-

volution, the Fourier analysis and digital � ltering of sampled signals in Part I of the book are
based solely on the DFTs, and Part II of the book is devoted to covering the FFTs exclusively.
While Part II of this book is self-contained, the material in Chapters 11 through 13 is more
advanced than the previous book:

Eleanor Chu and Alan George, Inside the FFT Black Box: Serial and Parallel
Fast Fourier Transform Algorithms, CRC Press, 2000.

• In Chapter 11 the many ways to organize the mixed-radix DFT computation through
index mapping are explored. This approach allows one to study the large family of mixed-
radix FFT algorithms in a systematic manner, including the radix-2 special case. While this
chapter can be read on its own, it also paves the way for the more specialized prime factor FFT
algorithms covered in Chapter 13.
• In Chapter 12 a connection is established between the multi-factor mixed-radix FFT

algorithms and the Kronecker product factorization of the DFT matrix. This process results in
a sparse matrix formulation of the mixed-radix FFT algorithm.
• In Chapter 13 the family of prime factor FFT algorithms is presented. To cover the

mathematical theory behind the prime factor algorithm, the relevant concepts from elementary
number theory concerning the properties of integers are introduced, and the Chinese Remainder
Theorem (CRT) is proved, because CRT and CRT-related index maps are responsible for the
number-theoretic splitting of the DFT matrix, which gives rise to the prime factor algorithm.

PREFACE xix

• Chapter 14 provides full details of the mathematics behind Bluestein� s FFT, which is a
(deceptively simple) fast algorithm for computing the DFT of arbitrary length and is partic-
ularly useful when the length is a large prime number. The MATLAB R© implementation of
Bluestein� s FFT is given, and numerical and timing results are reported.

Acknowledgments

My interest in the subject area of this book has arisen out of my research activities conducted at
the University of Guelph, and I thank the Natural Sciences and Engineering Research Council
of Canada for continued research grant support. Writing a book of this scope demands one� s
dedication to research and commitment of time and effort over multiple years, and I thank my
husband, Robert Hiscott, for his understanding, consistent encouragement, and unwavering
support at all fronts.

I thank the reviewers of my book proposal and draft manuscript for their helpful sugges-
tions and insightful comments, which led to many improvements.

I extend my sincere thanks and appreciation to Robert Stern (Executive Editor) and his staff
at Chapman & Hall/CRC Press for their ongoing enthusiastic support of my writing projects.

Eleanor Chu
Guelph, Ontario

xxi

About the Author

Eleanor Chu, Ph.D., received her B.Sc. from National Taiwan University in 1973, her B.Sc.
and M.Sc. from Acadia University, Canada, in 1980 and 1981, respectively, and her M.Math
and Ph.D. in Computer Science from the University of Waterloo, Canada, in 1984 and 1988,
respectively.

From 1988 to 1991 Dr. Chu was a research assistant professor of computer science at the
University of Waterloo. In 1991 she joined the faculty at the University of Guelph, where
she has been Professor of Mathematics since 2001. Dr. Chu is the principal author of the book
Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms (CRC Press,
2000). She has published journal articles in the broad area of computational mathematics,
including scienti�c computing, matrix analysis and applications, parallel computing, linear
algebra and its applications, supercomputing, and high-performance computing applications.

xxiii

Part I

Fundamentals, Analysis and
Applications

1

Chapter 1

Analytical and Graphical
Representation of Function
Contents

Our objective in this chapter is to introduce the fundamental concepts and graphical tools for
analyzing time-domain and frequency-domain function contents. Our initial discussion will
be restricted to linear combinations of explicitly given sine and cosine functions, and we will
show how the various representations of their frequency contents are connected to the Fourier
series representation of periodic functions in general.

1.1 Time and Frequency Contents of a Function

Let us consider a familiar trigonometric function x(t) = 5 cos(2πt). By plotting x(t) versus t

over the interval 0 ≤ t ≤ 4, one obtains the following diagram.

Figure 1.1 A time-domain plot of x(t) = 5 cos(2πt) versus t.

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time Variable t

Fu
nc

tio
n

x(
t)

The graph is the time-domain representation of x(t). We observe that when t varies from
0 to 1, the angle θ = 2πt goes from 0 radians to 2π radians, and the cosine function completes

3

4 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

one cycle. The same cycle repeats for each following time intervals: t ∈ [1, 2], t ∈ [2, 3], and
so on. The time it takes for a periodic function x(t) to complete one cycle is called the period,
and it is denoted by T . In this case, we have T = 1 unit of time (appropriate units may be used
to suit the application in hand), and x(t + T) = x(t) for t ≥ 0.

While the function x(t) is fully speci�ed in its analytical form, the graph of x(t) reveals
how the numerical function values change with time. Since a graph is plotted from a table
of pre-computed function values, the �cont ents� of the graph are the numbers in the table.
However, compared to reading a large table of data, reading the graph is a much more conve-
nient and effective way to �s ee� the trend or pattern represented by the data, the approximate
locations of minimum, maximum, or zero function values. With this understanding, the time-
domain (or time) content of x(t) (in this simple case) is the graph which plots x(t) versus
t.

For a single sinusoidal function like x(t) = 5 cos(2πt), one can easily tell from its time-
domain graph that it goes through one cycle (or 2π radians) per unit time, so its frequency is
f = 1. It is also apparent from the same graph that the amplitude of x(t) = 5 cos(2πt) is
A = 5. However, strictly for our future needs, let us formally represent the frequency-domain
(or frequency) content of x(t) in Figure 1.1 by a two-tuple (f, A) = (1, 5) in the amplitude-
versus-frequency � stem plot� given below. The usefulness of the frequency-domain plot will
be apparent in the next section.

Figure 1.2 A frequency-domain plot of x(t) = 5 cos(2πt).

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−8

−6

−4

−2

0

2

4

6

8

10

Frequency: f cycles per unit time

Am
pl

itu
de

f = 1

A = 5

1.2 The Frequency-Domain Plots as Graphical Tools

We next consider a function synthesized from a linear combination of several cosine functions�
each with a different amplitude as well as a different frequency. For example, let

x(t) = x1(t) + x2(t) + x3(t)

= A1 cos(2πf1t)−A2 cos(2πf2t) + A3 cos(2πf3t)

= 5 cos(2πt)− 7 cos(4πt) + 11.5 cos(6πt).

We see that the � rst component function x1(t) = 5 cos(2πt) can be written as x1(t) =

A1 cos(2πf1t) with amplitude A1 = 5, and frequency f1 = 1. Similarly, the second compo-
nent function x2(t) = −7 cos(4πt) can be written as x2(t) = A2 cos(2πf2t) with amplitude

1.2. THE FREQUENCY-DOMAIN PLOTS AS GRAPHICAL TOOLS 5

A2 = −7 and frequency f2 = 2. For x3(t) = 11.5 cos(6πt), we have A3 = 11.5 and f3 = 3.
The function x1(t) was fully explained in the last section. In the case of x2(t), the cosine
function completes one cycle when its angle θ = 4πt goes from 0 radians to 2π radians, which
implies that t changes from 0 to 0.5 units. So the period of x2(t) is T2 = 0.5 units, and its
frequency is f2 = 1

T2
= 2 cycles per unit time. The expression in the form

xk(t) = Ak cos(2πfkt)

thus explicitly indicates that xk(t) repeats fk cycles per unit time. Now, we can see that the
time unit used to express fk will be canceled out when fk is multiplied by t units of time.
Therefore, θ = 2πfkt remains dimension-less, and the same holds regardless of whether the
time is measured in seconds, minutes, hours, days, months, or years. Note that the equivalent
expression xk(t) = Ak cos(ωkt) is also commonly used, where � ωk ≡ 2πfk radians per unit
time� is called theangular frequency.

In the time domain, a graph of the composite x(t) can be obtained by adding the three
graphs representing x1(t), x2(t), and x3(t) as shown below. The time-domain plot of x(t)

reveals a periodic composite function with a common period T = 1: the graph of x(t) for
t ∈ [0, 1] is seen to repeat four times in Figure 1.3.

Figure 1.3 Time-domain plots of x(t) and its components.

0 2 4

−20

−10

0

10

20

0 2 4

−20

−10

0

10

20

0 2 4

−20

−10

0

10

20

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

−10

0

10

20

x
1
(t) = 5cos(2πt) x

2
(t) = −7cos(4πt) x

3
(t) = 11.5cos(6πt)

x(t) = 5cos(2πt) − 7cos(4πt) + 11.5cos(6πt)

In the frequency domain, suppose that the two-tuple (fk, Ak) represents the frequency
content of xk(t), the collection {(f1, A1), (f2, A2), (f3, A3)} de� nes the frequency content of
x(t) = x1(t) + x2(t) + x3(t). Note that when x(t) is composite, we speak of the individual
frequencies and amplitudes of its components and they collectively represent the frequency

6 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

content of x(t). The frequency plot of x(t) is obtained by superimposing the three component
stem plots as shown in Figure 1.4.

Figure 1.4 The time and frequency-domain plots of composite x(t).

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

−10

0

10

20

x(
t)

0 1 2 3 4
−10

−5

0

5

10

15

A
m

pl
itu

de

Time−Domain Plot

Frequency−Domain Plot

A
1
 = 5

A
2
 = −7

A
3
 = 11.5

Time variable t

Frequency f = 1, 2, 3 cycles per unit time

Now, with the time-domain plot and the frequency-domain plot of x(t) both available, we
see that when x(t) is composite, the frequency content of x(t) can no longer be deciphered
from the time-domain plot of x(t) versus t� one cannot visually decompose the graph of x(t)

into its component graphs. The reverse is also true: the time-domain plot shows the behavior
of x(t), which cannot be inferred from the frequency plot alone. Therefore, the time-domain
and the frequency-domain plots are both needed, and they carry different but complementary
information about the function x(t).

1.3 Identifying the Cosine and Sine Modes

In general, a function may have both sine and cosine components, and the two modes must be
explicitly identi�ed in expressing the frequency content. For the previous example, the function
x(t) =

∑n=3
k=1 Ak cos 2πfkt has three cosine components, so each two-tuple in its frequency

content {(f1, A1), (f2, A2), (f3, A3)} implicitly represents the amplitude and the frequency
of a pure cosine mode, and they are shown together in a single frequency plot. However, the
function y(t) below consists of two cosine and three sine components,

y(t) = 5.3 cos(4πt)− 3.2 sin(6πt)− 2.5 cos(14πt)− 2.1 sin(4πt) + 9.5 sin(8πt),

so the subset of two-tuples {(2, 5.3), (7,−2.5)} and its stem plot represent its �pure cosine
mode,� whereas the other subset of two-tuples{(2,−2.1), (3,−3.2), (4, 9.5)} and a separate
stem plot represent its �pure sine mode.� When we allow zero amplitude and use the same

1.4. USING COMPLEX EXPONENTIAL MODES 7

range of frequencies in both modes, we obtain the following expression:

(1.1) y(t) =
n∑

k=1

Ak cos(2πfkt) + Bk sin(2πfkt).

The frequency content of y(t) can now be conveniently represented by a set of three-tuples
{ (f1, A1, B1), (f2, A2, B2), . . . , (fn, An, Bn) }, with the understanding that Ak is the ampli-
tude of a pure cosine mode at frequency fk, and Bk is the amplitude of a pure sine mode at
fk. We still need two separate stem plots: one plots Ak versus fk, and the other one plots
Bk versus fk. The time-domain and frequency-domain plots of the sum of eleven cosine and
eleven sine component functions are shown in Figure 1.5, where for 1 ≤ k ≤ 11, fk = k, with
amplitudes 0 < Ak ≤ 2 and 0 < Bk ≤ 3 randomly generated. The time-domain plot of x(t)

again reveals a periodic composite function with a common period T = 1; the graph of x(t)

for t ∈ [0, 1] is seen to repeat four times in Figure 1.5.

Figure 1.5 An example: the sum of 11 cosine and 11 sine components.

0 0.5 1 1.5 2 2.5 3 3.5 4

−10

0

10

20

0 1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

2

3

Pure cosine modes

Pure sine modes

1.4 Using Complex Exponential Modes

By using complex arithmetics, Euler� s formulaejθ = cos θ + j sin θ, where j ≡ √−1, and the
resulting identities

cos θ =
ejθ + e−jθ

2
, sin θ =

ejθ − e−jθ

2j
,

8 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

we can express y(t) in terms of complex exponential modes as shown below.

y(t) =

n∑
k=1

Ak cos(2πfkt) + Bk sin(2πfkt)

(1.2)

=

n∑
k=1

Ak

(
ej2πfkt + e−j2πfkt

2

)
+ Bk

(
ej2πfkt − e−j2πfkt

2j

)

=

n∑
k=1

(
Ak − jBk

2

)
ej2πfkt +

(
Ak + jBk

2

)
e−j2πfkt

=

n∑
k=1

Xkej2πfkt + X−kej2πf−kt,

(
Note: X±k ≡ Ak ∓ jBk

2
, f−k ≡ −fk

)

= X0 +

n∑
k=1

Xkej2πfkt + X−kej2πf−kt, (Note: the term X0 ≡ 0 is added)

=

n∑
k=−n

Xkej2πfkt.

When the complex number X±k is expressed in rectangular coordinates as
(Re (X±k) , Im (X±k)), the frequency contents of y(t) are commonly expressed by two sets
of two-tuples: (f±k, Re(X±k)) and (f±k, Im(X±k)). The example in Figure 1.5 is shown
again in Figure 1.6 using the exponential mode. When comparing the two � gures, note that
Re(X±k) = Ak/2 and Im(X±k) = ∓Bk/2.

Figure 1.6 Time plot and complex exponential-mode frequency plots.

0 0.5 1 1.5 2 2.5 3 3.5 4

−10

0

10

20

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12
−2

−1

0

1

2

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12
−2

−1

0

1

2

Amplitude Re(X
k
) and Re(X

−k
)

Amplitude Im(X
k
) and Im(X

−k
)

1.5. USING COSINE MODES WITH PHASE OR TIME SHIFTS 9

Note that in order to simplify the terms in the summation, we have added the term X0 ≡ 0,
and for 1 ≤ k ≤ n, we have de� ned

(1.3) Xk =
Ak − jBk

2
, X−k =

Ak + jBk

2
, f−k = −fk, and ω−k = −ωk = −2πfk.

In the present context, since the negative frequencies are simply the consequence of applying
trigonometric identities in our derivation of an alternative mathematical formula, they do not
change the original problem. For example, if one uses the identity cos(θk) = cos(−θk), when
θk = 2πfkt,−θk = 2π(−fk)t occurs, and it causes the presence of negative frequency �−fk.�
(Note that a nonzero X0 = X0e

j2πf0t term at f0 = 0 models a DC (direct current) term in
electrical circuit applications.)

Alternatively we may express the complex amplitude X±k using polar coordinates, namely,

Xk = |Xk|ejφk = |Xk| (cosφk + j sin φk) ,

X−k = |X−k|ejφ−k = |X−k| (cosφ−k + j sinφ−k) ,

(1.4)

where

|X±k| =
√

A2
k + B2

k

2
, with each φ±k chosen to satisfy both

cosφ±k =
Ak√

A2
k + B2

k

, sin φ±k =
∓Bk√

A2
k + B2

k

.

Note that each angle φ±k is unique in the quadrant determined by the rectangular coordinates
(Ak,∓Bk) of the complex number 2Xk. In Figure 1.7, the frequency plots show |X±k| and
φ±k versus f±k. In the next section we show that φ±k may also be interpreted as the phase
shift angle.

1.5 Using Cosine Modes with Phase or Time Shifts

Instead of separating the pure cosine and pure sine modes, we may use a pure cosine mode
combined with phase shift angles, which is represented by a single set of three-tuples (fk, φ̂k, Dk)

as de� ned below.

y(t) =
n∑

k=1

Ak cos(2πfkt) + Bk sin(2πfkt)

=

n∑
k=1

√
A2

k + B2
k

(
Ak√

A2
k + B2

k

cos(2πfkt) +
Bk√

A2
k + B2

k

sin(2πfkt)

)

=
n∑

k=1

Dk

(
cos φ̂k cos(2πfkt) + sin φ̂k sin(2πfkt)

)
=

n∑
k=1

Dk cos(2πfkt− φ̂k),

(1.5)

where

Dk ≡
√

A2
k + B2

k, with φ̂k satisfying both cos φ̂k =
Ak

Dk
and sin φ̂k =

Bk

Dk
.

10 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

Figure 1.7 Time plot and complex exponential-mode frequency plots.

0 0.5 1 1.5 2 2.5 3 3.5 4

−10

0

10

20

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

2

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12
−2

−1

0

1

2

Phase φ
k
 and φ

−k
 (in radians)

Magnitude |X
k
| and |X

−k
|

Therefore, each component function yk(t) may always be interpreted as a pure cosine mode
shifted by a phase angle of φ̂k radians.

The phase shifts may be interpreted as �t ime shifts� by rewriting Equation (1.5) as

y(t) =

n∑
k=1

Dk cos(2πfkt− φ̂k)

=

n∑
k=1

Dk cos

(
2πfk

(
t− φ̂k

2πfk

))

=

n∑
k=1

Dk cos

2π
1

Tk

t− φ̂k

2π
(

1
Tk

)
 .

(
∵ fk ≡ 1

Tk

)
(1.6)

When it is known that the fundamental frequency f1 = 1
T and that fk = kf1 = k

T for
1 ≤ k ≤ n, Equation (1.6) is commonly presented with time shifts tk de� ned below.

(1.7) y(t) =

n∑
k=1

Dk cos

(
2π

k

T
(t− tk)

)
, where tk ≡ φ̂k

2π
(

k
T

) .

Since 2|Xk| =
√

A2
k + B2

k, which is equal to |Dk| in Equations (1.6) and (1.7), we imme-

1.5. USING COSINE MODES WITH PHASE OR TIME SHIFTS 11

diately obtain the following relationship.

y(t) =

n∑
k=1

Xkej2πfkt + X−j2πfkt
−k , where X±k =

Ak ∓ jBk

2
, j ≡ √−1,

=

n∑
k=1

2|Xk| cos(2πfkt− φ̂k)

=

n∑
k=1

2|Xk| cos

(
2π

k

T
(t− tk)

)
, if fk =

k

T
, and tk ≡ φ̂k

2π
(

k
T

) .

(1.8)

Remark 1 In the literature any function of the form

(1.9) f(t) = Dk sin(2πfkt + φk),

where Dk, fk and φk are real constants, is said to be sinusoidal. Using the trigonometric
identity

cos
(
θ − 1

2π
)

= cos θ cos 1
2π + sin θ sin 1

2π = sin θ

with θ = 2πfkt + φk, we can also express (1.9) as a cosine function:

f(t) = Dk sin(2πfkt + φk) = Dk cos
(
2πfkt + φk − 1

2π
)
.

Hence, a sinusoidal function can be written in two forms which differ by 1
2π in the phase

angle:

(1.10) Dk sin(2πfkt + φk) = Dk cos(2πfkt + φ̂k), where φ̂k = φk − 1

2
π.

In particular, both sin(2πfkt) and cos(2πfkt) are sinusoidal functions by this de� nition.

Remark 2 Any component function of the form

(1.11) gk(t) = Ak sin(2πfkt) + Bk cos(2πfkt)

is said to be a � sinusoidal component,� because we have shown at the beginning of
this section that it can be expressed as gk(t) = Dk cos

(
2πfkt − φ̂k

)
, with Dk and φ̂k

determined by Ak and Bk.

Remark 3 The easiest way to add two or more sinusoidal functions of the same frequency is
provided by form (1.11). For example, given f(t) = 5 sin(1.2t)+2 cos(1.2t) and g(t) =

sin(1.2t) + cos(1.2t), we obtain the sum by adding the corresponding coef� cients:

h(t) = f(t) + g(t) = 6 sin(1.2t) + 3 cos(1.2t).

Therefore, the sum of two or more sinusoidal functions of frequency fk is again a sinu-
soidal function of frequency fk.

Remark 4 Be aware that sinusoidal functions may be given in disguised forms: e.g., f(t) =

sin(1.1t) cos(1.1t) is the disguised form of the sinusoidal f(t) = 1
2 sin(2.2t); g(t) =

1− 2 sin2 t is the disguised form of the sinusoidal g(t) = cos 2t.

12 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

1.6 Periodicity and Commensurate Frequencies

Recall that when we present the frequency-domain plots for speci� c examples of

y(t) =

n∑
k=1

Ak cos(2πfkt) + Bk sin(2πfkt),

we have let fk = k cycles per unit time, and we plot the amplitudes Ak and Bk versus k. In
such examples we automatically have uniform spacing with �f = fk+1 − fk = 1, and we
have fk = kf1 with f1 = 1 being the fundamental frequency. Since the time period T of
composite y(t) is the shortest duration over which each sine or cosine component completes
an integer number of cycles, we determine T by the LCM (least common multiple) of the
individual periods. From fk = kf1 and Tk = 1/fk, we obtain T1 = kTk, so T1 is the LCM of
the individual periods. Accordingly, the time period T of the composite y(t) is the reciprocal
of the fundamental frequency f1. Note that f1 is the GCD (greatest common divisor) of the
individual frequencies.

In general, fk 	= k, and we need to distinguish periodic y(t) from non-periodic y(t) by
examining its frequency contents. The conditions and results are given below.

1. The function y(t) is said to be a commensurate sum if the ratio of any two individual
periods (or frequencies) is a rational fraction� ratio of integers with common factors
canceled out.

Example 1.1 The function

y(t) = 4.5 cos (2πfαt) + 7.2 cos (2πfβt) = 4.5 cos (1.2πt) + 7.2 cos (1.8πt)

is a commensurate sum, because fα = 0.6 Hz, fβ = 0.9 Hz, and the ratio fα/fβ = 2/3

is a rational fraction.

2. A commensurate y(t) is periodic with its fundamental frequency being the GCD of the
individual frequencies and its common period being the LCM of the individual periods.

Example 1.2 We continue with Example 1.1: the fundamental frequency of the function
y(t) = 4.5 cos (1.2πt) + 7.2 cos (1.8πt) is fo = GCD(0.6, 0.9) = 0.3 Hz; and the
fundamental period is To = 1/fo = 3 1

3 seconds. We get the same result from To =

LCM
(

1
0.6 , 1

0.9

)
= LCM

(
5
3 , 10

9

)
= 3 1

3 . It can be easily veri� ed that y(t + To) = y(t).

Example 1.3 When fk = k/T , the fundamental frequency is f1 = 1/T , and the com-
posite function

y(t) =

n∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T

is commensurate and periodic with common period T , i.e., y(t + T) = y(t). Since we
have uniform spacing �f = fk+1 − fk = 1/T , we may still plot Ak and Bk versus k

with the understanding that k is the index of equispaced fk; of course, one may plot Ak

and Bk versus the values of fk if that is desired. (Note that fk = k/T = k if T = 1.)

1.7. REVIEW OF RESULTS AND TECHNIQUES 13

3. A non-commensurate y(t) is not periodic, although all its components are periodic. For
example, the function

y(t) = sin(2πt) + 5 sin(2
√

3πt)

is not periodic because f1 = 1 and f2 =
√

3 are not commensurate.

1.7 Review of Results and Techniques

In the preceding sections we show that a sum of sinusoidal modes can be expressed in a num-
ber of ways. While the various formulas are mathematically equivalent, one form could be
more convenient than another depending on the manipulations required for a particular appli-
cation. Also, it is not uncommon that while one form is more suitable for describing a physical
problem, another form is more desirable for a computational purpose. These formulas are
summarized below.

Form 1 Using pure cosine and sine modes

(1.12) y(t) =
n∑

k=1

Ak cos(2πfkt) + Bk sin(2πfkt).

If the angular frequency ωk = 2πfk is used, we obtain

(1.13) y(t) =

n∑
k=1

Ak cos(ωkt) + Bk sin(ωkt).

A common case: when y(t) = y(t+T) with fk = k/T , this fact is explicitly recognized
by expressing

(1.14) y(t) =

n∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T
.

Form 2 Using complex exponential modes

(1.15) y(t) =
n∑

k=−n

Xkej2πfkt.

Form 3 Using cosine modes with phase shifts

(1.16) y(t) =

n∑
k=1

Dk cos(2πfkt− φ̂k).

Form 4 Using cosine modes with time shifts

(1.17) y(t) =

n∑
k=1

Dk cos
(
2πfk (t− tk)

)
.

Form 5 Using complex exponential modes with phases

(1.18) y(t) =
n∑

k=−n

(|Xk|ejφk
)
ej2πfkt.

14 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

A reminder: The de� nitions fk = 1
Tk

and ωk = 2πfk may be used to express y(t) in terms of
Tk (individual period) or ωk (individual angular frequency) in all forms. Also, when fk = k/T ,
this fact is commonly recognized wherever fk is used.

To convert one form to another, one may use the relationship between the coef� cients as
summarized below.

Relation 1 De�n e X0 ≡ 0 when A0 and B0 are missing. For 1 ≤ k ≤ n,

X±k =
Ak ∓ jBk

2
, and f−k = −fk.

Relation 2

|X±k| =
√

A2
k + B2

k

2
, and the phase angle φ±k satis�es both

cosφ±k =
Ak√

A2
k + B2

k

and sin φ±k =
∓Bk√

A2
k + B2

k

.

A reminder: φk is unique in the quadrant determined by the rectangular coordinates
(Ak,−Bk) of the complex number 2Xk; φ−k is unique in the quadrant determined by
the rectangular coordinates (Ak, Bk) of the complex number 2X−k.

Relation 3 For 1 ≤ k ≤ n,

Dk =
√

A2
k + B2

k = 2|X±k|, tk =
φ̂k

2πfk
, where φ̂k = φ−k.

Relation 4 For 1 ≤ k ≤ n,

Ak = Xk + X−k = 2 Re(Xk); Bk = j(Xk −X−k) = −2 Im(Xk).

We also identify the mathematical techniques used in deriving the various results in this
section:

Technique 1 Euler� s identity in three forms:

ejθ = cos θ + j sin θ, cos θ =
ejθ + e−jθ

2
, and sin θ =

ejθ − e−jθ

2j
.

Examples of future use:

• Prove
n∑

k=−n

ejkθ =
sin

(
n + 1

2

)
θ

sin θ
2

. (Chapter 3, Section 3.10.2, page 84)

• Prove
∫ π

−π

n∑
k=−n

ejkθ dθ = 2π. (Chapter 3, Section 3.10.2, page 85)

• Prove
∫ π

−π

sin
(
n + 1

2

)
θ

sin θ
2

dθ = 2π. (Chapter 3, Section 3.10.2, page 85)

• Prove
1

2fc

∫ fc

−fc

ej2πft df =
sin 2πfct

2πfct
. (Chapter 5, Example 5.4, page 171)

1.7. REVIEW OF RESULTS AND TECHNIQUES 15

Technique 2 Trigonometric identities and their alternate forms:

cos(α± β) = cosα cosβ ∓ sin α sin β, sin(α± β) = sinα cosβ ± cosα sin β,

cosα cosβ =
cos(α + β) + cos(α− β)

2
, sin α cosβ =

sin(α + β) + sin(α− β)

2
,

sin α sin β =
cos(α− β)− cos(α + β)

2
, cosα sin β =

sin(α + β)− sin(α− β)

2
.

Examples of future use:

• Letting α = β, we immediately have the useful identities

cos 2α = cos2 α− sin2 α, sin 2α = 2 sin α cosα;

cos2 α =
1 + cos 2α

2
, sin2 α =

1− cos 2α

2
.

• Letting α = mθ and β = nθ, it is straightforward to apply the identities given
above to prove the following results for future use.

∫ π

−π

cosmθ cosnθ dθ =


0, if m 	= n;

π, if m = n 	= 0;

2π, if m = n = 0.

(1.19)

∫ π

−π

sin mθ sin nθ dθ =


0, if m 	= n;

π, if m = n 	= 0;

0, if m = n = 0.

(1.20)

∫ π

−π

cosmθ sin nθ dθ = 0.(1.21)

1.7.1 Practicing the techniques

To practice the techniques in nontrivial settings, we show how to manipulate some trigonomet-
ric series encountered in Fourier analysis in the examples that follow.

Example 1.4 Derive the following identity:

(1.22)
n∑

�=1

sin(2�− 1)θ =
sin2 nθ

sin θ
,

and show that this identity is valid at θ = 0 by the limit convention. (When this convention is
used, the value of a function at a point where a denominator vanishes is understood to be the

16 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

limit, provided this limit is �n ite.)

∵ sin θ

n∑
�=1

sin(2�− 1)θ

= sin2 θ + sin θ sin 3θ + sin θ sin 5θ + · · ·+ sin θ sin(2n− 1)θ

=
1− cos 2θ

2
+

cos 2θ − cos 4θ

2
+

cos 4θ − cos 6θ

2
+ · · ·+ cos(2n− 2)θ − cos(2n)θ

2

=
1

2
− cos 2θ

2
+

cos 2θ

2
− cos 4θ

2
+ · · · − cos(2n− 2)θ

2
+

cos(2n− 2)θ

2
− cos(2n)θ

2

=
1− cos 2nθ

2
(only the � rst term and the last term remain)

= sin2 nθ.
(

recall sin2 α = 1
2 (1 − cos 2α)

)
∴

n∑
�=1

sin(2�− 1)θ =
sin2 nθ

sin θ
.

When θ = 0, since the right side is in the indeterminate form 0/0, we apply L�H �ospital� s rule
to determine the limit:

lim
θ→0

sin2 nθ

sin θ
= lim

θ→0

2n sinnθ cosnθ

cos θ
= 2n sin 0 = 0.

Hence the two sides are equal at θ = 0 by the limit convention.

Example 1.5 Using Euler� s identityejθ = cos θ + j sin θ, the � nite sum of a geometric series
in z = ejθ 	= 1, i.e.,

(1.23)
n∑

�=0

z� =
1− zn+1

1− z
,

and the complex arithmetic identity

(1.24)
c + jd

a + jb
=

(c + jd)(a− jb)

(a + jb)(a− jb)
=

ac + bd

a2 + b2
+ j

ad− bc

a2 + b2
,

determine the closed-form sums of the following cosine and sine series:

(1.25a)
n∑

�=0

cos �θ = 1 + cos θ + · · ·+ cosnθ =?

(1.25b)
n∑

�=1

sin �θ = sin θ + sin 2θ + · · ·+ sinnθ =?

By letting z = ejθ in the left side of (1.23), we identify the cosine series (1.25a) and the sine
series (1.25b) as the real and imaginary parts:

n∑
�=0

z� =

n∑
�=0

ej�θ =

n∑
�=0

cos �θ + j sin �θ =

n∑
�=0

cos �θ + j

n∑
�=1

sin �θ . (∵ sin 0 = 0)

By letting z = ejθ in the right side of (1.23), we express

(1.26)
1− zn+1

1− z
=

1− ej(n+1)θ

1− ejθ
=

{
1− cos(n + 1)θ

}− j sin(n + 1)θ

(1− cos θ)− j sin θ
= U + jV.

1.7. REVIEW OF RESULTS AND TECHNIQUES 17

Accordingly, the real part U represents the cosine series, and the imaginary part V represents
the sine series. To express U and V in (1.26), we use identity (1.24) with c = 1− cos(n+1)θ,
d = − sin(n + 1)θ, a = 1− cos θ, and b = − sin θ:

(1.27)

U =

{
1− cos(n + 1)θ

}
(1− cos θ) + sin(n + 1)θ sin θ

(1− cos θ)2 + sin2 θ

=
1− cos(n + 1)θ − cos θ +

{
cos(n + 1)θ cos θ + sin(n + 1)θ sin θ

}
1− 2 cos θ +

{
cos2 θ + sin2 θ

}
=

1− cos(n + 1)θ − cos θ + cos
(
(n + 1)θ − θ

)
1− 2 cos θ + 1

=
1− cos θ + cosnθ − cos(n + 1)θ

2− 2 cos θ
;

(1.28)

V =
−(1− cos θ) sin(n + 1)θ +

{
1− cos(n + 1)θ

}
sin θ

(1− cos θ)2 + sin2 θ

=

{
sin(n + 1)θ cos θ − cos(n + 1)θ sin θ

}− sin(n + 1)θ + sin θ

1− 2 cos θ +
{
cos2 θ + sin2 θ

}
=

sin
(
(n + 1)θ − θ

)− sin(n + 1)θ + sin θ

1− 2 cos θ + 1

=
sin θ + sin nθ − sin(n + 1)θ

2− 2 cos θ
.

We have thus obtained

(1.29)
n∑

�=0

cos �θ =
1− cos θ + cosnθ − cos(n + 1)θ

2− 2 cos θ
;

(1.30)
n∑

�=1

sin �θ =
sin θ + sin nθ − sin(n + 1)θ

2− 2 cos θ
.

Example 1.6 Derive the trigonometric identity

(1.31)
1

2
+

n∑
�=1

cos �θ =
sin

(
n + 1

2

)
θ

2 sin 1
2θ

,

and show that it is valid at θ = 0 by the limit convention.

Beginning with the identity (1.29), we obtain

1

2
+

n∑
�=1

cos �θ =
1− cos θ + cosnθ − cos(n + 1)θ

2− 2 cos θ
− 1

2

=
2 sin2 1

2θ + cos
((

n + 1
2

)
θ − 1

2θ
)− cos

((
n + 1

2

)
θ + 1

2θ
)

4 sin2 1
2θ

− 1

2

=
2 sin2 1

2θ + 2 sin
(
n + 1

2

)
θ sin 1

2θ

4 sin2 1
2θ

− 1

2

=
sin 1

2θ + sin
(
n + 1

2

)
θ

2 sin 1
2θ

− 1

2

=
sin

(
n + 1

2

)
θ

2 sin 1
2θ

.

18 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

At θ = 0, because cos �θ = cos 0 = 1 for 1 ≤ � ≤ n in the left side, the sum is n + 1
2 . Here

again the right side is in the indeterminate form 0/0, we apply L�H �ospital�s rule to determine
the limit:

lim
θ→0

sin
(
n + 1

2

)
θ

2 sin 1
2θ

= lim
θ→0

(
n + 1

2

)
cos

(
n + 1

2

)
θ

cos 1
2θ

= n +
1

2
.

Hence the two sides are equal at θ = 0 by the limit convention.

Example 1.7 Show that

(1.32)
n∑

�=0

cos
(2m + 1)�π

n + 1
= 1.

If we let θ =
(

2m+1
n+1

)
π in the geometric series (1.23), the numerator in the right side can be

further simpli�ed :

(1.33)

n∑
�=0

ej�θ =
1− ej(n+1)θ

1− ejθ

=
2

1− cos θ − j sin θ
(∵ θ =

(
2m+1
n+1

)
π ∴ ej(n+1)θ = −1)

=
2(1− cos θ + j sin θ)

(1− cos θ)2 + sin2 θ

=

[
2− 2 cos θ

1− 2 cos θ + 1

]
+ j

[
2 sin θ

1− 2 cos θ + 1

]
Recall from Example 1.5 that the real part of the series (1.33) represents the cosine series, we
have thus proved the desired result:

If θ =
(2m + 1)π

n + 1
, then

n∑
�=0

cos �θ =
2− 2 cos θ

2− 2 cos θ
= 1.

Example 1.8 Show that, if the nonzero integer m is not a multiple of n + 1, we have

(1.34)
n∑

�=0

cos
(2m)�π

n + 1
= 0.

We again let θ =
(

2m
n+1

)
π in the geometric series (1.23), we have

(1.35)

n∑
�=0

ej�θ =
1− ej(n+1)θ

1− ejθ

=
0

1− ejθ
(∵ θ =

(
2m
n+1

)
π ∴ ej(n+1)θ = 1)

= 0.

Example 1.9 Show that the following alternative expressions for the � nite sum of the sine
series can be obtained from identity (1.30) in Example 1.5.

(1.36)
n∑

�=1

sin �θ =
cos 1

2θ − cos
(
n + 1

2

)
θ

2 sin 1
2θ

;

1.8. EXPRESSING SINGLE COMPONENT SIGNALS 19

(1.37)
n∑

�=1

sin �θ =
sin

(
n+1

2

)
θ sin n

2 θ

sin 1
2θ

.

To derive the two mathematically equivalent results, we continue from (1.30):

n∑
�=1

sin �θ =
sin θ + sin nθ − sin(n + 1)θ

2− 2 cos θ

=
2 sin 1

2θ cos 1
2θ + sin

((
n + 1

2

)
θ − 1

2θ
)− sin

((
n + 1

2

)
θ + 1

2θ
)

4 sin2 1
2θ

=
2 sin 1

2θ cos 1
2θ − 2 cos

(
n + 1

2

)
θ sin 1

2θ

4 sin2 1
2θ

=
cos 1

2θ − cos
(
n + 1

2

)
θ

2 sin 1
2θ

(
this is the desired result (1.36)

)
=

cos
(

n+1
2 − n

2

)
θ − cos

(
n+1

2 + n
2

)
θ

2 sin 1
2θ

=
sin

(
n+1

2

)
θ sin n

2 θ

sin 1
2θ

.
(
this is the desired result (1.37)

)

1.8 Expressing Single Component Signals

Since many puzzling phenomena we encounter in analyzing or processing composite signals
can be easily investigated through single-mode signals, they are indispensable tools in our
continued study of signal sampling and transformations, and it pays to be very familiar (and
comfortable) with expressing a single-mode signal in its various forms. Although we can
formally put such a signal in one of the standard forms (with a single nonzero coef� cient) and
apply the full-force conversion formulas, it is much easier to forgo the formalities and work
with the given signal directly, as demonstrated by the following examples.

Example 1.10 f(t) = cos(2πfat) = cos(80πt) is a 40-Hertz sinusoidal signal, its amplitude
is A = 1.0, its period is T = 1/fa = 1/40 = 0.025 seconds, and it has zero phase. We express
f(t) in the complex exponential modes by applying Euler�s formula directly:

f(t) = cos(80πt) =
1

2

(
ej80πt + e−j80πt

)
= 0.5e−j80πt + 0.5ej80πt.

The difference between f(t) given above and g(t) = sin(80πt) lies in the phase angle, because
the latter can be rewritten as a shifted cosine wave, namely, g(t) = cos(80πt−π/2). The phase
can also be recognized directly from expressing g(t) in the complex exponential modes:

g(t) = sin(80πt) =
1

2j

(
ej80πt − e−j80πt

)
= (0.5j)e−j80πt + (−0.5j)ej80πt.

=
(
0.5ejπ/2

)
e−j80πt +

(
0.5e−jπ/2

)
ej80πt.

The coef� cients±0.5j each has nonzero imaginary part, which re� ects a nonzero phase in the
signal. The polar expression ±j = e±jπ/2 reveals the phase explicitly.

20 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

Example 1.11 For h(t) = 4 cos(7πt + α), we have

h(t) = 4 cos(7πt + α) =
4

2

(
ej(7πt+α) + e−j(7πt+α)

)
=

(
2e−jα

)
e−j7πt +

(
2ejα

)
ej7πt.

Observe that when the phase α 	= 0, π, the coef�cients 2e±jα = 2(cosα ± j sin α) have
nonzero imaginary part.

For u(t) = 4 sin(7πt+β), we may apply Euler�s formula directly to the given sine function
to obtain

u(t) = 4 sin(7πt + β) =
4

2j

(
ej(7πt+β) − e−j(7πt+β)

)
=

(
2je−jβ

)
e−j7πt +

(−2jejβ
)
ej7πt

=
(
2e−j(β−π/2)

)
e−j7πt +

(
2ej(β−π/2)

)
ej7πt.

The same expression can also be obtained if we use the result already available for u(t) =

4 cos(7π + α) with α = β − π/2.

Example 1.12 For v(t) = 3 cos(15πt) cos(35πt), be aware that it hides two cosine modes. To
bring them out, we use the trigonometric identity for cosα cosβ (given under Technique 2 in
the previous section) to obtain

v(t) = 3 cos(15πt) cos(35πt) = 1.5
(
cos(15 + 35)πt + cos(15− 35)πt

)
= 1.5

(
cos 50πt + cos 20πt

)
= 1.5e−j50πt + 1.5e−j20πt + 1.5ej20πt + 1.5ej50πt.

The two cosine modes may also be disguised as s(t) = 3 sin(15πt) sin(35πt), and they can
again be obtained using the trigonometric identity for sin α sin β (given under Technique 2 in
the previous section):

s(t) = 3 sin(15πt) sin(35πt) = 1.5
(
cos(15− 35)πt− cos(15 + 35)πt

)
= 1.5(cos 20πt− cos 50πt

)
= −1.5e−j50πt + 1.5e−j20πt + 1.5ej20πt − 1.5ej50πt.

1.9 General Form of a Sinusoid in Signal Application

When a cyclic physical phenomenon is described by a cosine curve, the general form used in
many applications is the cosine mode with phase shift angle (or phase in short)

(1.38) x(t) = Dα cos(2πfαt− φα),

where the amplitude Dα, frequency fα, and phase φα (in radians) provide useful information
about the physical problem at hand. For example, suppose that it is justi� able to model the
variation of monthly precipitation in each appropriately identi�ed geographic region by a co-
sine curve with period Tα = 1/fα = 12 months, then the amplitude of each �tted cosine
curve predicts the maximum precipitation for each region, and the phase (converted to time
shift) predicts the date of maximum precipitation for each region. Graphically, the time shift
tα (computed from the phase φα) is the actual distance between the origin and the crest of the

1.9. GENERAL FORM OF A SINUSOID IN SIGNAL APPLICATION 21

cosine curve when the horizontal axis is time, because x(t) = Dα when 2πfαt − φα = 0 is
satis�ed by t = tα = φα/2πfα.

Note that when a negative frequency fα < 0 appears in the general form, it is interpreted
as the result of phase reversal as shown below.

x(t) = Dα cos(2πfαt− φα)

= Dα cos(−2πf̂αt− φα) (∵ f̂α = −fα > 0)

= Dα cos
(−(2πf̂αt + φα)

)
= Dα cos(2πf̂αt + φα) (∵ cos(−θ) = cos θ)

= Dα cos
(
2πf̂αt− (−φα)

)
.

For example, to obtain the time-domain plot of x(t) = 2.5 cos(−40πt− π/6), we simply plot
x(t) = 2.5 cos(40πt− φ) with φ = −π/6 (reversed from π/6) in the usual manner.

1.9.1 Expressing sequences of discrete-time samples

When the sinusoid x(t) = Dα cos(2πfαt − φα) is sampled at intervals of �t (measured in
chosen time units), we obtain the discrete-time sinusoid

(1.39) x� ≡ x(��t) = Dα cos(2πfα��t− φα), � = 0, 1, 2, . . .

Observe that the sequence of discrete-time samples {x0, x1, x2, . . . } can also be represented
by the three-tuple {fα�t, φα, Dα}, where the product of the analog frequency fα (cycles per
unit time) and the sampling interval �t (elapsed time between consecutive samples) de� nes
the digital (or discrete) frequency

Fα ≡ fα�t (cycles per sample).

Therefore, a discrete-time sinusoid has the general form

(1.40) x� = Dα cos(2πFα�− φα), � = 0, 1, 2, . . .

Since fα = Fα/�t, the digital frequency can always be converted back to the analog frequency
as desired. Furthermore, because

Fα ≡ fα�t =
1

m
fα

(
m�t

)
= mfα

(
1

m
�t

)
,

an m-fold increase (or decrease) in �t amounts to an m-fold decrease (or increase) in the
analog frequency, i.e.,

fβ =
Fα

m�t
=

1

m

(
Fα

�t

)
; fγ =

Fα

1
m�t

= m

(
Fα

�t

)
.

Consequently, by simply adjusting�t at the time of output, the same set of digital samples may
be converted to analog signals with different frequencies. This will provide further �e xibility
in the sampling and processing of signals.

Corresponding to the (analog) angular frequency ωα = 2πfα (radians per second), we
have the digital (or discrete) angular frequency Wα = 2πFα (radians per sample); hence, we
may also express the two general forms as

(1.41) x(t) = Dα cos(ωαt− φα),

22 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

and

(1.42) x� = Dα cos(Wα�− φα), � = 0, 1, 2, . . .

1.9.2 Periodicity of sinusoidal sequences

While the period of the sinusoid x(t) = Dα cos(2πfαt− φα) is always T = 1/fα, we cannot
say the same for its sampled sequence for two reasons:

1. The discrete-time sample sequence may or may not be periodic depending on the sam-
pling interval�t;

2. If the discrete-time sample sequence is periodic, its period varies with the sampling
interval�t.

To � nd out whether a discrete-time sinusoid is periodic and to determine the period (measured
by the number of samples), we make use of the mathematical expression for the �th sample,
namely,

x� = Dα cos(2πFα�− φα), � = 0, 1, 2, . . . ,

and we recall that Fα = fα�t. We now relate the discrete-time samples represented by the
sequence {x�} to the period of its envelope function

x(t) = Dα cos(2πfαt− φα)

through the digital frequency Fα:

1. If we can express

Fα = fα�t =
K

N
,

where K and N are integers (with no common factor), then we have

xN = Dα cos(2πK− φα),

and xN is positioned exactly at the point where its envelope function x(t) completes K

cycles, and we may conclude that the discrete-time sample sequence {x�} is periodic
with period T = N samples�m eaning that x�+N = x� for 0 ≤ � ≤ N− 1, and xN = x0

is the � rst sample of the next period.

2. The sequence {x�} is not periodic if we cannot express its digital frequency F as a
rational fraction.

We demonstrate the different cases by several examples below.

Example 1.13 The discrete-time sinusoid x� = cos(0.025π�− π/6) can be written as

x� = cos(2πFα�− π/6)

with Fα = 0.025/2 = 0.0125 = 1/80, so the given sequence is periodic with period N = 80

(samples). In this case, we have K = 1, so the N samples are equally spaced over a single
period of its envelope function.

1.10. FOURIER SERIES: A TOPIC TO COME 23

Example 1.14 The discrete-time sinusoid g� = cos(0.7π� + π/8) can be written as

g� = cos(2πFα� + π/8)

with Fα = 0.7/2 = 0.35 = 7/20, so the given sequence is periodic with period N = 20

(samples). In this case, we have K = 7, so the N equispaced samples span seven periods of its
envelope function.

Example 1.15 The discrete-time sinusoid y� = cos(
√

3π�) is not periodic, because when we
express

y� = cos(2πFβ�),

we have Fβ =
√

3/2, which is not a rational fraction.

Example 1.16 The discrete-time sinusoid z� = cos(2� + π/6) is not periodic, because when
we express

z� = cos(2πFγ� + π/6),

we have Fγ = 1/π, which is not a rational fraction.

Sampling and reconstruction of signals will be formally treated in Chapters 2, 5 and 6.

1.10 Fourier Series: A Topic to Come

In this chapter we limit our discussion to functions consisting of explicitly given sines and
cosines, because their frequency contents are precisely de� ned and easy to understand. To
extend the de�n itions and results to an arbitrary function f(t), we must seek to represent
f(t) as a sum of sinusoidal modes� this process is called Spectral Decomposition or Spectral
Analysis. The Fourier series refers to such a representation with frequencies speci�ed at fk =

k/T cycles per unit time for k = 0, 1, 2, . . . ,∞. The unknowns to be determined are the
amplitudes (or coef� cients) Ak and Bk so that

(1.43) f(t) =

∞∑
k=0

Ak cos
2πkt

T
+ Bk sin

2πkt

T
.

If we are successful, the Fourier series of f(t) is given by the commensurate sum in the right-
hand side, and we have f(t+T) = f(t). That is, T is the common period of f(t) and f1 = 1/T

is the fundamental frequency of f(t). Note that f(t) completes one cycle over any interval of
length T , including the commonly used [−T/2, T/2].

Depending on the application context, the Fourier series of function f(t) may appear in
variants of the following forms:

1. Using pure cosine and sine modes with variable t,

(1.44) f(t) =
A0

2
+

∞∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T
.

Note that f(t) has a nonzero DC term, namely, A0/2, for which we have the following
remarks:

24 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

Remark 1. For k = 0, we have cos 0 = 1 and sin 0 = 0; hence, the constant term
in (1.43) is given by (A0 cos 0 + B0 sin 0) = A0.

Remark 2. By convention the constant (DC) term in the Fourier series (1.44) is denoted
by 1

2A0 instead of A0 so that �one� mathematical formula de� nes Ak for all k, in-
cluding k = 0. The analytical formulas which de�ne Ak and Bk will be presented
when we study the theory of Fourier series in Chapter 3.

A common variant uses T = 2L with spatial variable x,

(1.45) f(x) =
A0

2
+

∞∑
k=1

Ak cos
πkx

L
+ Bk sin

πkx

L
.

Note that f(x + 2L) = f(x), and a commonly chosen interval of length 2L is [−L, L].

2. Using cosine modes with phase shifts,

(1.46) f(t) = D0 +

∞∑
k=1

Dk cos
(2πkt

T
− φ̂k

)
.

The individual terms � Dk cos(2πkt
T − φ̂k)� a re called the �harmonics � of f(t). Note that

the spacing between the harmonic frequencies is�f = fk+1−fk = 1
T . Hence, periodic

analog signals are said to have discrete spectra, and the spacing in the frequency domain
is the reciprocal of the period in the time domain.

3. Using complex exponential modes with variable t,

(1.47) f(t) =

∞∑
k=−∞

Xkej2πkt/T .

Note that X0 = A0/2 (see above).

4. Using pure cosine and sine modes with dimension-less variable θ = 2πt/T radians,

(1.48) g(θ) =
A0

2
+

∞∑
k=1

Ak cos kθ + Bk sin kθ.

Since t varies from 0 to T , θ = 2πt/T varies from 0 to 2π, we have g(θ + 2π) =

g(θ). Note that g(θ) completes one cycle over any interval of length 2π, including the
commonly used [−π, π].

5. Using complex exponential modes with dimension-less variable θ = 2πt/T radians,

(1.49) g(θ) =
∞∑

k=−∞
Xkejkθ.

6. In Chapter 5, we will learn that the frequency contents of a nonperiodic function x(t)

are de� ned by a continuous-frequency function X(f), and we will also encounter the
Fourier series representation of the periodically extended X(f), which appears in the
two forms given below. A full derivation of the continuous-frequency function X(f)

and its Fourier series (when it exists) will be given in Chapter 5.

1.11. TERMINOLOGY 25

Using pure cosine and sine modes with variable f (which represents the continuously
varying frequency) and bandwidth F , that is to say, f ∈ [−F/2, F/2],

(1.50) X(f) =

∞∑
k=0

ak cos
2πkf

F
+ bk sin

2πkf

F
.

Using complex exponential modes with variable f and bandwidth F ,

(1.51) X(f) =

∞∑
k=−∞

ckej2πkf/F .

Instead of using the variable f ∈ [−F/2, F/2], a dimension-less variable
θ = 2πf/F ∈ [−π, π] may also be used in the frequency domain. Corresponding
to the two forms of X(f) given above, we have

G(θ) =

∞∑
k=0

ak cos kθ + bk sin kθ,(1.52)

and

G(θ) =

∞∑
k=−∞

ckejkθ , where θ ∈ [−π, π].(1.53)

Observe that because the Fourier series expression in θ may be used for both time-domain func-
tion x(t) and frequency-domain function X(f), the dimension-less variable θ is also known as
a neutral variable. Since the Fourier series expression is signi�can tly simpli�ed by using the
neutral variable θ, it is often the variable of choice in mathematical study of Fourier series.

The theory and techniques for deriving the Fourier series representation of a given function
will be covered in Chapter 3.

1.11 Terminology

Analog signals Signals continuous in time and amplitude are called analog signals.

Temporal and spatial variables The temporal variable t measures time in chosen units; the
spatial variable x measures distance in chosen units.

Period and wavelength The period T satis�es f(t + T) = f(t); the wavelength 2L satis�es
g(x + 2L) = g(x).

Frequency and wave number The (rotational) frequency is de� ned by
1

T
(cycles per unit

time); the wave number is de� ned by
1

2L
(wave numbers per unit length).

Sine and cosine modes A pure sine wave with a � xed frequency fk is called a �sin e mode�
and it is denoted by sin(2πfkt); similarly, a cosine mode is denoted by cos(2πfkt).

Phase or phase shift It refers to the phase angle φ̂k (expressed in radians) in the shifted cosine
mode cos(2πfkt− φ̂k) or cos(2πfkx− φ̂k).

26 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

Time and space shifts The time shift refers to tk in cos
(
2πfk(t− tk)

)
; the space shift refers

to xk in cos
(
2πfk(x− xk)

)
.

Angular frequency It is de� ned by ω = 2πf (radians per unit time or unit length), where f

refers to the rotational frequency
1

T
or the wave number

1

2L
de� ned above.

Neutral variables In the time domain, a neutral variable θ = 2πt/T (radians) varies from 0 to
2π when the time variable t goes from 0 to T (units of time); in the frequency domain, a
neutral variable θ = 2πf/F (radians) varies from −π to π when the frequency variable
f goes from −F/2 to F/2 (cycles per unit time). The neutral variable θ is dimension-
less, and it is always expressed in radians.

Digital or discrete frequency The digital (rotational) frequency F measures cycles per sam-
ple, and the digital angular frequency W measures radians per sample.

References

1. A. Ambardar. Analog and Digital Signal Processing. Brooks/Cole Publishing Company,
Paci� c Grove, CA, second edition, 1999.

2. R. W. Hamming. Digital Filters. Prentice-Hall, Inc., Englewood Cliffs, NJ, third edition,
1989.

3. J. N. Rayner. An Introduction to Spectral Analysis. Pion Limited, London,
Great Britain, 1971.

4. H. J. Weaver. Applications of Discrete and Continuous Fourier Analysis. John Wiley &
Sons, Inc., New York, 1983.

5. C. R. Wylie. Advanced Engineering Mathematics. McGraw-Hall Book Company, New
York, fourth edition, 1975.

Chapter 2

Sampling and Reconstruction of
Functions—Part I

In Chapter 1 we study the time and frequency contents of functions formed by combining
explicitly given sines and cosines. In the real world we need to process signals which are
available only as a sequence of samples collected at equally spaced intervals, and we will begin
the discussion on recovering frequency contents from discrete-time samples in this chapter.

2.1 DFT and Band-Limited Periodic Signal

Suppose that the unknown signal x(t) is periodic and it has Fourier series representation

(2.1) x(t) =
A0

2
+

∞∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T
.

Since x(t + T) = x(t), we only need to sample the function over a single period. While there
is no limit on the variable t (in the sense that x(t) is de�n ed everywhere in the in� nite time
domain), the range (or bandwidth) of frequencies may or may not be limited depending on
whether there are finite or infinite number of terms in its Fourier series. Let us begin with the
case when the Fourier series coef� cients Ak = Bk = 0 for k > n. That is, x(t) is band-limited
(up to the maximum frequency fn = n/T), and it is represented by a � nite Fourier series of
N = 2n+1 terms, namely,

(2.2) x(t) =
A0

2
+

n∑
r=1

Ar cos
2πrt

T
+ Br sin

2πrt

T
.

To determine the frequency contents of x(t), we may solve for the N = 2n+1 unknown
coef�cients Ar and Br by setting up a system of N linear equations in N unknowns, provided
that we are given N values of x(t). When the samples of x(t) are equally spaced over the
period [0, T], we have x� = x(t�) with t� = ��t = �

(
T
N

)
for 0 ≤ � ≤ N−1, and the resulting

system is given by

(2.3) x� =
A0

2
+

n∑
r=1

Ar cos
2πr�

N
+ Br sin

2πr�

N
, � = 0, 1, . . . , N−1.

27

28 CHAPTER 2. SAMPLING AND RECONSTRUCTION� PART I

If we change the variable from t to θ = 2πt
T , then θ� = 2πt�

T = �
(

2π
N

)
, and we obtain the

alternate form

(2.4) x� =
A0

2
+

n∑
r=1

Ar cos(rθ�) + Br sin(rθ�), � = 0, 1, . . . , N−1.

For N = 2n+1 = 7, the mapping of {t0, t1, . . . , tN−1} to {θ0, θ1, . . . , θN−1} is shown in
Figure 2.1.

Figure 2.1 Changing variable from t ∈ [0, T] to θ = 2πt/T ∈ [0, 2π].

θ
0
 = 0

θ
1

θ
2

θ
3

θ
4

θ
5

θ
6
 = 2π−∆θ

∆θ = 2π/N

Mapping t
k

∈ [0, T) to θ
k

∈ [0, 2π),

k = 0, 1, ..., N−1:

(N = 2n+1 = 7)
π

2π

θ
4

θ
5

θ
6

θ
3θ

2
θ

1
θ

0

0

By using Euler�s formula

cos(rθ�) =
ejrθ� + e−jrθ�

2
, sin(rθ�) =

ejrθ� − e−jrθ�

2j
, where j ≡ √−1,

we obtain the system in complex exponential modes

(2.5) x� =

n∑
r=−n

Xrω
r�
N

, where ωN ≡ ej2π/N , � = 0, 1, . . . , N−1.

Noting that ωN
N = 1 and ωN±r

N = ω±r
N , if we relabel X−rω

−r�
N by XN−rω

(N−r)�
N for −n ≤

−r ≤ −1, we obtain

(2.6) x� =

N−1∑
r=0

Xrω
r�
N , ωN ≡ ej2π/N , � = 0, 1, . . . , N−1,

which leads to the DFT (discrete Fourier transform) formula (2.7) given below, by which we
can transform the sequence of discrete samples {x0, x1, . . . , xN−1} to the sequence of coef� -
cients {X0, X1, . . . , XN−1} without solving a system of equations. (The DFT formulas and

2.1. DFT AND BAND-LIMITED PERIODIC SIGNAL 29

their derivation will be covered in full detail in Chapter 4.)

(2.7) Xr =
1

N

N−1∑
�=0

x�ω
−r�
N

, for r = 0, 1, . . . , N − 1.

In Figure 2.2, we give two examples of equally spaced N = 2n+1 samples and the computed
DFT coef� cients�th e computed Xr�s are relabeled for −n ≤ r ≤ n as given originally by
Formula (2.5). Since X±k are the coef� cients of the complex exponential modes e±j2πkt/T ,
the corresponding frequencies±fk = ±k/T are marked on the frequency grid. (Note that the
X±k�s in Figure 2.2 are all real-valued, because we have constructed signals x1(t) and x2(t)

to have only cosine modes.)

Figure 2.2 Equally-spaced samples and computed DFT coef� cients.

0 1.1 2.2 3.3

0

1

2

t

x(
t)

0

0.5

1

0 1.1 2.2 3.3

0

5

10

t

y(
t)

0

1

2

Time Grid (∆t = T/N = 0.66)

Time Grid (∆t = T/N = 0.3)

Frequency Grid (∆f = 1/T)

Frequency Grid (∆f = 1/T)

0 T = 3.3

0 T = 3.3

N = 5, ∆t = 0.66
Period T = 3.3

Period T = 3.3
N = 11, ∆t = 0.3

0 f
2
=2/T−f

2

0 f
5
 = 5/T −f

5

0

0

f
2−f

2

f
5

−f
5

X±k

Y±k

We defer the matrix formulation of the DFT until Chapter 4. It turns out that because of the
special properties of the DFT matrix, the DFT coef� cient Xr can be computed more ef�ciently
using various fast Fourier transform algorithms (commonly known as the FFT). Interested
readers are referred to our earlier book [13] and/or Part II of this book for the design, analysis,
and implementation of a large collection of the FFT algorithms.

With the DFT coef�cien t Xr computed from (2.7), we can reconstruct the signal x(t) using
the complex exponential modes:

x(t) =
n∑

r=−n

Xre
j2πrt/T ,

where X−r = XN−r for −n ≤ −r ≤ −1 by reversing the relabeling operation. By applying
the relations we developed in Chapter 1, the DC term and the amplitudes of the sine and cosine
modes are immediately available from the computed Xr values as shown below.

30 CHAPTER 2. SAMPLING AND RECONSTRUCTION� PART I

1. The DC term
A0

2
= X0;

2. Noting that N = 2n + 1 and XN−r = X−r for 1 ≤ r ≤ n, we express

Ar = Xr + XN−r, Br = j(Xr −XN−r),

for r = 1, 2, . . . , n.

With the values of Ar and Br available, we can reconstruct the signal x(t) using the pure
cosine and sine modes:

x(t) =
A0

2
+

n∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T
.

The process described above reveals a relationship between the number of samples and the
number of complex exponential or real sinusoidal modes� the N = 2n+1 samples allow us
to determine the coef�cien t Xr for exactly N = 2n+1 complex exponential modes, from
which we can recover the n cosine modes, n sine modes, and the DC term. This relationship
is precise for the band-limited periodic function if we know the maximum frequency present
in the signal. In our example, the frequencies fk = k/T range from f1 = 1/T , which is the
fundamental frequency of the signal, to the maximum fn = n/T , with n = 2 and n = 5 in the
two examples illustrated in Figure 2.2, in which we also show uniform spacing�f = 1/T on
the frequency grid, together with uniform spacing�t = T/N on the time grid. The sampling
rate R is de�n ed to be 1/�t, which measures the number of samples per unit time.

The following relations can now be easily established from the de�n itions:

Relation 1 (Reciprocity relation) The grid spacing �f in the frequency domain and the grid
spacing�t are related inversely by the equation:

�f�t =
1

T

T

N
=

1

N
.

Relation 2 (Maximum frequency and sampling rate/interval)

fn = n�f =
n

T
=

n

N�t
≤ 1

2

(
1

�t

)
or

R =
1

�t
≥ 2fn.

This relation reveals that the maximum frequency we can possibly discover from the
samples is one half of the sampling rate R = 1/�t. In the context of sampling theorem
(to be presented in Chapter 5), the maximum frequency fn so determined is formally
referred to as the Nyquist frequency, and we have R = 1/�t = �2fn�. As illustrated in
Figure 2.2, the range of frequencies [−fn, fn] (corresponding to those shown in com-
plex exponential mode) is called the fundamental interval or the Nyquist interval (with
bandwidth F = 2fn).

Relation 3 (Sample spacing and shortest period)

�t ≤ 1

2

(
1

fn

)
=

Tn

2
.

2.1. DFT AND BAND-LIMITED PERIODIC SIGNAL 31

Since a mode at the maximum frequency fn has the shortest period Tn = 1/fn, when
samples are spaced by �t ≤ 1

2Tn, at least two samples per cycle are available for
detecting the mode at this (known) frequency.

Digital Frequency and Relations 1–3 Recall that the product of analog frequency fk and
sampling interval�t de� nes the digital frequency

Fk ≡ fk�t =
k

T
�t =

k

N�t
�t =

k

N
(cycles per sample).

Thus we have the uniform spacing �F = 1/N on the digital frequency grid. The
maximum digital frequency is

Fn = fn�t =
n

N
≤ 1

2
,

and we obtain the Nyquist interval [−Fn, Fn] ⊆ [− 1
2 , 1

2]. The relationship between
analog and digital frequency grids is illustrated by examples in Figure 2.3.

Figure 2.3 Analog frequency grids and corresponding digital frequency grids.

Digital Frequency Grid: ∆F = ∆f∆t = 1/N (N = 2n+1 = 5)

0 2/N = 2/51/N−1/N −2/N

0 1/T −1/T

Analog Frequency Grid: ∆f = 1/T (T = 3.3 = N∆t, N = 5)

Analog Frequency Grid: ∆f = 1/T (T = 7.26 = N∆t, N = 11)

Digital Frequency Grid: ∆F = ∆f∆t = 1/N (N = 2n+1 = 11)

2/T−2/T

0 1/T 2/T 3/T 4/T 5/T−1/T−2/T−3/T−4/T−5/T

 −5/N 0 5/N = 5/11

Note that after �t is absorbed into Fk, we can only refer to the �th sample x� in the
discrete-time domain, so the spacing is �� = 1, and the reciprocity relation

�F�� =
1

N

is satisÞed . To drive home this last point, we only need to evaluate

x(t) =
A0

2
+

n∑
k=1

Ak cos 2πfkt + Bk sin 2πfkt

32 CHAPTER 2. SAMPLING AND RECONSTRUCTION—PART I

at Ò t = ��tÓ a nd express the value of the �th sample using Fk instead of fk as shown
below.

x� =
A0

2
+

n∑
k=1

Ak cos 2π(Fk)� + Bk sin 2π(Fk)�.

Accordingly, the data spacing in the discrete-time domain is �� = 1 (with period T =

N) when the spacing in the frequency domain is measured by digital frequency instead
of analog frequency.

Finally, since�� = 1 and 2 ≤ 1

Fn
, the relation�� ≤ 1

2Fn
is also satisÞed .

We will consider the implications of these relations on signals which are either non-periodic or
not band-limited (or both) in Chapter 5.

2.2 Frequencies Aliased by Sampling

In this section we study the sampling process in a less precise setting. We begin with the
simplest case: suppose we are given two samples xi and xj which are spaced T̃ /2 units apart
within an interval of T̃ units, and we are required to determine a single-frequency component
wave x̃(t) which interpolates the two discrete samples. We learn from Chapter 1 that we may
express x̃(t) in the following forms:

x̃(t) = α cos(2πf̃t) + β sin(2πf̃t) = γ cos(2πf̃t− φ̂).

Note that we cannot apply the solution process developed in the last section to this (seemingly
simple) special case without knowing the frequency (or period) of x̃(t), because, as shown in
Figure 2.4, multiple functions of different periods pass through the same two points spaced
T̃ /2 units apart within an interval of T̃ = 2 units. To emphasize this potential problem in the
current setting, we repeat its source three times (in three ways):

1. We do not know the period of x̃(t);

2. We do not know the frequency f̃ of x̃(t);

3. We do not know how many cycles x̃(t) has completed over the interval T̃ .

Mathematically, the function x̃(t) interpolating the two samples is no longer unique if the
frequency f̃ is not speciÞ ed. However, if we are required to have (at least) two samples per
cycle, we will accept the x̃(t) which completes one cycle over the interval T̃ , i.e., the frequency
we can resolve for x̃(t) is f̃ = r̃/T̃ = 1/T̃ .

When we deal with discrete samples taken from a composite signal, the so-called aliased
frequencies are equivalent in the sense that they contribute the same numerical values at the
sample points. For example, as illustrated in Figure 2.5, the signal

y(θ) = cos(θ) + 2 cos(3θ) + 3 cos(5θ)

cannot be distinguished from
x(θ) = 6 cos(θ)

based on the two values sampled at θ1 = 0 and θ2 = π, because y(0) = x(0) = 6 and
y(π) = x(π) = −6. Consequently, if the samples actually come from y(θ), we would never

2.2. FREQUENCIES ALIASED BY SAMPLING 33

Figure 2.4 The function interpolating two samples is not unique.

0 1 2
−2

0

2

0 1 2
−2

−1

0

1

2

0 1 2
−2

0

2

0 1 2
−2

0

2

0 1 2
−2

0

2

Period T = 2/7 Period T = 2/5

Period T = 2/3 Period T = 2

The function interpolating two data points is not unique:

Figure 2.5 Functions x(θ) and y(θ) have same values at 0 and π.

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

2ππ

π 2π

y(θ) = cos(θ) + 2cos(3θ) + 3cos(5θ)

x(θ) = 6cos(θ)

y(θ) and x(θ) have same values at 0 and π:

34 CHAPTER 2. SAMPLING AND RECONSTRUCTION—PART I

Figure 2.6 The aliasing of frequencies outside the Nyquist interval.

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

π

π

y(θ)=cosθ+2cos3θ+3cos5θ

x(θ)=6cosθ

f
1 f

3
f
5−f

1
−f

3−f
5

y(θ) in frequency domain

f
1−f

1

2π

2π

X
1
=0.5+1+1.5=3X

−1
=3

0.5
1

1.51.5
1

0.5

Y±k

aliasing

1.5
1

0.50.5
1

1.5

due to sampling only y(0) and y(π)

Nyquist interval: [−f
1
, f

1
]

2.2. FREQUENCIES ALIASED BY SAMPLING 35

Þn d out by taking only two samples over one period of y(θ). This consequence is shown in
Figure 2.6.

In general, if a signal contains (higher) frequencies outside the Nyquist interval, they
would be aliased to (lower) frequencies inside the Nyquist interval. Recall from the last sec-
tion that when we are given N = 2n+1 equally spaced samples over one period (T) of a
composite signal, the maximum frequency we can possibly resolve is the Nyquist frequency
fn ≤ 1/(2�t) = N/(2T), and there are two samples available over the (shortest) period
Tn = 1/fn, which is shown in Figure 2.7. Our solution was precise because there were no

Figure 2.7 Sampling rate and Nyquist frequency.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

5T
5
=TT

5
=T/5 2T

5
 3T

5
 4T

5

0.2T 0.4T 0.6T 0.8T T0

 The component with the shortest periods T
5
 = T/5

N = 2n+1 = 11 points in one period

Two points

in one period

The component with the longest period T

N = 2n+1 = 11 points over five periods

0

other (higher) frequencies present in the signal. When this is not the case, suppose that the
Fourier series of x(t) has more than N = 2n + 1 terms, then the Nyquist frequency (which
is determined by the current sampling rate) is not the highest frequency present in the signal.
Instead, the Nyquist frequency now represents the cutoff frequency. When this happens, be-
cause the (higher) frequencies outside the Nyquist interval cannot be resolved at the chosen
sampling rate, their numerical values at the sample points would appear as contributions from
the equivalent (lower) frequencies inside the Nyquist interval: a high frequency appears as (is
aliased into) a low frequency, and the affected DFT coefÞ cient is said to contain an aliasing
error.

Relevant later sections: A precise accounting of the aliased frequencies in the DFT co-
efÞ cients will be given in Section 3.11, and we shall verify the aliasing effect by concrete
examples in Section 4.4.

36 CHAPTER 2. SAMPLING AND RECONSTRUCTION—PART I

2.3 Connection: Anti-Aliasing Filter

When the original signal contains frequencies outside the Nyquist interval, their contribution
to the sample values would appear as a contribution from lower frequencies in the signal re-
produced from the samples. Therefore, while the reproduced signal agrees with the original
signal at discrete sample points in the time domain, they do not agree with each other in the
frequency domain: the reproduced signal has potentially fewer modes and their amplitudes are
potentially different. For example, the kth coefÞcient computed by the DFT includes the con-
tribution not only from the original kth mode, but from all of the aliased modes as well. These
differences cause distortion in the reproduced signalÑ the fewer aliased frequencies, the better
the original signal is preserved.

Of course, aliasing of signals will not occur if the highest frequency present in the sampled
signal can be limited to the Nyquist frequency, which is determined by a suitable choice of
the sampling rate. To ensure this, a low-pass pre-Þlter or anti-aliasing Þlter may be used to
band-limit the original signal before the samples are collected. The cutoff frequency of the
anti-aliasing Þ lter can be set according to the sampling rate, so in theory no component with
frequencies higher than the Nyquist frequency remains in the Þ ltered signal, and no aliasing
will occur in the reconstructed signal.

Signal Þ ltering is a topic covered in Chapter 10.

2.4 Alternate Notations and Formulas

Since Fourier analysis and its wide-ranging applications span across numerous areas over a
long time in history, there exists a very large body of technical terms and formulas, and they
are expressed using widely varying notations in the literature. In this section we revisit some
familiar terms and formulas in this context.

In Table 2.1 we list the symbols we chose to adopt in this book in the second column,
and we give examples of alternate symbols in the third column. Since the deÞ nitions of these
terms are inter-related, we need to be consistent in our choice of notations to make their roles
clear, transparent, and easily applicable in deriving future results. As revealed in Table 2.1,
there is a certain degree of inconsistency in the terminology and symbols used in the literature,
which should not cause too much difÞculty once they are explicitly recognized and dealt with.
At times we do have the need for an alternate notationÑ for example, we may use a single
letter F to replace the (more meaningful) expression 2fmax when the same term is repeated
in multiple places during a long mathematical proof or derivationÑ in this example, confusion
can be avoided if F = 2fmax is explicitly deÞn ed before it is used and readers are reminded
of its meaning at appropriate places.

In the context of signal sampling, it is convenient sometimes to assume unit period (T = 1)
or unit spacing (�t = 1). In either case, the period T , the time-grid spacing�t, the frequency-
grid spacing �f , and the Nyquist frequency fmax will each take on a constant numerical
value or it will be deÞ ned by sample size N only. We obtain two sets of values under the two
assumptions, and they are given in Table 2.2. Note that we cannot alter �t independently of
�f because their product must satisfy the reciprocity relation: �f�t = 1/N . Based on this
relation, we may convert the two sets of values to and from each other by scaling �t and �f

in the following manner: when �t is scaled by factor N , the inverse factor 1/N is used to
scale �f , so their product remains unchanged after the conversion. (Note that T = N�t and

2.4. ALTERNATE NOTATIONS AND FORMULAS 37

Table 2.1 Alternate symbols and alternate deÞ nitions/assumptions.

DeÞn ition/symbol Alternate symbol
Name used as consistently as (alternate deÞn ition/

possible in this text implicit assumption)
A single period (temporal) [0, T], [−T/2, T/2] [−T, T]

A single period (spatial) [−L, L] [0, L], [−L/2, L/2]

Period (length) T , 2L 2T , L

Samples per period N = 2n+1 (odd) N = 2n

N = 2n+2 (even)
Sampled signal {x0, x1, · · · , xN−1} un, x[n], {f(k)}
Sample interval (period) �t = T/N ts, T ,�x, 1/(2fmax)

Sample point t� = ��t n�t, nT , n (∵ �t = 1)
Sample value x� = x(t�) x[n] = x(nT), f(k)

Sampling rate (frequency) R = 1/�t = N/T N (∵ T = 1), 2fmax

Fundamental frequency f1 = �f = 1/T f0,�ω

Nyquist frequency fn = n/T ≤ N/(2T), fc, fm, ωmax, F , Ω,
fmax, F/2 N/2 (∵ T = 1), Ω/2

Nyquist interval [−fn, fn], [−F/2, F/2] [−F, F], [−Ω/2, Ω/2]

[−fmax, fmax] [−Ω, Ω], [−fm, fm]

Nyquist rate (bandwidth) 2fmax ≤ 1/�t 2fm, F , 2F , Ω, 2Ω

fmax = �1/(2�t)� follow immediately.)

Table 2.2 Constants resulting from assuming unit period or unit spacing.

Symbolic Unit period Unit spacing
name (assume T = 1) (assume�t = 1)

T 1 N

�t 1/N 1
�f 1 1/N

fmax N/2 1/2

From our discussion on digital frequency and relations 1—3in Section 2.1, we recall that
Fα = fα�t; we thus have the equality Fα = fα when �t = 1, which gives both the same
numerical values, but their deÞni ng relationship dictates that Fα is measured by Òc ycles per
sample,Ó and fα is measured by Òc ycles per unit time.Ó For example, when the time is measured
by seconds, we have the results in Table 2.3.

Although the results derived using analog frequency with unit time spacing
(�t = 1) will not be different from those derived using the digital frequency, the explicit
incorporation of �t in the latterÕs deÞn ition provides direct means to interpret and apply the
results for values of �t other than unity. Therefore in suitable contexts we may use the more
convenient digital frequency in the analysis and processing of signals without loss of general-
ity.

38 CHAPTER 2. SAMPLING AND RECONSTRUCTION—PART I

Table 2.3 Using analog frequency versus digital frequency.

Symbolic Using analog fα Symbolic Using digital Fα

name (assume�t = 1 sec) name (for arbitrary�t)
T N seconds T N samples
�t 1 second �� 1 sample
�f 1/N Hertz �F 1/N cycles/sample
fmax 1/2 Hertz Fn 1/2 cycles/sample

2.5 Sampling Period and Alternate Forms of DFT

In the beginning of this chapter we introduced the discrete Fourier transform (DFT) as an in-
terpolating formula which computes the unknown coefÞ cients of a Þ nite Fourier series directly
from its sampled values. As a quick recap, recall that in Section 2.1 we obtained the DFT from
sampling a band-limited signal x(t) represented by a Þ nite Fourier series of N = 2n+1 terms,
namely,

x(t) =
A0

2
+

n∑
r=1

Ar cos
2πrt

T
+ Br sin

2πrt

T
,

and we stated that since x(t + T) = t, we only needed to sample the function over a single
period. From interpolating the N equally spaced samples x� = x(��t) for 0 ≤ � ≤ N−1, we
obtained the discrete Fourier transform (DFT) given by Equation (2.7), namely,

Xr =
1

N

N−1∑
�=0

x�ω
−r�
N

, where ωN = ej2π/N , r = 0, 1, . . . , N − 1.

The corresponding Òi nverse DFTÓ (or IDFT) was given by Equation (2.6), namely,

x� =
N−1∑
r=0

Xrω
r�
N

, where ωN = ej2π/N , � = 0, 1, . . . , N − 1.

In this setting, the N samples {x0, x1, . . . , xN−1} cover the period [0, T], and the actual sam-
pling time begins at t = 0 and ends at t = T −�t = T −T/N , because the Þ rst sample of the
next period [T, 2T] will have to be taken at t = T . Corresponding to {x0, x1, . . . , xN−1}, the
DFT and IDFT have (discrete) period of N (samples), which is reßected by x�+N = x� and
Xr+N = Xr for 0 ≤ r, � ≤ N − 1.

Now, since a function x(t) with period T is deÞn ed over (−∞, ∞) by periodic exten-
sion, the sampling period may begin and end anywhere. (Recall that the period of a cosine
function cos(θ) is 2π, which can begin at arbitrary θ and ends at θ + 2π, including, but
not limited to, the standard choice of [0, 2π] or [−π, π].) This observation coupled with
the fact that x�±N = x� and Xr±N = Xr allows us to obtain the set of N samples cor-
responding to any period from the N samples collected over [0, T]. In particular, we con-
sider the symmetric period [−T/2, T/2]; while the samples for interval [0, T/2] are naturally
taken from x0, x1, . . . , xn, the next sample xn+1 becomes the Þ rst sample of the following
period; hence, it is also the Þ rst sample in the current period [−T/2, T/2]. Following this
argument, if the sample set {x0, x1, x2, . . . , x6} covers the period [0, T], the rearranged set
{x4, x5, x6, x0, x1, x2, x3} covers the period [−T/2, T/2], which is conventionally labeled as

2.5. SAMPLING PERIOD AND ALTERNATE FORMS OF DFT 39

{x−3, x−2, x−1, x0, x1, x2, x3}. Note that the labeling convention abides by the periodicity
relation: x−3 = x−3+7 = x4, x−2 = x−2+7 = x5, and x−1 = x−1+7 = x6, because
N = 2n + 1 = 7 is the period of the sampled sequence. One hidden technical point is that
while the samples remain equispaced with the same data spacing �t = T/N , the actual sam-
pling time of x−n is −T/2 + �t/2, and the last sample xn is taken at T/2 − �t/2. (The
Þr st sample of the next period [T/2, 3T/2] will begin at T/2 +�t/2, and so on.) The actual
placement of samples is shown diagrammatically in Figures 2.8 and 2.9. If we change the
variable from t to θ = 2πt/T , the samples would be placed in the corresponding period [0, 2π]

or [−π/2, π/2] as shown in Figure 2.10.

Figure 2.8 Taking N = 2n+1 samples from a single period [0, T].

−6

−4

−2

0

2

4

6

0 2T 3T

1st period 2nd period 3rd period

T

2T 3T0 T

t
N−1

= T − ∆t

N samples {x
0
, x

1
, ..., x

N−1
} in one period may be taken at

t
k
 = k∆t, k = 0, 1, ..., N − 1, where t

0
 = 0, and t

N−1
 = T − ∆t.

By changing the sampled data set to {x−n, . . . , x−1, x0, x1, . . . , xn} and following through
the derivation analogous to the process described in Section 4.2 of Chapter 4, we obtain another
commonly used form of the DFT, namely,

(2.8) Xr =
1

N

n∑
�=−n

x�ω
−r�
N

, where n = N−1
2 , ωN = ej2π/N , −n ≤ r ≤ n.

The corresponding IDFT is

(2.9) x� =

n∑
r=−n

Xrω
r�
N , where n = N−1

2 , ωN = ej2π/N , −n ≤ � ≤ n.

Note that the coefÞ cients Xr (−n ≤ r ≤ n) computed by (2.8) directly satisfy

x(t) =

n∑
r=−n

Xre
j2πrt/T =

A0

2
+

n∑
r=1

Ar cos
2πrt

T
+ Br sin

2πrt

T
,

where
A0

2
= X0, and Ar = Xr + X−r, Br = j(Xr −X−r) for 1 ≤ r ≤ n = N−1

2 .

40 CHAPTER 2. SAMPLING AND RECONSTRUCTION—PART I

Figure 2.9 Rearranging N = 2n+1 samples on the time grid.

0 TT/2

t
0

t
1
 t

2
 t

3
t
4

t
5 t

6

N = 2n+1 = 7 samples {x
0
, x

1
, x

2
, x

3
, x

4
, x

5
, x

6
} are

taken at t
k

∈ [0, T), where t
k
 = k∆t, k= 0, 1, ..., 6:

T−∆t

N = 2n+1 = 7 samples {x
−3

, x
−2

, x
−1

, x
0
, x

1
, x

2
, x

3
} are

taken at t
k

∈ (−T/2, T/2), where t
k
 = k∆t, k= −3, ..., 3:

t
0 t

1
 t

2
 t

3
t
−3 t

−2
t
−1

T/2

T/2−∆t/2

−T/2 0

Figure 2.10 The placement of samples after changing variable t to θ = 2πt/T .

θ
0
 = 0

θ
1

θ
2

θ
3

θ
4

θ
5

θ
6
 = 2π−∆θ

∆θ = 2π/N

Mapping t
k

∈ [0, T) to θ
k

∈ [0, 2π),

k = 0, 1, ..., N−1:

(N = 2n+1 = 7)
π

2π

θ
4

θ
5

θ
6

θ
3θ

2
θ

1
θ

0

0

θ
0
 = 0

θ
1

θ
2

π−∆θ/2 = θ
3

θ
−3

θ
−2

θ
−1

∆θ = 2π/N

Mapping t
k

∈ (−T/2, T/2) to θ
k

∈ (−π, π),

k = −n,....0,....n:

(N = 2n+1 = 7)
±π

π−π

θ
0

θ
1

θ
2

θ
3θ

−1θ
−2

θ
−3

0

2.6. SAMPLE SIZE AND ALTERNATE FORMS OF DFT 41

2.6 Sample Size and Alternate Forms of DFT

We have so far linked the DFT sample size N to the number of unknown Fourier coefÞ cients
we are seeking, and we have used N = 2m+1 by assuming that

x(t) =
A0

2
+

m∑
r=1

Ar cos
2πrt

T
+ Br sin

2πrt

T
.

Now, if we change the sample size from the odd number N = 2m+1 to the even number
N = 2m, we must show that the resulting linear system has only N = 2m unknownsÑ i.e.,
we must prove that one of the terms in the right-hand side vanishes. This is indeed the case as
shown below.

Corresponding to the even sample size N = 2m, we have x� = x(t�) with t� = ��t =

�
(

T
2m

)
for 0 ≤ � ≤ 2m− 1, and the resulting 2m linear equations are given by

x� =
A0

2
+

m∑
r=1

Ar cos
2πr�

2m
+ Br sin

2πr�

2m
, � = 0, 1, . . . , 2m− 1.

Observe that the sine mode corresponding to r = m in the right-hand side is

sin
2πm�

2m
= sin �π = 0 for every �,

therefore, the term involving Bm vanishes from the right-hand side. By letting m = n+1 and
N = 2n+2, we obtain

x� =
A0

2
+ An+1 cos

2π(n + 1)�

N
+

n∑
r=1

Ar cos
2πr�

N
+ Br sin

2πr�

N
, � = 0, 1, . . . , N − 1.

Therefore, we are effectively taking the 2n+2 discrete-time samples from

(2.10) x̃(t) =
A0

2
+ An+1 cos

2π(n + 1)t

T
+

n∑
r=1

Ar cos
2πrt

T
+ Br sin

2πrt

T
,

which has 2n+2 coefÞ cients to be determined. The DFT derived from interpolating the 2n+2

sampled values of x̃(t) using (2.10) is given below, with its derivation provided in Chapter 4.

(2.11) Xr =
1

2n + 2

2n+1∑
�=0

x̃�ω
−r�
N =

1

N

N−1∑
�=0

x̃�ω
−r�
N , r = 0, 1, · · · , N − 1.

This formula is of the same form as the DFT of odd length deÞ ned by (2.7) except that N =

2n + 2 and it is Þ tting a different trigonometric polynomial x̃(t). The corresponding IDFT is

(2.12) x̃� =

2n+1∑
r=0

Xrω
r�
N =

N−1∑
r=0

Xrω
r�
N , � = 0, 1, · · · , N − 1.

The N = 2n+2 coefÞcients of x̃(t) can now be obtained from the computed Xr by applying
the following rules:

1.
A0

2
= X0; AN

2
= XN

2
;

42 CHAPTER 2. SAMPLING AND RECONSTRUCTION—PART I

2. Ar = Xr + XN−r, Br = j(Xr −XN−r), for r = 1, 2, . . . , N
2 − 1.

Using even sample size with the sampling period [−T/2, T/2], the following DFT/IDFT
formulas may be obtained. (The direct conversion between Formulas (2.11) and (2.13) is
presented in Section 4.2 of Chapter 4.)

(2.13) Xr =
1

2n + 2

n+1∑
�=−n

x̃�ω
−r�
N =

1

N

N
2∑

�=−N
2 +1

x̃�ω
−r�
N , −N

2 + 1 ≤ r ≤ N
2 .

(2.14) x̃� =

n+1∑
r=−n

Xrω
r�
N =

N
2∑

r=−N
2 +1

Xrω
r�
N , −N

2 + 1 ≤ � ≤ N
2 .

The N = 2n+2 coefÞcients of x̃(t) can now be obtained from the computed Xr by applying
the following rules:

1.
A0

2
= X0; AN

2
= XN

2
;

2. Ar = Xr + X−r, Br = j(Xr −X−r), for r = 1, 2, . . . , N
2 − 1.

Note that when the sample size is an even number N = 2n+2, the sampling time for x0

remains at t = 0, the last sample x2n+1 in the period [0, T] is taken at T −�t = T − T/N

as before; however, the Þ rst sample x−n and the last sample xn+1 in the period [−T/2, T/2]

are taken from t = −T/2 + �t and t = T/2. The actual placement of samples is shown
diagrammatically in Figures 2.11, 2.12, and 2.13.

2.6. SAMPLE SIZE AND ALTERNATE FORMS OF DFT 43

Figure 2.11 Rearranging N = 2n+2 samples on the time grid.

0 TT/2

t
0 t

1 t
2

t
3 t

4
t
5

t
6 t

7

N = 2n+2 = 8 samples {x
0
, x

1
, x

2
, x

3
, x

4
, x

5
, x

6
, x

7
} are

taken at t
k

∈ [0, T), where t
k
 = k∆t, k= 0, 1, ..., 7:

T−∆t

N = 2n+2 = 8 samples {x
−3

, x
−2

, x
−1

, x
0
, x

1
, x

2
, x

3
, x

4
} are

taken at t
k

∈ (−T/2, T/2], where t
k
 = k∆t, k= −3, ..., 4:

t
0 t

1
t
2

t
3

t
4t

−3 t
−2

t
−1

0 T/2

−T/2+∆t

−T/2

Figure 2.12 The placement of samples after changing variable t to θ = 2πt/T .

Mapping t
k

∈ [0, T) to θ
k

∈ [0, 2π),

k = 0, 1, ..., N − 1:

∆θ = 2π/N
(N = 2n+2 = 8)

θ
0
 = 0

θ
1

θ
2

θ
3

π = θ
4

θ
5

θ
6

θ
7
 = 2π−∆θ

0

θ
1

θ
2

θ
3 θ

4

θ
5

θ
6 θ

7θ
0

2π

Mapping t
k

∈ (−T/2, T/2] to θ
k

∈ (−π, π],

k = −n, ..., 0,..., n+1:

∆θ = 2π/N
(N = 2n+2 = 8)

θ
0
 = 0

θ
1

θ
2

θ
3

π = θ
4

θ
1

θ
−2

θ
−1

−π

θ
−3

θ
−2 θ

−1
θ

0

−π+∆θ = θ
−3

θ
2 θ

3

π

θ
4

44 CHAPTER 2. SAMPLING AND RECONSTRUCTION—PART I

Figure 2.13 Taking N = 2n+2 samples from the period [0, 2π] or [−π, π].

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0 2π

N = 12 samples { x
0
, x

1
, ..., x

11
 } taken in one period [0, 2π).

N = 12 samples { x
−5

, x
−4

, ..., x
6
 } taken in one period (−π, π].

0 π−π

π

x
7

x
−5

x
0

x
0

x
6

x
11

References

1. A. Ambardar. Analog and Digital Signal Processing. Brooks/Cole Publishing Company,
PaciÞ c Grove, CA, second edition, 1999.

2. W. L. Briggs and V. E. Hensen. The DFT: An Owner’s Manual for the Discrete Fourier
Transform. The Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995.

3. E. Chu and A. George. Inside the FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms, CRC Press, Boca Raton, FL, 2000.

4. R. W. Hamming. Digital Filters. Prentice-Hall, Inc., Englewood Cliffs, NJ, third edition,
1989.

5. B. Porat. A Course in Digital Signal Processing. John Wiley & Sons, Inc., New York,
1997.

Chapter 3

The Fourier Series

In Chapters 1 and 2 we have been dealing with periodic signals described by a sum of sines and
cosines, whereas in general a signal may be described by a mathematical function f(t) which
does not represent a sum of sinusoidal terms in its present form. For example, given below is
the time-domain description of a periodic triangular wave.

f(t) =

{
t + 1, −1 ≤ t ≤ 0,

−t + 1, 0 < t ≤ 1;
f(t + 2) = f(t).

−1

· · ·

1
t

· · ·

0

1

In such cases, the frequency contents of f(t) are revealed by a continuous Fourier series,
which must be derived for each individual function using the theory and techniques to be
covered in this chapter. The Fourier series may be expressed in the various forms introduced
in Chapter 1, and we are simply taking the next step in this chapter to determine its coefÞcien ts
analytically. Since we have initiated the discussion on sampling and reconstruction of functions
in Chapter 2, it is not out of place to remark at the outset that the DFT coefÞ cients, which are
deÞ ned via the discrete-time samples of f(t), are expected to deviate from the coefÞ cients of
the corresponding terms in the Fourier series of f(t), because the DFT coefÞ cients include
contributions from all aliased frequencies. The phenomenon of aliasing was brieß y discussed
in Sections 2.2 and 2.3, and it will be further explored in this chapter.

3.1 Formal Expansions

To expand a general periodic function f(t) into a formal Fourier series (which is also known as
a harmonically related trigonometric series), we employ the well-known theorem of Dirichlet,
which also gives the sufÞcien t conditions for the existence of Fourier series.

Theorem 3.1 (DirichletÕs theorem) If f(t) is a real-valued function deÞ ned on (−∞, ∞) and
it satisÞes the Dirichlet conditions:

(a) f(t) is bounded on any bounded closed subinterval [a, b] of (−∞, ∞);

45

46 CHAPTER 3. THE FOURIER SERIES

(b) f(t) has only a Þ nite number of maxima and minima on any interval [a, b];

(c) f(t) has on [a, b] at most a Þ nite number of discontinuities, each of which is a jump
discontinuity;

(d) f(t) is periodic with period T Ñth at is, f(t + T) = f(t);

then for every t at which f is continuous, we have

f(t) =
A0

2
+

∞∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T
, where

Ak =
2

T

∫ T/2

−T/2

f(t) cos
2πkt

T
dt, k = 0, 1, 2, . . . ,(3.1)

Bk =
2

T

∫ T/2

−T/2

f(t) sin
2πkt

T
dt, k = 1, 2, . . .(3.2)

Furthermore, for every tα at which f has a jump discontinuity, the Fourier series converges to
the average of its right- and left-hand limits. That is,

f (t+α) + f (t−α)

2
=

A0

2
+

∞∑
k=1

Ak cos
2πktα

T
+ Bk sin

2πktα
T

, where

f
(
t+α

) ≡ lim
t→t+α

f(t), and f
(
t−α

) ≡ lim
t→t−α

f(t).

Remark 3.2 If f(t) has a jump discontinuity at tα, Theorem 3.1 does not require f(t) to
be deÞ ned at tα. For example, the sawtooth function shown below may be deÞ ned by the
periodic extension of f(t) = t for either t ∈ (0, T] or t ∈ (0, T). In the former case, we have
f(±kT) = T ; in the latter case, f(±kT) is not deÞn ed, but one-sided limits exist at the jump
discontinuities and DirichletÕs theorem is satisÞed .

T

· · ·

t
0

T

· · ·· · · 2T−T−2T

· · ·

Remark 3.3 Graphically, the function f(t) on any bounded closed interval [a, b] (referred to
in Theorem 3.1) may be represented by disjoint arcs of different curves, each deÞned by a
different formula. In mathematical terms, a function f(t) is said to be piecewise continuous in
an interval a ≤ t ≤ b if there exist n points a = t1 < t2 < t3 < · · · < tn = b such that f(t) is
continuous in each interval t� < t < t�+1 and has Þn ite one-sided limits f

(
t+�

)
and f

(
t−�+1

)
at the endpoints of each such interval (� = 1, 2, . . . , n− 1).

A piecewise continuous f(t):

· · ·
t

0−3T/2 · · ·

· · ·

3T/2−T/2 T/2· · ·

3.1. FORMAL EXPANSIONS 47

Remark 3.4 For the correct use of mathematical theorems, it is important to know whether a
function is continuous on an open interval or a closed interval. We recall that a function g�(t)

is said to be continuous throughout a closed interval [t�, t�+1] provided that it is continuous in
the open interval (t�, t�+1) and also g� (t�) = g�

(
t+�

)
and g� (t�+1) = g�

(
t−�+1

)
.

From elementary calculus we recall that if g�(t) is continuous on the closed interval [t�, t�+1],
it must be bounded and (Riemann) integrable on [t�, t�+1].

Since we may deÞne g�(t) to agree with a piecewise continuous f(t) over the closed inter-
val [t�, t�+1] except possibly at the endpoints, we have∫ t�+1

t�

f(t) dt =

∫ t�+1

t�

g�(t) dt.

Hence, the piecewise continuous f(t) is integrable on [a, b]:∫ b

a

f(t) dt =

n∑
�=1

∫ t�+1

t�

f(t) dt =

n∑
�=1

∫ t�+1

t�

g�(t) dt.

Remark 3.5 Although the coefÞ cient formulas (3.1) and (3.2) are valid for any integrable
function f(t), the Fourier series constructed using so-obtained Ak and Bk (k = 0, 1, . . . ,∞)
may diverge for some values of t or it may fail to converge to f(t) for inÞ nitely many values
of t.

While it is a relatively simple task to derive the expressions (3.1) and (3.2) for the coefÞ -
cients Ak and Bk (k = 0, 1, . . . ,∞) if we can assume that the Fourier series is convergent and
it converges to an integrable function f(t), there is no obvious way to ascertain whether such
assumption is valid for an arbitrary harmonically related trigonometric series.

Remark 3.6 A function f is said to have been normalized at points of jump discontinuity if

f(t)
def
= 1

2

(
f(t+) + f(t−)

)
for every t. Since f

(
tc

)
= f

(
t+c

)
= f

(
t−c

)
if tc is a point of

continuity, the normalized function agrees with the original f(t) at tc. Furthermore, changing
the value of f(t) at points of jump discontinuity does not change the value of its integral over
the interval, nor any of the integrals deÞ ning its Fourier coefÞ cients. According to DirichletÕs
theorem, the Fourier series expansion of a normalized f(t) converges to itself for every t.
Therefore, whenever we equate f(t) to its Fourier series expansion by writing

f(t) =
A0

2
+

∞∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T

(when not otherwise qualiÞed) in the future, we implicitly assume that f(t) satisÞes DirichletÕs
conditions and that f(t) has been normalized at points of jump discontinuity.

· · ·

0

1

1−1
t

Examples of normalized functions:

−2−3 32

· · ·

0 2 6−6 −2
t

· · ·· · ·

2

48 CHAPTER 3. THE FOURIER SERIES

t
0

· · ·

· · ·· · · 2T−T T

T
· · ·

−2T

T/20 3T/2−T/2−3T/2
t

· · ·

· · ·

· · ·
· · ·

Remark 3.7 The constant term in the Fourier series expansion is conventionally written as
1
2A0, so that A0 can be obtained from the general formula (3.1) for Ak by setting k = 0.
Formulas (3.1) and (3.2) are known as the Euler or Euler� Fourier formulas.

Remark 3.8 For a proof of Dirichlet�s theorem, see Philip Franklin�s article A Simple Discus-
sion of the Representation of Functions by Fourier Series in �Selected Papers on Calculus,� pp.
357�361, Mathematical Association of America, 1969.

In this chapter we shall prove the same pointwise convergence results (the topic � pointwise
convergence� is covered in Section 3.10.2) for the Fourier series of any piecewise continuous
function f under the further assumption that it has � nite one-sided derivatives

f ′
(
t+�

) ≡ lim
h→0

f (t� + h)− f
(
t+�

)
h

and f ′
(
t−�

) ≡ lim
h→0

f
(
t−�

)− f (t� − h)

h

at those points where f itself is discontinuous and f ′ does not exist.

Since the conditions prescribed for f ′ would be met automatically if both f and f ′ are
piecewise continuous on [a, b]�th e function f is then said to be piecewise smooth on [a, b],
the pointwise convergence of the Fourier series for piecewise smooth functions is guaranteed
by the same proof.

3.1.1 Examples

Since the Fourier series coef� cients Ak and Bk are de�n ed by integrals involving f(t) in
Dirichlet�s theorem, the analytical formulas for them are available only when the integration
can be done analytically and explicitly. An example is given below.

Example 3.9 Find the Fourier series for the given function

f(t) =

{
2, −2 ≤ t < 0,

t, 0 < t < 2;
f(t + 4) = f(t).

20−2

2

t

· · ·· · ·

We note that f(t) satis�es the conditions of Dirichlet�s theorem and that it has a jump discon-
tinuity at t = 0 on [−2, 2] because f(0−) = 2 and f(0+) = 0. (Recall that f(t) needs not be

3.1. FORMAL EXPANSIONS 49

de� ned at the jump discontinuity, which is the case here.) We � nd the coef� cients according
to Dirichlet�s theorem: For k = 0, we obtain

A0 =
1

2

∫ 0

−2

2 dt +
1

2

∫ 2

0

t dt = 3.

For k = 1, 2, . . . , we obtain

Ak =
1

2

∫ 0

−2

2 cos
kπt

2
dt +

1

2

∫ 2

0

t cos
kπt

2
dt

=

[
2

kπ
sin

kπt

2

]0

−2

+
1

2

[
4

k2π2
cos

kπt

2
+

2t

kπ
sin

kπt

2

]2

0

=
2

k2π2
(cos kπ − 1) +

1

2

(
4

kπ
sinkπ − 0

)
=

2

k2π2
(cos kπ − 1),

and

Bk =
1

2

∫ 0

−2

2 sin
kπt

2
dt +

1

2

∫ 2

0

t sin
kπt

2
dt

=

[
− 2

kπ
cos

kπt

2

]0

−2

+
1

2

[
4

k2π2
sin

kπt

2
− 2t

kπ
cos

kπt

2

]2

0

= − 2

kπ
+

2

kπ
cos kπ +

1

2

(−4

kπ
cos kπ − 0

)
= − 2

kπ
.

For every t at which f(t) is continuous, we now have

f(t) =
3

2
+

∞∑
k=1

[
2(cos kπ − 1)

k2π2
cos

kπt

2
+

(−2

kπ

)
sin

kπt

2

]
=

3

2
− 4

12π2
cos

πt

2
− 4

32π2
cos

3πt

2
− 4

52π2
cos

5πt

2
− · · ·

− 2

π
sin

πt

2
− 2

2π
sin

2πt

2
− 2

3π
sin

3πt

2
− · · ·

=
3

2
− 4

π2

∞∑
k=1

1

(2k − 1)
2 cos

(2k − 1)πt

2
− 2

π

∞∑
k=1

1

k
sin

kπt

2
.

We can also verify that the Fourier series indeed converges to the normalized function value at
the jump discontinuity at t = 0. Note that the Fourier series takes on a much simpler form at
t = 0 because all cosine and sine functions are replaced by cos 0 = 1 and sin 0 = 0, and the
desired relation

1 =
f(0−) + f(0+)

2
=

3

2
− 4

π2

∞∑
k=1

1

(2k − 1)2

can be easily veri�ed by substituting the numerical value of the in�n ite series, namely,

∞∑
k=1

1

(2k − 1)2
= 1 +

1

32
+

1

52
+ · · · = π2

8
,

which we shall prove in Example 3.15.

50 CHAPTER 3. THE FOURIER SERIES

The convergence of the N -term Fourier series is shown in Figure 3.1, where we plot the
Fourier series for N =8, 16, 32, 64. Since this particular example involves zero coef� cients,
we clarify how we count the N terms: as an example, for N = 8, the eight Fourier series
coef�cients used are: 1

2A0, A1, A2 = 0, A3, A4 = 0, B1, B2, and B3. Accordingly, for
N =2(n+1)=8, 16, 32, 64, the N -term Fourier series uses one DC term, n+1 cosine terms
(including zero and nonzero terms), and n sine terms. We examine further the graphs of the

Figure 3.1 Illustrating the convergence of the N -term Fourier series.

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

2

2.5

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

2

2.5

8−term Fourier series

16−term Fourier series

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

2

2.5

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

2

2.5

32−term Fourier series

64−term Fourier series

N -term Fourier series near a jump discontinuity in Figure 3.2, where we illustrate the Gibbs
effect (to be studied in Section 3.10.4) for N =64 and N =128.

Figure 3.2 The behavior of the N -term Fourier series near a jump discontinuity.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

N = 64

0
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

N = 128

0

3.2 Time-Limited Functions

If g(t) is only de�n ed for a � nite interval [−T/2, T/2], we can construct a periodic function
f(t) by repeating g(t) for each period T over (−∞, +∞), which is called a protracted version
(or a periodic extension) of g(t). Because g(t) agrees with f(t) for t ∈ [−T/2, T/2], the
Fourier series of f(t) may be used to represent g(t) in this interval. Note that Dirichlet�s

3.3. EVEN AND ODD FUNCTIONS 51

theorem applies for every t, so the Fourier series converges to the average of the left- and right-
hand limits (of the periodic extension f(t)) at jump discontinuities, whether they occur inside
or at the ends of the interval on which the time-limited g(t) is de�n ed.

As an example, recall Example 3.9: if we de�ne the time-limited g(t) = f(t) for t ∈
[−2, 2] in that example, then the Fourier series we obtain for periodic f(t) represents g(t) for
t ∈ [−2, 2].

3.3 Even and Odd Functions

When Dirichlet�s theorem is applied to the even and odd functions de� ned below, their respec-
tive Fourier series has only cosine or sine terms. The coef� cients of the cosine or sine terms in
each case are given in the two theorems following De�n ition 3.10.

Definition 3.10 A function f(t) is even if and only if f(−t) = f(t) for all t, and it is odd if
and only if f(−t) = −f(t) for all t.

By de�n ition, the graph of an even function is symmetric with respect to the y axis if we plot
y = f(t) versus t; whereas the graph of an odd function is symmetric with respect to the
origin. For example, f(t) = |t| for t ∈ [−2, 2] is an even function; f(t) = t for t ∈ [−2, 2] is
an odd function; the function f(t) in Example 3.9 is neither even nor odd.

Neither even nor oddOddEven

0 00

Noting that the cosine terms are themselves even functions, and the sine terms are themselves
odd functions, it comes as no surprise that the expansion of an even function contains only
cosine terms, whereas the expansion of an odd function contains only sine terms.

Theorem 3.11 If f(t) is an even function satisfying the conditions of Dirichlet�s theorem, the
coef� cients in the Fourier series of f(t) are given by the formulas

(3.3)
Ak =

4

T

∫ T/2

0

f(t) cos
2kπt

T
dt, k = 0, 1, 2, . . .

Bk = 0, k = 1, 2, . . .

52 CHAPTER 3. THE FOURIER SERIES

Proof: Using the Euler� Fourier formula (3.1), we obtain

Ak =
2

T

∫ T/2

−T/2

f(t) cos
2πkt

T
dt

=
2

T

[∫ 0

−T/2

f(t) cos
2πkt

T
dt +

∫ T/2

0

f(t) cos
2πkt

T
dt

]

=
2

T

[
−

∫ 0

T/2

f(−s) cos
2πk(−s)

T
ds +

∫ T/2

0

f(t) cos
2πkt

T
dt

]
(let t = −s)

=
2

T

[∫ T/2

0

f(s) cos
2πks

T
ds +

∫ T/2

0

f(t) cos
2πkt

T
dt

] (
∵ f(−s) = f(s)

)
=

4

T

∫ T/2

0

f(t) cos
2πkt

T
dt. (let s = t)

Using the Euler� Fourier formula (3.2), we obtain

Bk =
2

T

∫ T/2

−T/2

f(t) sin
2πkt

T
dt

=
2

T

[∫ 0

−T/2

f(t) sin
2πkt

T
dt +

∫ T/2

0

f(t) sin
2πkt

T
dt

]

=
2

T

[
−

∫ 0

T/2

f(−s) sin
2πk(−s)

T
ds +

∫ T/2

0

f(t) sin
2πkt

T
dt

]
(let t = −s)

=
2

T

[∫ T/2

0

f(s) sin
2πk(−s)

T
ds +

∫ T/2

0

f(t) sin
2πkt

T
dt

] (
∵ f(−s) = f(s)

)
=

2

T

[
−

∫ T/2

0

f(s) sin
2πks

T
ds +

∫ T/2

0

f(t) sin
2πkt

T
dt

]
(∵ sin(−θ) = − sin θ)

= 0.

�

Theorem 3.12 If f(t) is an odd function satisfying the conditions of Dirichlet�s theorem, the
coef� cients in the Fourier series of f(t) are given by the formulas

(3.4)

Ak = 0, k = 0, 1, 2, . . .

Bk =
4

T

∫ T/2

0

f(t) sin
2kπt

T
dt, k = 1, 2, . . .

Proof: (Similar to the proof for Theorem 3.11.)

Theorem 3.13 If f(t) is an arbitrary function de�n ed over an interval which is symmetric
with respect to the origin, it can always be written as the sum of an even function and an odd
function.

Proof: By de�n ing

(3.5) geven(t) =
f(t) + f(−t)

2
, godd(t) =

f(t)− f(−t)

2
,

3.4. HALF-RANGE EXPANSIONS 53

we have
geven(t) = geven(−t), godd(t) = −godd(−t),

and
f(t) = geven(t) + godd(t)

as desired. �

3.4 Half-Range Expansions

Given a time-limited function f(t) de� ned over the interval [0, T̃], we may construct either

geven(t) =

{
f(t), t ∈ [0, T/2]

f(−t), t ∈ [−T/2, 0)
, where T/2 = T̃ ,

or

godd(t) =

{
f(t), t ∈ [0, T/2]

−f(−t), t ∈ [−T/2, 0)
, where T/2 = T̃ .

Noting that for t ∈ [0, T/2] = [0, T̃],

f(t) = geven(t) = godd(t),

we may use either the cosine series of the even function geven(t) or the sine series of the odd
function godd(t) to represent the half-range time-limited function f(t) over [0, T̃].

Observe that there are (in�n itely many) other choices of g(t) which satisfy Dirichlet con-
ditions and agree with f(t) over [0, T̃]�e.g ., one may simply extend the de�n ition of f(t)

over the entire interval [−T̃ , T̃]. However, when g(t) does not possess the even/odd symme-
try properties, the labor of expanding g(t) is doubled because its Fourier series contains both
cosine and sine terms.

Example 3.14 Given a time-limited function f(t) = t− t2 for t ∈ (0, 1),

0 1

1
4

1
2

t

obtain the following three Fourier series expansions of f(t) by treating it as part of an even
function, an odd function, and a general function.

f(t) = t− t2 =



1

6
− 1

π2

∞∑
k=1

cos 2kπt

k2
;

8

π3

∞∑
k=1

sin(2k − 1)πt

(2k − 1)3
;

−1

3
− 4

π2

∞∑
k=1

(−1)k cos kπt

k2
− 2

π

∞∑
k=1

(−1)k sin kπt

k
.

54 CHAPTER 3. THE FOURIER SERIES

To obtain the expansion containing only cosine terms, we interpret f(t) for 0 < t < 1 as part
of an even function and express f(t) as

f(t) = t− t2 =
A0

2
+

∞∑
k=1

Ak cos
2πkt

T
=

A0

2
+

∞∑
k=1

Ak cosπkt, (∵ T/2 = 1)

with coef�cien ts given by Theorem 3.11:

Ak =
4

T

∫ T/2

0

(
t− t2

)
cos

2πkt

T
dt = 2

∫ 1

0

(
t− t2

)
cosπkt dt = −2(1 + cos kπ)

k2π2
, k ≥ 1;

A0 =
4

T

∫ T/2

0

(
t− t2

)
cos 0 dt = 2

∫ 1

0

(
t− t2

)
dt =

1

3
.

Because cos kπ = (−1)k, the coef�cients Ak = 0 if k is odd, and Ak = − 4

k2π2
if k is even.

We thus have

f(t) = t− t2 =
1

6
− 4

π2

(
cos 2πt

4
+

cos 4πt

16
+

cos 6πt

36
+ · · ·+ cos 2kπt

4k2
+ · · ·

)
=

1

6
− 1

π2

∞∑
k=1

cos 2kπt

k2
.

To obtain the expansion containing only sine terms, we interpret f(t) for 0 < t < 1 as part of
an odd function and express f(t) as

f(t) = t− t2 =

∞∑
k=1

Bk sin
2πkt

T
=

∞∑
k=1

Bk sin πkt, (∵ T/2 = 1)

with coef�cien ts given by Theorem 3.12:

Bk =
4

T

∫ T/2

0

(
t− t2

)
sin

2πkt

T
dt = 2

∫ 1

0

(
t− t2

)
sin πkt dt =

4(1− cos kπ)

k3π3
, k ≥ 1.

Because cos kπ = (−1)k, the coef�cients Bk = 0 if k is even, and Bk =
8

k3π3
if k is odd.

We thus have

f(t) = t− t2 =
8

π3

(
sin πt

1
+

sin 3πt

27
+

sin 5πt

125
+ · · ·+ sin(2k − 1)πt

(2k − 1)3
+ · · ·

)
=

8

π3

∞∑
k=1

sin(2k − 1)πt

(2k − 1)3
.

To obtain the third expansion, we use the de�n ition f(t) = t− t2 for −1 < t < 1, and apply
Dirichlet�s theorem to obtain the coef� cients in

f(t) = t− t2 =
A0

2
+

∞∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T
, where T/2 = 1 as before.

Using Formulas (3.1) and (3.2), we obtain

Ak =
2

T

∫ T/2

−T/2

(
t− t2

)
cos

2πkt

T
dt =

∫ 1

−1

(
t− t2

)
cosπkt dt = −4 coskπ

k2π2
, k ≥ 1;

A0 =
2

T

∫ T/2

−T/2

(
t− t2

)
cos 0 dt =

∫ 1

−1

(
t− t2

)
dt = −2

3
;

Bk =
2

T

∫ T/2

−T/2

(
t− t2

)
sin

2πkt

T
dt =

∫ 1

−1

(
t− t2

)
sin πkt dt = −2 coskπ

kπ
, k ≥ 1.

3.4. HALF-RANGE EXPANSIONS 55

Noting that cos kπ = (−1)k, we obtain

f(t) = t− t2 = −1

3
− 4

π2

(
−cosπt

1
+

cos 2πt

4
− cos 3πt

9
+ · · ·

)
− 2

π

(
− sin πt

1
+

sin 2πt

2
− sin 3πt

3
+ · · ·

)
= −1

3
− 4

π2

∞∑
k=1

(−1)k cos kπt

k2
− 2

π

∞∑
k=1

(−1)k sinkπt

k
.

We remark that although the three series represent the same function f(t) = t − t2 for 0 <

t < 1, they converge to f(t) at different rates (see Figures 3.3, 3.4, 3.5, 3.6, 3.7), which we
will investigate further when we study the convergence of Fourier series in Section 3.10 of this
chapter.

Figure 3.3 The converging Fourier series of an even function.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

Half−range f(t) = t− t2

Fourier series
(1 DC term, 5 cosine terms)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

 Even f(t)

 Fourier series
(1 DC term, 10 cosine terms)

Figure 3.4 The converging Fourier series of an odd function.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

Half−range f(t) = t − t2

Fourier series
(5 sine terms)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

Odd f(t)

Fourier series
(10 sine terms)

56 CHAPTER 3. THE FOURIER SERIES

Figure 3.5 De�n ing f(t) = t− t2 for the full range: −1 ≤ t ≤ 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

Full−range f(t) = t − t2

0

3.4. HALF-RANGE EXPANSIONS 57

Figure 3.6 The converging Fourier series of f(t) with jump discontinuities.

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

Periodic extension of the full−range f(t) = t − t2

Average value at
jump discontinuity

Fourier series
(11 terms)

Fourier series of the periodically extended f(t)

* *

0

0

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

0

0

Fourier series
(21 terms)

Fourier series
(51 terms)

58 CHAPTER 3. THE FOURIER SERIES

Figure 3.7 The converging Fourier series of f(t) with jump discontinuities.

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

0

0

Fourier series
(61 terms)

Fourier series
(101 terms)

Example 3.15 Using the Fourier series expansions from Example 3.14 to establish the follow-
ing numerical results:

∞∑
k=1

1

k2
= 1 +

1

22
+

1

32
+

1

42
+

1

52
+ · · · = π2

6
.(3.6)

∞∑
k=1

(−1)k+1

k2
= 1− 1

22
+

1

32
− 1

42
+

1

52
+ · · · = π2

12
.(3.7)

∞∑
k=1

1

(2k − 1)2
= 1 +

1

32
+

1

52
+

1

72
+

1

92
+ · · · = π2

8
.(3.8)

∞∑
k=1

1

(2k)2
=

1

22
+

1

42
+

1

62
+

1

82
+ · · · · · · =

π2

24
(3.9)

∞∑
k=1

(−1)k−1

(2k − 1)3
= 1− 1

33
+

1

53
− 1

73
+

1

93
+ · · · = π3

32
.(3.10)

In Example 3.14 we have shown that for the even function

g1(t) =

{
t− t2, 0 < t < 1

−t− t2, −1 < t ≤ 0
,

the Fourier series expansion is given by

g1(t) =
1

6
− 1

π2

∞∑
k=1

cos 2kπt

k2
.

3.4. HALF-RANGE EXPANSIONS 59

Since the even function g1(t) is continuous at t = 0, the Fourier series converges to g1(0) =

−0− 02 = 0, and we have

0 = g1(0) =
1

6
− 1

π2

∞∑
k=1

1

k2
. (∵ when t = 0, cos 2kπt = 1 for every k)

It follows that
∞∑

k=1

1

k2
=

π2

6
, and we obtain the desired identity (3.6).

To obtain identity (3.7), we evaluate both g1(t) and its Fourier series expansion at t = 0.5,
where g1(t) is continuous, and we now have

1

4
= g1(0.5) =

1

6
− 1

π2

∞∑
k=1

cos kπ

k2
=

1

6
+

1

π2

∞∑
k=1

(−1)k+1

k2
.

It follows that
∞∑

k=1

(−1)k+1

k2
=

π2

4
− π2

6
=

π2

12
.

We obtain the next identity (3.8) by summing the � rst two results, (3.6) and (3.7), yielding

2

[
1 +

1

32
+

1

52
+

1

72
+

1

92
+ · · ·

]
=

π2

6
+

π2

12
=

π2

4
,

which gives us (3.8). Similarly, we can obtain identity (3.9) by subtracting (3.7) from (3.6),
yielding

2

[
1

22
+

1

42
+

1

62
+

1

82
+ · · ·

]
=

π2

6
− π2

12
=

π2

12
,

and the desired result follows immediately.

To show that the last identity (3.10) is true, recall that we have also obtained in Exam-
ple 3.14 the Fourier series expansion for the odd function

g2(t) =

{
t− t2, 0 < t < 1

t + t2, −1 < t ≤ 0
,

and the result was

g2(t) =
8

π3

∞∑
k=1

sin(2k − 1)πt

(2k − 1)3
.

We again evaluate both g2(t) and its Fourier series at t = 0.5, where g2(t) is continuous.
Noting that at t = 0.5, sin(2k − 1)πt = (−1)k−1 for all k ≥ 1, we obtain

1

4
= g2(0.5) =

8

π3

∞∑
k=1

(−1)k−1

(2k − 1)3
,

and identity (3.10) follows.

60 CHAPTER 3. THE FOURIER SERIES

3.5 Fourier Series Using Complex Exponential Modes

In Chapter 1 we show that a Fourier series can also be expressed using complex exponential
modes, i.e.,

f(t) =
A0

2
+

∞∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T

=

∞∑
k=−∞

Ck ej2πkt/T ,

(3.11)

where

C0 =
A0

2
, C±k =

Ak ∓ jBk

2
for k ≥ 1.

Using Equations (3.1) and (3.2) from Dirichlet�s theorem to evaluate Ak and Bk

for k ≥ 1, we obtain

C±k =
Ak ∓ jBk

2

=
1

2

[
2

T

∫ T/2

−T/2

f(t)

(
cos

2πkt

T
∓ j sin

2πkt

T

)
dt

]

=
1

T

∫ T/2

−T/2

f(t) e∓j2πkt/T dt. (∵ e∓jα = cosα∓ j sin α)

Note that because

C0 =
A0

2
=

1

2

[
2

T

∫ T/2

−T/2

f(t) cos 0 dt

]
=

1

T

∫ T/2

−T/2

f(t) e0 dt,

a single formula expressed as

(3.12) Ck =
1

T

∫ T/2

−T/2

f(t) e−j2πkt/T dt

allows us to obtain Ck for all k ∈ (−∞, ∞).

3.6 Complex-Valued Functions

If u(t) = g(t) + jh(t), then the Fourier series of u(t) can be obtained by � nding the Fourier
series of the real-valued g(t) and the real-valued h(t) separately. That is, if

g(t) =
A0

2
+

∞∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T
,

h(t) =
U0

2
+

∞∑
k=1

Uk cos
2πkt

T
+ Vk sin

2πkt

T
,

then we have

u(t) =
A0 + jU0

2
+

∞∑
k=1

(Ak + jUk) cos
2πkt

T
+ (Bk + jVk) sin

2πkt

T
.

3.7. FOURIER SERIES IN OTHER VARIABLES 61

3.7 Fourier Series in Other Variables

As indicated in Chapter 1, when the variable of function f(t) with period T is changed from
t to θ = 2πt/T , we obtain the periodic function g(θ) = g(θ + 2π) and its Fourier series in
terms of cos kθ and sinkθ or ejkθ :

g(θ) =
A0

2
+

∞∑
k=1

Ak cos kθ + Bk sin kθ

=
∞∑

k=−∞
Ckejkθ .

(3.13)

Noting that when t varies from −T/2 to T/2, θ varies from −π to π, and that θ = 2πt/T

implies dt = T
2π dθ in Equations (3.1) and (3.2), we obtain the Fourier coef� cients of g(θ)

from Dirichlet�s theorem:

Ak =
1

π

∫ π

−π

g(θ) cos kθ dθ, k = 0, 1, 2, . . .(3.14)

Bk =
1

π

∫ π

−π

g(θ) sin kθ dθ, k = 1, 2,(3.15)

To express Ck, we change the variable in Equation (3.12) to obtain

Ck =
1

2π

∫ π

−π

g(θ) e−jkθ dθ, k = . . . ,−1, 0, 1, . . .(3.16)

3.8 Truncated Fourier Series and Least Squares

Since we can only make use of a � nite Fourier series in many applications, it is of practical
and theoretical importance to understand how the relationship between a given function x(t)

and its Fourier series changes when the latter is truncated after a � nite number of terms. To
investigate the mathematical connection, we assume that a real-valued function x(t) of period
T is approximated by the following trigonometric polynomial of N = 2n + 1 terms, i.e.,

x(t) ≈ x̃N(t) =
A0

2
+

n∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T
.

Using the mathematically equivalent alternate form expressed in variable θ = 2πt/T , we may
assume that g(θ) of period 2π is approximated by the same trigonometric polynomial expressed
as g̃N(θ):

g(θ) ≈ g̃N(θ) =
A0

2
+

n∑
k=1

Ak cos kθ + Bk sin kθ.

It turns out that when the N coef� cients are chosen to be the Fourier coef� cients de� ned
according to Dirichlet�s Theorem, the discrepancy between the function g(θ) and the �n ite
series g̃N(θ) is minimized in the least-squares sense. To prove such direct connection to the
least-squares problem, we treat the real coef�c ients as unknown variables of the multivariate

62 CHAPTER 3. THE FOURIER SERIES

function (which measures the mean square error of the � t)

Φ(A0, A1, B1, . . . , An, Bn) =

∫ π

−π

[g(θ)− g̃N(θ)]
2

dθ

=

∫ π

−π

[
g(θ)− A0

2
−

n∑
k=1

(Ak cos kθ + Bk sin kθ)

]2

dθ.

(3.17)

We remark that we have chosen the alternate form in variable θ to simplify the notation some-
what. To minimize Φ(A0, A1, B1, . . . , An, Bn) by standard methods of calculus, we determine
Ar and Br by requiring that the following N = 2n + 1 conditions are satis� ed:

(3.18)
∂Φ

∂Ar
= 0, r = 0, 1, 2, . . . , n, and

∂Φ

∂Br
= 0, r = 1, 2, . . . , n.

For r = 1, 2, . . . , n, we thus obtain

∂Φ

∂Ar
= −

∫ π

−π

2 [g(θ)− g̃N(θ)]
∂g̃N(θ)

∂Ar
dθ(3.19)

= −2

∫ π

−π

[
g(θ)− A0

2
−

n∑
k=1

(Ak cos kθ + Bk sin kθ)

]
cos rθ dθ = 0,

∂Φ

∂Br
= −

∫ π

−π

2 [g(θ)− g̃N(θ)]
∂g̃N(θ)

∂Br
dθ(3.20)

= −2

∫ π

−π

[
g(θ)− A0

2
−

n∑
k=1

(Ak cos kθ + Bk sin kθ)

]
sin rθ dθ = 0.

To evaluate the integral in (3.19), we make use of the integrated results given by (1.19) and
(1.21) on page 15:

∫ π

−π

cos kθ cos rθ dθ =


0, if k 	= r

π, if k = r 	= 0

2π, if k = r = 0

, and
∫ π

−π

sin kθ cos rθ dθ = 0,

and we obtain

(3.21)
∫ π

−π

g(θ) cos rθ dθ = Ar

∫ π

−π

cos2 rθ dθ = πAr,

Solving for Ar in (3.21), we have

(3.22) Ar =
1

π

∫ π

−π

g(θ) cos rθ dθ, r = 1, 2, . . . , n.

Similarly, we evaluate the integral in (3.20) using the identities (which were given by (1.20)
and (1.21) on page 15)

∫ π

−π

sin kθ sin rθ dθ =


0, if k 	= r

π, if k = r 	= 0

0, if k = r = 0

, and
∫ π

−π

cos kθ sin rθ dθ = 0,

3.9. ORTHOGONAL PROJECTIONS AND FOURIER SERIES 63

and we obtain

(3.23)
∫ π

−π

g(θ) sin rθ dθ = Br

∫ π

−π

sin2 rθ dθ = πBr.

Solving for Br in (3.23), we have

(3.24) Br =
1

π

∫ π

−π

g(θ) sin rθ dθ, r = 1, 2, . . . , n.

For r = 0, we require

∂Φ

∂A0
= −

∫ π

−π

2 [g(θ)− g̃N(θ)]
∂g̃N(θ)

∂A0
dθ

= −2

∫ π

−π

[
g(θ)− A0

2
−

n∑
k=1

(Ak coskθ + Bk sin kθ)

]
1

2
dθ = 0,

which is simpli�ed to

(3.25)
∫ π

−π

g(θ) dθ =
A0

2

∫ π

−π

dθ = πA0.

Solving for A0 in (3.25), we have

A0 =
1

π

∫ π

−π

g(θ) dθ =
1

π

∫ π

−π

g(θ) cos 0 dθ,

which can be obtained directly from Equation (3.22) by allowing r = 0 there.
Since Formulas (3.22) and (3.24) are mathematically equivalent to Formulas (3.1) and (3.2)

in Dirichlet�s theorem, we have re-derived the Fourier coef� cients by � nding them as the solu-
tion to a least-squares problem.

3.9 Orthogonal Projections and Fourier Series

Orthogonal projections are of fundamental importance in the theory of Fourier series and in
many other branches of mathematics. In this section we shall review relevant concepts and
results from linear algebra before we apply them to solve the least-squares problem from the
preceding section in a more general setting (without involving calculus). We then proceed to
study the convergence of Fourier series as well as the Gibbs phenomenon in the next section.

We begin with the de�nition which allows us to address the orthogonality of both real-
valued and complex-valued functions. (The terms used in the de�n ition are explained in the
remarks that follow.)

Definition 3.16 If f and g are elements of a linear space V equipped with an inner product
〈 , 〉, we say f and g are orthogonal elements of V whenever 〈f, g〉 = 0.

Remark 3.17 A class of functions, all having the same domain, is said to form a � linear space�
if (i) the sum of any two member functions of the class is also a member; (ii) every scalar
multiple of a member function is also a member.

Given below are examples of linear spaces with each being a class of functions de�ned on
the real line.

64 CHAPTER 3. THE FOURIER SERIES

(a) All periodic functions with period T .

(b) All functions with the property f(1) = 0.

(c) All functions possessing at most a � nite number of discontinuities.

(d) All functions with the property f(2.5) = f(5).

Remark 3.18 The class of all functions de� ned and continuous in the interval
a ≤ t ≤ b is a linear space, and it is commonly denoted as C[a, b]; the class of all func-
tions possessing continuous derivatives of order n in the interval a ≤ t ≤ b is also a linear
space, and it is denoted as Cn[a, b]. (Note that only one-sided derivatives are required at the
end points, because the behavior of the function outside the domain a ≤ t ≤ b does not concern
us.)

Remark 3.19 An �i nner product� in a linear space is a function of pairs of elements of the
space. That is, for each pair f and g in the linear space there is scalar 〈f, g〉 satisfying the
following axioms:

Axiom 1. 〈f, f〉 ≥ 0 for every f , and 〈f, f〉 = 0 if and only if f is the zero element.

Axiom 2. 〈f, g〉 = 〈g, f〉 for every pair f and g.

Axiom 3. 〈αf + βg, h〉 = α 〈f, h〉+ β 〈g, h〉.
Axiom 4. 〈f, αg + βh〉 = α 〈f, g〉+ β 〈f, h〉.
In general, the functions f and g may be real-valued or complex-valued; hence, the scalar
〈f, g〉may be real or complex, so are the scalar constants α and β. As usual, the overbar means
complex conjugate, which can be omitted when we are only dealing with elements in real linear
spaces. Note that 〈f, f〉 must be real for all f (real or complex) because 〈f, f〉 = 〈f, f〉
according to axiom 2. Note also that axiom 4 is true whether it is explicitly given as an axiom,
because it is implied by axioms 2 and 3:

〈f, αg + βh〉 = 〈αg + βh, f〉 (by axiom 2)

= α〈g, f〉+ β〈h, f〉 (by axiom 3)

= α 〈g, f〉+ β 〈h, f〉
= α 〈f, g〉+ β 〈f, h〉 (by axiom 2)

Remark 3.20 For f, g ∈ C[a, b], an inner product satisfying the four axioms is

(3.26) 〈f, g〉 =

∫ b

a

f(t) g(t) dt.

If g(t) = u(t) + jv(t), where u(t) and v(t) are real-valued, then its complex conjugate is
g(t) = u(t)− jv(t); for real-valued g(t), we simply have g(t) = g(t).

Remark 3.21 If the linear space V is equipped with an inner product, then for every f ∈ V ,
we have 〈f, f〉 ≥ 0, and its norm may be de� ned by

(3.27) ‖f‖ =
√
〈f, f〉.

3.9. ORTHOGONAL PROJECTIONS AND FOURIER SERIES 65

Hence, an inner product linear space is also called a normed linear space (i.e., a space with a
measure associated with it). Using the inner product given by (3.26), we can directly de� ne
the norm by expressing

(3.28) ‖f‖2 =

∫ b

a

f(t) f(t) dt =

∫ b

a

|f(t)|2 dt.

Note that |f(t)|2= f2(t) if f(t) is real-valued. We can also use the norm ‖f − g‖ to measure
the difference between two functions.

Remark 3.22 The results given by (1.19), (1.20), and (1.21) on page 15 may be used to show
that the following pairs of sinusoidal functions are orthogonal over [−π, π]:

(3.29)

〈cos kθ, cos rθ〉 =

∫ π

−π

cos kθ cos rθ dθ = 0, if k 	= r, k ≥ 0, r ≥ 0;

〈sin kθ, sin rθ〉 =

∫ π

−π

sin kθ sin rθ dθ = 0, if k 	= r, k ≥ 1, r ≥ 1;

〈cos kθ, sin rθ〉 =

∫ π

−π

cos kθ sin rθ dθ = 0, for all k ≥ 0, and all r ≥ 1.

Remark 3.23 Since f(θ) = cos kθ is an even function and g(θ) = sin kθ is an odd function,
by Theorems 3.11 and 3.12 on pages 51 and 52 we have

(3.30)

∫ π

−π

cos kθ cos rθ dθ = 2

∫ π

0

cos kθ cos rθ dθ,∫ π

−π

sinkθ sin rθ dθ = 2

∫ π

0

sin kθ sin rθ dθ,

and they allow the inner products 〈cos kθ, cos rθ〉 and 〈sin kθ, sin rθ〉 de� ned over the interval
[0, π] to share the results from (3.29). That is,

(3.31)
〈cos kθ, cos rθ〉 def

=

∫ π

0

cos kθ cos rθ dθ = 0, if k 	= r, k ≥ 0, r ≥ 0;

〈sin kθ, sin rθ〉 def
=

∫ π

0

sin kθ sin rθ dθ = 0, if k 	= r, k ≥ 1, r ≥ 1.

Hence, the pairs of sinusoidal functions in (3.31) are also orthogonal over [0, π].

Theorem 3.24 (Pythagorean theorem) If 〈f, g〉 = 0, then ‖f + g‖2 = ‖f‖2 + ‖g‖2.

Proof:
‖f + g‖2 = 〈f + g, f + g〉

= 〈f, f + g〉+ 〈g, f + g〉 (by axiom 3)

= 〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉 (by axiom 4)

= ‖f‖2 + 〈f, g〉+ 〈f, g〉+ ‖g‖2 (by axiom 2)

= ‖f‖2 + ‖g‖2. (∵ 〈f, g〉 = 0)

�

Theorem 3.25 (Parallelogram theorem) ‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2.

66 CHAPTER 3. THE FOURIER SERIES

Proof: Since we have already obtained the expression

‖f + g‖2 = ‖f‖2 + 〈f, g〉+ 〈f, g〉+ ‖g‖2

in the proof of Theorem 3.24, we have, by similar steps,

‖f − g‖2 = ‖f‖2 − 〈f, g〉 − 〈f, g〉+ ‖g‖2

and the result follows. �

Theorem 3.26 The inner product 〈f, g〉 can be written entirely in terms of the norm in the
following form:

(3.32)
〈f, g〉 = 1

4

4∑
k=1

jk‖f + jkg‖2, where j =
√−1,

= 1
4

[‖f + g‖2 − ‖f − g‖2 + j‖f + jg‖2 − j‖f − jg‖2] .

Proof: We prove this result by reducing the right side to 〈f, g〉. Note that we have already
obtained the inner product expressions for the � rst two terms in the proofs of Theorems 3.24
and 3.25, which give us the partial result:

(3.33) ‖f + g‖2 − ‖f − g‖2 = 2〈f, g〉+ 2〈g, f〉.

We proceed to � nd the inner product expression for the third term:

j‖f + jg‖2 = j〈f + jg, f + jg〉
= j

[〈f, f〉+ 〈f, jg〉+ 〈jg, f〉+ 〈jg, jg〉]
= j

[〈f, f〉+ j〈f, g〉+ j〈g, f〉+ jj〈g, g〉]
= j〈f, f〉+ 〈f, g〉 − 〈g, f〉+ j〈g, g〉.

By similar steps we obtain the inner product expression for the fourth term:

j‖f − jg‖2 = j〈f, f〉 − 〈f, g〉+ 〈g, f〉+ j〈g, jg〉].
The partial result involving the last two terms is

(3.34) j‖f + jg‖2 − j‖f − jg‖2 = 2〈f, g〉 − 2〈g, f〉.

We then obtain, on summing (3.33) and (3.34) as well as including the factor 1
4 on both sides

of the equation, the desired result. �

Definition 3.27 A sequence φ1, φ2, φ3, . . . of elements of a normed linear space V is said to
be orthogonal if 〈φk, φr〉 = 0 whenever k 	= r and ‖φk‖ 	= 0 for every k. A sequence is said
to be orthonormal if it is orthogonal and ‖φk‖ = 1 for every k.

Remark 3.28 This de�n ition applies to both finite or infinite sequences.

Remark 3.29 The inner product results from (3.29) show that each of the following sequences
is orthogonal over [−π, π]:

3.9. ORTHOGONAL PROJECTIONS AND FOURIER SERIES 67

(a) 1, cos θ, cos 2θ, . . . , cosnθ, . . .

(b) sin θ, sin 2θ, . . . , sin nθ, . . .

(c) 1, cos θ, sin θ, . . . , cosnθ, sin nθ,

Theorem 3.30 (Parseval�s theorem) If f(θ) is a real-valued periodic function represented by

f(θ) =
A0

2
+

∞∑
k=1

Ak cos kθ + Bk sin kθ =

∞∑
k=−∞

Ckejkθ ,

then the power content of f(θ) in the period 2π is de�n ed as the mean-square value

(3.35)
1

2π

∫ π

−π

f2(θ) dθ =
A2

0

4
+

1

2

∞∑
k=1

A2
k + B2

k =

∞∑
k=−∞

|Ck|2.

Proof: Using the inner product properties given by (3.29) and the integrated results given
by (1.19) and (1.20) on page 15, we obtain

1

2π

∫ π

−π

f2(θ) dθ =
1

2π

∫ π

−π

[
A0

2
+

∞∑
k=1

Ak cos kθ + Bk sin kθ

]2

dθ

=
A2

0

8π

∫ π

−π

dθ +
1

2π

∞∑
k=1

[
A2

k

∫ π

−π

cos2 kθ dθ + B2
k

∫ π

−π

sin2 kθ dθ

]

=
A2

0

4
+

1

2

∞∑
k=1

A2
k + B2

k

(
by (1.19) and (1.20)

)
=

∞∑
k=−∞

|Ck|2.
(

∵ C0 =
A0

2
, |C−k|2+ |Ck|2 =

A2
k+ B2

k

2

)
�

Remark 3.31 The inner product results from (3.31) show that each of the following sequences
is orthogonal over [0, π]:

(a) 1, cos θ, cos 2θ, . . . , cosnθ, . . .

(b) sin θ, sin 2θ, . . . , sin nθ,

Remark 3.32 From identities (1.19) and (1.20) on page 15, we have

(3.36)

‖ coskθ‖2 = 〈cos kθ, cos kθ〉 =

∫ π

−π

cos2 kθ dθ =

{
2π if k = 0

π if k > 0
;

‖ sinkθ‖2 = 〈sin kθ, sin kθ〉 =

∫ π

−π

sin2 kθ dθ = π, if k 	= 0.

Using the computed norms to scale the corresponding elements in each orthogonal sequence,
we obtain the orthonormal sequences de� ned on the interval [−π, π]:

(a) 1√
2π

, 1√
π

cos θ, 1√
π

cos 2θ, . . . , 1√
π

cosnθ, . . .

68 CHAPTER 3. THE FOURIER SERIES

(b) 1√
π

sin θ, 1√
π

sin 2θ, . . . , 1√
π

sin nθ, . . .

(c) 1√
2π

, 1√
π

cos θ, 1√
π

sin θ, . . . , 1√
π

cosnθ, 1√
π

sin nθ,

Example 3.33 Show that the complex trigonometric sequence deÞ ned by the periodic function
φk = 1√

2π
ejkθ for k ∈ (−∞, ∞) is an orthonormal sequence.

Proof: We apply the inner product integral (3.26) over the interval [a, b] = [−π, π], which
corresponds to the longest period of φ1, because ejk(θ+2π/k) = ejkθ for every k.

For k 	= �, 〈φk, φ�〉 =
1

2π

∫ π

−π

ejkθe−j�θdθ =
ej(k−�)θ

∣∣∣π
−π

j2(k − �)π
=

sin(k − �)π

(k − �)π
= 0.

For k = �, we have ‖φ�‖2 = 〈φ�, φ�〉 =
1

2π

∫ π

−π

ej�θe−j�θdθ =
1

2π

∫ π

−π

dθ = 1.

�

3.9.1 The Cauchy–Schwarz inequality

Since the version of Cauchy—Schwarz inequality used in the real vector spaces involves only
real-valued dot products, we should point out that complications do arise when we must now
work with complex inner product spaces, because 〈f, g〉 need not be a real number. This fact is
reß ected by the different requirements in the proof as well as the necessity of using the modulus
(absolute value) of 〈f, g〉 in the left side of the inequality given by Theorem 3.34. Further
complication occurs when we use the inner product deÞ ned by (3.26) on piecewise continuous
functions, because it becomes necessary to relax the deÞ nition of the inner product (and hence
the norm) to permit 〈g, g〉 = 0 (and hence ‖g‖ = 0), even though g is not identically zero. We
then have what is called a pseudo inner product. For example, if g(t) = 0 everywhere in [a, b]

except at one point t = ta and we let g(ta) = 1, then we have 〈g, g〉 =
∫ b

a
|g(t)|2 = 0, but

g(t) is not identically zero. We therefore present two proofs for Theorem 3.34: the Þ rst proof
is simpler but it is not valid in its present form if the part requiring Ò g 	= zero function =⇒
〈g, g〉 	= 0Ó i s dropped from axiom (1); the second proof requires more work but it would still
be valid for pseudo inner products.

Theorem 3.34 The Cauchy—Schwarz inequality for every pair f and g from a complex inner
product space V is given by

(3.37) |〈f, g〉|2 ≤ ‖f‖2 ‖g‖2.

The First Proof: If both f and g are identically zero, then the equality holds because 〈f, g〉 =

0, ‖f‖2 = 0, and ‖g‖2 = 0. We therefore assume that one element of the pair is not identically
zero, and we assume g 	= zero function without loss of generality. According to axiom (1),
〈g, g〉2 = ‖g‖2 	= 0, and we have, for every scalar λ,

(3.38)

0 ≤ 〈f − λg, f − λg〉 = 〈f, f − λg〉 − λ〈g, f − λg〉 (by axiom 3)

= 〈f, f〉 − λ〈f, g〉 − λ〈g, f〉+ λλ 〈g, g〉 (by axiom 4)

= ‖f‖2 − λ〈f, g〉 − λ〈f, g〉+ λλ ‖g‖2. (by axiom 2)

3.9. ORTHOGONAL PROJECTIONS AND FOURIER SERIES 69

The last two terms on the right side may cancel each other if we set

λ =
〈f, g〉
‖g‖2 so that λλ ‖g‖2 = λ〈f, g〉.

The inequality from (3.38) is thus simpliÞed to

0 ≤ ‖f‖2 − λ〈f, g〉 = ‖f‖2 − 〈f, g〉〈f, g〉
‖g‖2 = ‖f‖2 − |〈f, g〉|2

‖g‖2 ,

or equivalently,

0 ≤ ‖f‖2‖g‖2 − |〈f, g〉|2,
which yields the Cauchy—Schwarz inequality. �

The Second Proof: In this proof we consider two cases based on the value of the inner
product 〈f, g〉. If 〈f, g〉 = 0, the Cauchy—Schwarz inequality is valid, since the right side
of (3.37) cannot be negative. We consider next the case when 〈f, g〉 	= 0. By taking the same
initial steps from the Þr st proof, we again arrive at the inequality

(3.39) 0 ≤ 〈f − λg, f − λg〉 = ‖f‖2 − λ〈f, g〉 − λ〈f, g〉+ λλ ‖g‖2.

In order not to make any assumption about the value of ‖g‖2 = 〈g, g〉, we avoid using any ex-
pression involving ‖g‖ in the denominator. Suppose we now continue by letting λ = γ〈f, g〉,
where γ is an arbitrary real number so that λ = γ 〈f, g〉 = γ 〈f, g〉, we shall obtain

(3.40)

0 ≤ ‖f‖2 − λ〈f, g〉 − λ〈f, g〉+ λλ ‖g‖2

= ‖f‖2 − γ 〈f, g〉〈f, g〉 − γ 〈f, g〉〈f, g〉+ γ2〈f, g〉〈f, g〉‖g‖2
= ‖f‖2 − 2γ |〈f, g〉|2 + γ2|〈f, g〉|2‖g‖2.

By expressing the right side as a quadratic expression in the arbitrary real number γ, we obtain

(3.41) aγ2 + bγ + c ≥ 0 for every γ.

Because the quadratic formula has real coefÞcients , namely, a = |〈f, g〉|2‖g‖2, b = −2|〈f, g〉|2,
and c = ‖f‖2, and the formula represents a nonnegative number for all values of the real vari-
able γ, we conclude that the quadratic equation aγ2 + bγ + c = 0 cannot have two distinct real
roots γ1 and γ2, since if it did there would be values of γ for which aγ2 + bγ + c < 0, which
is a contradiction. Therefore, the discriminant b2 − 4ac cannot be positive (otherwise we have
two distinct real roots), and we must have

b2 − 4ac = 4|〈f, g〉|4 − 4|〈f, g〉|2‖g‖2‖f‖2 ≤ 0,

which yields

4|〈f, g〉|4 ≤ 4|〈f, g〉|2‖g‖2‖f‖2.
Since 〈f, g〉 	= 0, we can divide both sides by 4|〈f, g〉|2 to obtain

|〈f, g〉|2 ≤ ‖f‖2‖g‖2,

which completes the proof. �

70 CHAPTER 3. THE FOURIER SERIES

Example 3.35 Use the Cauchy—Schwarz inequality to show that

(3.42)

[∫ b

a

∣∣h(t)
∣∣ dt

]2

≤ (b − a)

∫ b

a

∣∣h(t)
∣∣2dt.

Proof: To derive this inequality, we apply Theorem 3.34 with the inner product deÞned
by (3.26) on page 64 to the pair f(t) = |h(t)| and g(t) = 1, and we obtain

|〈f, g〉|2 =

∣∣∣∣∣
∫ b

a

f(t) g(t) dt

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ b

a

∣∣h(t)
∣∣ dt

∣∣∣∣∣
2

=

[∫ b

a

∣∣h(t)
∣∣ dt

]2

,

‖f‖2‖g‖2 =

[∫ b

a

|h(t)| |h(t)| dt

][∫ b

a

dt

]
= (b − a)

∫ b

a

∣∣h(t)
∣∣2 dt.

The desired result follows because |〈f, g〉|2 ≤ ‖f‖2‖g‖2. �

Example 3.36 Use the result in Examples 3.35 to show that

(3.43)

∣∣∣∣∣
∫ b

a

g(t) dt−
∫ b

a

ν(t) dt

∣∣∣∣∣ ≤ √b− a
∥∥∥g(t)− ν(t)

∥∥∥.

Proof: Since the result in Example 3.35 can also be expressed as

(3.44)
∫ b

a

∣∣h(t)
∣∣ dt ≤

√
b− a

∥∥h(t)
∥∥,

by letting h(t) = g(t)− ν(t) we immediately have∫ b

a

∣∣∣g(t)− ν(t)
∣∣∣ dt ≤

√
b− a

∥∥∥g(t)− ν(t)
∥∥∥.

The desired inequality follows because∣∣∣∣∣
∫ b

a

g(t) dt−
∫ b

a

ν(t) dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(
g(t)− ν(t)

)
dt

∣∣∣∣∣ ≤
∫ b

a

∣∣∣g(t)− ν(t)
∣∣∣ dt.

�

Example 3.37 Use the Cauchy—Schwarz inequality to show that

(3.45)
∫ π/2

0

sin θ cos2nθ dθ ≤
√∫ π/2

0

sin2 θ cos2nθ dθ

∫ π/2

0

cos2nθ dθ.

Proof: By applying the inner product (3.26) to real functions f(θ) and g(θ), the inequality
given by Theorem 3.34 may be directly expressed as

(3.46)

∣∣∣∣∣
∫ b

a

f(θ)g(θ) dθ

∣∣∣∣∣ ≤
√∫ b

a

f2(θ) dθ

∫ b

a

g2(θ) dθ.

The desired result is obtained if we let f(θ) = sin θ cosn θ and g(θ) = cosn θ. �

3.9. ORTHOGONAL PROJECTIONS AND FOURIER SERIES 71

3.9.2 The Minkowski inequality

Theorem 3.38 The Minkowski inequality for every pair f and g from a complex inner product
space V is given by

(3.47) ‖f + g‖ ≤ ‖f‖+ ‖g‖.

Proof: Since the inner product 〈f, g〉 is assumed to be a complex scalar z = a + jb, we shall
make use of the property z + z = 2a ≤ 2|z| in the proof. In addition, we also need the
Cauchy—Schwarz inequality as shown below.

(3.48)

‖f + g‖2 = 〈f + g, f + g〉
= 〈f, f〉+ 〈f, g〉+ 〈f, g〉+ 〈g, g〉 (by axioms 3, 4, 2)

≤ ‖f‖2 + 2|〈f, g〉|+ ‖g‖2 (∵ z=〈f, g〉, z + z ≤ 2|z|)
≤ ‖f‖2 + 2‖f‖ ‖g‖+ ‖g‖2 (∵ Cauchy—Schwarz inequality)

=
(‖f‖+ ‖g‖)2

.

We complete the proof by taking the positive square roots of both sides. �

Example 3.39 Use the Minkowski inequality to show that

(a) ‖f − g‖ ≤ ‖f − h‖+ ‖h− g‖.

(b)
∣∣‖f‖ − ‖g‖∣∣ ≤ ‖f − g‖.

Proof: For part (a), we apply inequality (3.47) to φ = f −h and ψ = h− g, and we obtain the
desired result:

‖f − g‖ = ‖φ + ψ‖ ≤ ‖φ‖+ ‖ψ‖ = ‖f − h‖+ ‖h− g‖.

For part (b), we apply inequality (3.47) to φ = f − g and ψ = g, and we obtain

‖f‖ = ‖φ + ψ‖ ≤ ‖φ‖+ ‖ψ‖ = ‖f − g‖+ ‖g‖,

which yields

(3.49) ‖f‖ − ‖g‖ ≤ ‖f − g‖.

If we repeat the process with φ = g − f and ψ = f , we shall have

(3.50) ‖g‖ − ‖f‖ ≤ ‖g − f‖ = ‖f − g‖.

To obtain the desired result, we simply combine (3.49) and (3.50) into a single inequality, i.e.,

± (‖f‖ − ‖g‖) ≤ ‖f − g‖, or equivalently,
∣∣‖f‖ − ‖g‖∣∣ ≤ ‖f − g‖.

�

72 CHAPTER 3. THE FOURIER SERIES

3.9.3 Projections

Definition 3.40 Let φ be an element of a normed linear space V with ‖φ‖ = 1. For any f ∈ V

the projection of f in the direction of φ is denoted by proj (f : φ) with the deÞn ition

(3.51) proj(f : φ)
def
= 〈f, φ〉φ.

Theorem 3.41 The element f is a scalar multiple of φ if and only if proj(f : φ) = f .

Proof: If f = αφ for some scalar α, then we have

proj(f : φ) = 〈αφ, φ〉φ = α〈φ, φ〉φ = α‖φ‖2φ = αφ = f. (∵ ‖φ‖ = 1)

Conversely, if proj(f : φ) = f , then by (3.51) we have 〈f, φ〉φ = f , i.e., f is a scalar multiple
of φ. �

Theorem 3.42 If ψ = f−proj(f : φ), then the inner product 〈ψ, φ〉 = 0, and ψ is orthogonal
to φ.

Proof: By (3.51) we have proj(f : φ) = λφ for λ = 〈f, φ〉. Accordingly,

〈ψ, φ〉 = 〈f − λφ, φ〉
= 〈f, φ〉 − λ〈φ, φ〉 (by axiom 3)

= 〈f, φ〉 − 〈f, φ〉‖φ‖2 (
∵ λ = 〈f, φ〉)

= 0. (∵ ‖φ‖ = 1 by deÞn ition 3.40)

�

Definition 3.43 Let V denote a normed linear space, and let Ωn denote a subspace spanned
by an orthonormal sequence φ1, φ2, . . . , φn in V . The projection of f ∈ V into the subspace
Ωn is deÞn ed by

(3.52) proj(f : Ωn) =

n∑
�=1

proj(f : φ�) =

n∑
�=1

λ�φ�, where λ� = 〈f, φ�〉.

Example 3.44 Let Ω2n+1 be the subspace spanned by the orthonormal sequence

1√
2π

, 1√
π

cos θ, 1√
π

sin θ, . . . , 1√
π

cosnθ, 1√
π

sinnθ.

Recall that these 2n + 1 elements were shown to have unit norm and be mutually orthogonal
with the inner product deÞ ned by the deÞ nite integral over any interval of length 2π, namely,

〈
f(θ), g(θ)

〉
=

∫ π

−π

f(θ) g(θ) dθ.

Using the inner product property from axiom (4),

proj
(
f : 1√

π
g
)

=
〈
f, 1√

π
g
〉

1√
π
g =

1

π
〈f, g〉g,

3.9. ORTHOGONAL PROJECTIONS AND FOURIER SERIES 73

we express the truncated Fourier series of a periodic function f(θ) with period 2π as a projec-
tion into the subspace Ω2n+1 according to deÞn ition 3.43. That is,

(3.53)

S2n+1 = proj(f : Ω2n+1)

=
1

2π

〈
f(θ), 1

〉
+

1

π

n∑
k=1

〈
f(θ), cos kθ

〉
cos kθ +

〈
f(θ), sinkθ

〉
sinkθ

=
1

2
A0 +

n∑
k=1

Ak cos kθ + Bk sin kθ,

where

(3.54) Ak =
1

π

〈
f(θ), cos kθ

〉
=

1

π

∫ π

−π

f(θ) cos kθ dθ, k = 0, 1, 2, . . . , n;

(3.55) Bk =
1

π

〈
f(θ), sinkθ

〉
=

1

π

∫ π

−π

f(θ) sin kθ dθ, k = 1, 2, . . . , n.

Theorem 3.45 proj(f : Ωn) = f if and only if f ∈ Ωn.

Proof: If proj(f : Ωn) = f , then by (3.52) f is a linear combination of φ1, φ2, . . . , φn

from the orthonormal sequence which spans Ωn, hence f ∈ Ωn. Conversely, if f ∈ Ωn,
then we may express f =

∑n
k=1 αkφk, where the αkÕs are scalars, and the φk Õs are from the

orthonormal sequence spanning Ωn, we thus have
〈
φk, φ�

〉
= 0 if k 	= � and

〈
φ�, φ�

〉
= 1. To

obtain proj(f : Ωn) according to (3.52), we compute each coefÞ cient λ� deÞ ned by the inner
product

〈
f, φ�

〉
, namely,

λ� =
〈
f, φ�

〉
=

〈 n∑
k=1

αkφk, φ�

〉
=

n∑
k=1

αk

〈
φk, φ�

〉
= α�

〈
φ�, φ�

〉
= α�.

We thus have

proj(f : Ωn) =

n∑
�=1

λ�φ� =

n∑
�=1

α�φ� = f.

�

Example 3.46 For each g =
∑n

�=1 α�φ� in Theorem 3.45, show that 〈g, g〉 =
∑n

�=1|α�|2.
Proof:

〈g, g〉 =

〈 n∑
�=1

α�φ�, g

〉
=

n∑
�=1

α�

〈
φ�, g

〉
=

n∑
�=1

α�

〈
φ�,

n∑
k=1

αkφk

〉

=

n∑
�=1

α�

n∑
k=1

αk

〈
φ�, φk

〉
=

n∑
�=1

α�α�

〈
φ�, φ�

〉
=

n∑
�=1

|α�|2.

�

Theorem 3.45 shows that for every f ∈ Ωn, we can express it as a linear combination of
the elements from the Òort honormalÓ basis of Ωn conveniently, because such an expression is
given by proj(f : Ωn) which explicitly deÞn es each coefÞcien t to be the inner product of f

and an element from the orthonormal sequence.

74 CHAPTER 3. THE FOURIER SERIES

Example 3.47 Let Ω2n+1 again be the subspace spanned by the orthonormal sequence
1√
2π

, 1√
π

cos θ, 1√
π

sin θ, . . . , 1√
π

cosnθ, 1√
π

sin nθ. From Theorem 3.45, if f ∈ Ω2n+1,

then f = proj
(
f : Ω2n+1

)
. Using the result for proj

(
f : Ω2n+1

)
directly from Example 3.44,

we now have

f(θ) =
1

2
A0 +

n∑
k=1

Ak cos kθ + Bk sinkθ,

with Ak and Bk deÞ ned by (3.54) and (3.55); hence, the right side represents a Fourier series
of N = 2n + 1 terms. Note that if we want to apply the result from Example 3.46 to obtain
‖f(θ)‖2 = 〈f(θ), f(θ)〉, we must use the coefÞ cients with respect to the orthonormal basis.
The result is, therefore,

〈f(θ), f(θ)〉 =
π

2
|A0|2 +

n∑
k=1

π|Ak|2 + π|Bk|2.

Since 〈f(θ), f(θ)〉 =
∫ π

−π
f(θ)f(θ) dθ =

∫ π

−π
|f(θ)|2dθ, the same result is commonly ex-

pressed as

1

π

∫ π

−π

|f(θ)|2dθ =
1

2
|A0|2 +

n∑
k=1

|Ak|2 + |Bk|2.

Theorem 3.48 Let ΩN be the subspace spanned by the orthonormal sequence
φ1, φ2, . . . , φN . If ψ = f − proj

(
f : ΩN

)
, then ψ is orthogonal to every element gN ∈ ΩN .

Proof: By deÞn ition 3.40, proj
(
f : ΩN

)
=

∑N

k=1 λkφk for λk =
〈
f, φk

〉
. Therefore, for

� = 1, 2, . . . , N , we have

〈
ψ, φ�

〉
=

〈
f −

N∑
k=1

λkφk, φ�

〉

=
〈
f, φ�

〉− N∑
k=1

λk

〈
φk, φ�

〉
=

〈
f, φ�

〉− λ�

〈
φ�, φ�

〉
(∵ 〈φk, φ�〉 = 0, k 	= �)

=
〈
f, φ�

〉− λ�

(
∵ 〈φ�, φ�〉 = ‖φ‖2 = 1

)
= 0.

(
∵ λ� = 〈f, φ�〉

)
To show that ψ is orthogonal to every gN ∈ ΩN , we express gN =

∑N

�=1 α�φ�, and we show
that

〈
ψ, gN

〉
=

〈
ψ,

N∑
�=1

α�φ�

〉
=

N∑
�=1

〈
ψ, α�φ�

〉
=

N∑
�=1

α�

〈
ψ, φ�

〉
= 0.

(
∵ 〈ψ, φ�〉 = 0

)
�

3.9.4 Least-squares approximation

Theorem 3.45 also shows that if f 	∈ ΩN , then f 	= proj
(
f : ΩN

)
. Therefore, in general,

we can only approximate an arbitrary periodic function by a finite Fourier series. We show
next that if ΩN is a subspace of V , then for every f ∈ V and every gN ∈ ΩN , the difference

3.9. ORTHOGONAL PROJECTIONS AND FOURIER SERIES 75

‖f − gN‖ is minimized when gN = proj(f : ΩN). In other words, we shall show that the best
least-squares approximation to f in the subspace ΩN is given by gN = proj(f : ΩN).

Theorem 3.49 If ΩN is a subspace of the normed linear space V and ΩN is spanned by the
orthonormal sequence φ1, φ2, . . . , φN , then for every f ∈ V , the element gN ∈ ΩN for which
‖f − gN‖2 is a minimum is gN = proj

(
f : ΩN

)
.

Proof: Suppose ‖f − gN‖2 is minimized by gN =
∑

N

k=1 αkφk ∈ ΩN , where the coefÞ cients
αk are unknowns to be determined. We proceed to evaluate the inner product deÞ ning ‖f −
gN‖2, and we obtain

〈f − gN , f − gN〉 = 〈f, f〉 − 〈f, gN〉 − 〈gN , f〉+ 〈gN , gN〉

= ‖f‖2 −
N∑

k=1

αk〈f, φk〉 −
N∑

k=1

αk〈φk, f〉+
N∑

k=1

|αk|2

= ‖f‖2 −
N∑

k=1

αk〈f, φk〉 −
N∑

k=1

αk〈f, φk〉+
N∑

k=1

|αk|2

= ‖f‖2 −
N∑

k=1

αkλk −
N∑

k=1

αkλk +

N∑
k=1

αkαk, where λk =〈f, φk〉,

= ‖f‖2 +

N∑
k=1

(
λkλk − αkλk − αkλk + αkαk

)
−

N∑
k=1

λkλk

= ‖f‖2 +
N∑

k=1

(
λk − αk

)(
λk − αk

)− N∑
k=1

|λk|2

= ‖f‖2 +

N∑
k=1

∣∣λk − αk

∣∣2 − N∑
k=1

|λk|2.

To minimize the right side, we focus on the only term involving the unknown αkÕs, i.e., the
term

∑N

k=1

∣∣λk−αk

∣∣2. Because this term cannot be negative, its minimum value is zero, which
is reached by setting αk = λk for k = 1, 2, . . . , N . Therefore, we minimize ‖f − gN‖2 by
choosing

gN =

N∑
k=1

αkφk =

N∑
k=1

λkφk =

N∑
k=1

〈f, φk〉φk = proj
(
f : ΩN

)
,

which renders

〈f − gN , f − gN〉 = ‖f‖2 −
N∑

k=1

|λk|2 = ‖f‖2 − ‖gN‖2, where λk = 〈f, φk〉.

�

Corollary 3.50 For element f in Theorem 3.49, gN = proj
(
f : ΩN

)
is the best least-squares

approximation of f in the subspace ΩN , and the resulting (minimum) error is given by

0 ≤ ‖f − gN‖2 = ‖f‖2 − ‖gN‖2.

Proof: This result was obtained in the proof of Theorem 3.49 when we set αk = λk to enable
gN = proj

(
f : ΩN

)
. �

76 CHAPTER 3. THE FOURIER SERIES

Corollary 3.51 If ΩN is a subspace of the normed linear space V and ΩN is spanned by the
orthonormal sequence φ1, φ2, . . . , φN , then for every f in V , we have

‖f‖2 ≥
N∑

k=1

|〈f, φk〉|2.

Proof: Since ‖f‖2 ≥ ‖gN‖2 is an immediate result from Corollary 3.50, and ‖gN‖2 =∑N

k=1|〈f, φk〉|2 was shown in the proof of Theorem 3.49, the desired result follows. �

Example 3.52 Let N = 2n + 1 and let ΩN be the subspace spanned by the orthonormal se-
quence 1√

2π
, 1√

π
cos θ, 1√

π
sin θ, . . . , 1√

π
cosnθ, 1√

π
sin nθ. In Example 3.44 we have shown

that

(3.56) gN(θ) = proj(f : ΩN) =
1

2
A0 +

n∑
k=1

Ak cos kθ + Bk sin kθ,

with Ak and Bk deÞ ned by (3.54) and (3.55). As mentioned before, the right side represents
a truncated Fourier series of f(θ). From Theorem 3.49, the N -term Fourier series of f(θ) is
its best least-squares approximation in ΩN . Using Corollary 3.50 and the result from Exam-
ple 3.47, the error between f(θ) and its truncated Fourier series gN(θ) is given by

(3.57)

0 ≤ ‖f(θ)− gN(θ)‖2 = ‖f(θ)‖2 − ‖gN(θ)‖2

=

∫ π

−π

|f(θ)|2 dθ −
[

π

2
|A0|2 + π

n∑
k=1

|Ak|2 + |Bk|2
]

;

the same result can be represented by the inequality

(3.58)
1

π

∫ π

−π

|f(θ)|2dθ ≥ 1

2
|A0|2 +

n∑
k=1

|Ak|2 + |Bk|2,

which is referred to by some authors as BesselÕs inequality for Þ nite sum. Observe that this
inequality is simply the result of applying Corollary 3.51,

‖f‖2 ≥
N∑

k=1

|〈f, φk〉|2

to a speciÞ c set of orthonormal functions.

Example 3.53 Find the Fourier series coefÞ cients of g(θ) and verify that BesselÕs inequality
(for Þ nite sums) holds for the Þ rst few terms.

g(θ) =

{
1, 0 ≤ θ ≤ π

−1, −π < θ < 0
.

We Þ rst observe that g(−θ) = −g(θ), so g(θ) is an odd function, and its Fourier series coefÞ -
cients are given by Theorem 3.12 as

Ak = 0, k = 0, 1, 2, . . . ; Bk =
2

π

∫ π

0

g(θ) sin kθ dθ, k = 1, 2,

3.9. ORTHOGONAL PROJECTIONS AND FOURIER SERIES 77

Since g(θ) = 1 for θ ∈ [0, π], we obtain

Bk =
2

π

∫ π

0

sin kθ dθ =
2

kπ

(
− cos kθ

∣∣∣π
0

)
=

2

kπ
(1− cos kπ).

Noting that Bk = 0 if k is even, and Bk =
4

kπ
if k is odd, we have

g(θ) =

∞∑
r=0

B2r+1 sin(2r + 1)θ =
4

π

(
sin θ +

sin 3θ

3
+ · · ·+ sin(2r + 1)θ

2r + 1
+ . . .

)
.

To verify BesselÕs inequality for a Þn ite sum of N terms, we have on the left-hand side

1

π

∫ π

−π

g2(θ) dθ =
1

π

∫ π

−π

dθ = 2;

on the right-hand side we have the partial sum of N nonzero terms, i.e.,

SN =

N−1∑
r=0

B2
2r+1 =

16

π2

N−1∑
r=0

1

(2r + 1)2
=

16

π2

(
1 +

1

9
+

1

25
+ · · ·+ 1

(2N − 1)
2

)
.

It can now be veriÞed that

S1 =
16

π2
≤ 2, S2 =

160

9π2
≤ 2, S3 =

4144

225π2
≤ 2, . . . , etc.

This example also shows that the nonzero Fourier coefÞ cient B2r+1 =
4

(2r + 1)π
→ 0 as

k = 2r + 1 →∞.

3.9.5 Bessel’s inequality and Riemann’s lemma

We revisit the BesselÕs inequality (restricted for Þ nite sum at the moment) given by (3.58), and
we express the same result as

(3.59) Sn =
1

2
|A0|2 +

n∑
k=1

|Ak|2 + |Bk|2 ≤ M,

where M = 1
π

∫ π

−π
|f(θ)|2dθ is a constant for given f . Because S0, S1, S2, . . . Sn, . . . are

partial sums associated with the following inÞ nite series of nonnegative terms:

(3.60)
1

2
|A0|2 +

∞∑
k=1

|Ak|2 + |Bk|2,

we have S0 ≤ S1 ≤ S2 ≤ · · · ≤ Sn ≤ . . . , and we have found the upper bound M such that
every Sn ≤ M ; hence, this sequence of partial sums has a limit, and

lim
n→∞Sn ≤ M.

We have now obtained the full-ßed ged BesselÕs inequality:

(3.61) lim
n→∞

Sn =
1

2
|A0|2 +

∞∑
k=1

|Ak|2 + |Bk|2 ≤ 1

π

∫ π

−π

|f(θ)|2dθ;

78 CHAPTER 3. THE FOURIER SERIES

which is, again, a special case of the general result:
∞∑

k=1

|〈f, φk〉|2 ≤ ‖f‖2,

which is valid for any orthonormal sequence φ1, φ2, . . . , φn,

Example 3.54 We continue with Example 3.53, and we may now verify that the full-ß edged
BesselÕs inequality holds because

lim
N→∞

SN =

∞∑
r=0

B2
2r+1 =

16

π2

∞∑
r=0

1

(2r + 1)2
=

16

π2

(
π2

8

)
= 2,

where the numerical result for the sum of the inÞn ite series was established by identity (3.8) in
Example 3.15.

To further analyze the inÞnite series, we recall the following: (i) an inÞnite series is said
to be convergent if and only if the sequence of its partial sums has a limit; (ii) the terms of
a convergent inÞ nite series must tend to zero. Since the inÞ nite series (3.60) was shown to
satisfy the condition set out in (i) for convergence, we must have

lim
k→∞

|Ak|2 = 0, and lim
k→∞

|Bk|2 = 0,

which implies that both Ak and Bk tend to 0 as k →∞. When the results are given speciÞcally
for the Fourier coefÞ cients, they commonly appear in the following form:

lim
k→∞

Ak = lim
k→∞

1

π

∫ π

−π

f(θ) cos kθ dθ = 0;(3.62)

lim
k→∞

Bk = lim
k→∞

1

π

∫ π

−π

f(θ) sin kθ dθ = 0.(3.63)

We remark that because Ak = 1√
π
〈f, φk〉 with φk = 1√

π
cos kθ, and Bk = 1√

π
〈f, ψk〉 with

ψk = 1√
π

sin kθ, the above results apply to inÞ nite series with coefÞcien ts λk = 〈f, φk〉when-
ever φ1, φ2, φ3, . . . are mutually orthonormal. (The zero limit is not affected by absorbing
an additional constant factor 1√

π
into the Fourier coefÞ cients Ak and Bk.) The latter result is

known as RiemannÕs lemma, which is formally given as Lemma 3.55.

Lemma 3.55 (RiemannÕs lemma) For a given function f with
∫ π

−π|f(θ)|2dθ < ∞, and for a
given sequence of orthonormal functions φ1, φ2, φ3, . . . ,

lim
k→∞

〈
f, φk

〉
= 0.

Example 3.56 Assuming that
∫ π

−π
|g(θ)|2dθ < ∞, use RiemannÕs lemma to prove that

(3.64) lim
k→∞

1

π

∫ π

−π

g(θ) sin
(
k + 1

2

)
θ dθ = 0.

Proof: At Þrst we write out the integral in such a form that RiemannÕs lemma may be applied.

1

π

∫ π

−π

g(θ) sin
(
k + 1

2

)
θ dθ =

1

π

∫ π

−π

g(θ)

(
sin kθ cos

θ

2
+ cos kθ sin

θ

2

)
dθ

=
1

π

∫ π

−π

[
g(θ) sin

θ

2

]
cos kθ dθ +

1

π

∫ π

−π

[
g(θ) cos

θ

2

]
sin kθ dθ

=
1

π

∫ π

−π

U(θ) cos kθ dθ +
1

π

∫ π

−π

V (θ) sin kθ dθ,

3.10. CONVERGENCE OF THE FOURIER SERIES 79

where U(θ) = g(θ) sin θ
2 and V (θ) = g(θ) cos θ

2 . By RiemannÕs lemma, the two integrals on
the right side tend to zero:

lim
k→∞

1

π

∫ π

−π

U(θ) cos kθ dθ =
1√
π

lim
k→∞

〈
U(θ),

1√
π

cos kθ
〉

= 0,

lim
k→∞

1

π

∫ π

−π

V (θ) sin kθ dθ =
1√
π

lim
k→∞

〈
V (θ),

1√
π

sinkθ
〉

= 0.

Hence, the integral on the left side must also tend to zero as k →∞, and we obtain the desired
result. �

Example 3.57 Assuming that
∫ π

0
|g(θ)|2dθ <∞, use RiemannÕs lemma to prove that

(3.65) lim
k→∞

1

π

∫ π

0

g(θ) sin
(
k + 1

2

)
θ dθ = 0.

Proof: By taking the same initial steps in Example 3.56 we rewrite

1

π

∫ π

0

g(θ) sin
(
k + 1

2

)
θ dθ =

1

π

∫ π

0

U(θ) cos kθ dθ +
1

π

∫ π

0

V (θ) sin kθ dθ,

where U(θ) = g(θ) sin θ
2 , and V (θ) = g(θ) cos θ

2 . Applying RiemannÕs lemma with the
orthonormal cosine or sine sequences deÞ ned via the inner products given by (3.31) over the
interval [0, π], the two integrals on the right side tend to zero:

lim
k→∞

1

π

∫ π

0

U(θ) cos kθ dθ =
1√
2π

lim
k→∞

〈
U(θ),

1√
π
2

cos kθ
〉

= 0,

lim
k→∞

1

π

∫ π

0

V (θ) sin kθ dθ =
1√
2π

lim
k→∞

〈
V (θ),

1√
π
2

sin kθ
〉

= 0.

The desired result follows. �

3.10 Convergence of the Fourier Series

3.10.1 Starting with a concrete example

Recall Example 3.14 from Section 3.4, in which we show that the function f(t) = t − t2

(0 < t < 1) has three expansions:

f(t) = t− t2 =



1

6
− 1

π2

∞∑
k=1

cos 2kπt

k2
;

8

π3

∞∑
k=1

sin(2k − 1)πt

(2k − 1)3
;

−1

3
− 4

π2

∞∑
k=1

(−1)k cos kπt

k2
− 2

π

∞∑
k=1

(−1)k sin kπt

k
.

Strictly speaking, the Þ rst expansion is the Fourier series of the periodic (even) function g1(t),
−∞ < t < ∞, which is formally deÞ ned as

g1(t) =

{
t− t2, t ∈ (0, 1]

−t− t2, t ∈ (−1, 0]
, g1(t + 2) = g1(t).

80 CHAPTER 3. THE FOURIER SERIES

The graph of g1(t) is shown in Figure 3.8. Since g1(t) is continuous at all points, DirichletÕs
theorem tells us that

g1(t) =
1

6
−

∞∑
k=1

Ak cos 2kπt, with Ak =
1

π2k2
,

is true everywhere. Because the size of the kth cosine term in the series is bounded by the
magnitude of its coefÞ cient Ak, the partial sum (from a truncated Fourier series) approaches
g1(t) as fast as the coefÞ cient Ak tends to 0. In this case, when k grows bigger (as more terms
are added), the coefÞ cient Ak → 0 as fast as 1/k2 → 0.

Figure 3.8 The graphs of periodic (even) g1(t) and g′1(t).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1 period of g
1
(t)

The derivative
of g

1
(t)

Corners
occur

0
Jump discontinuities
occur

Observe that since

g′1(t) =

{
1− 2t, t ∈ (0, 1]

−1− 2t, t ∈ (−1, 0]
, g′1(t + 2) = g′1(t),

the Þ rst derivative of g1(t) has jump discontinuities at t = 0,±1,±2, . . . , and g1(t) is said
to have Òcorners Ó at t = 0,±1,±2, . . . , which are apparent in the graphs of g1(t) and g′1(t)
shown in Figure 3.8

We consider next the second expansion, which is, strictly speaking, the Fourier series of
the periodic (odd) function g2(t), −∞ < t < ∞, which is formally deÞned as

g2(t) =

{
t− t2, t ∈ (0, 1]

t + t2, t ∈ (−1, 0]
, g2(t + 2) = g2(t).

The graph of g2(t) is shown in Figure 3.9. Since g2(t) is also continuous at all points, Dirich-
letÕs theorem tells us that

g2(t) =
8

π3

∞∑
r=1

sin(2r − 1)πt

(2r − 1)3

is true everywhere. Because each sine mode is bounded by the size of its coefÞ cient, the
partial sum (from a truncated Fourier series) approaches g2(t) as fast as the coefÞ cient tends

3.10. CONVERGENCE OF THE FOURIER SERIES 81

to 0. In this case, when k = 2r − 1 grows bigger (as more terms are added), the coefÞ cient
Bk → 0 as fast as 1/k3 → 0. Since 1/k3 goes to zero faster than 1/k2, we conclude that the
second expansion converges faster than the Þ rst expansionÑ the reason (to be formally shown
in Section 3.10.3) being that g2(t) has continuous Þ rst derivative, which is reß ected by the fact
that no corners appear in the graph of g2(t) in Figure 3.9. Mathematically,

g′2(t) =

{
1− 2t, t ∈ (0, 1]

1 + 2t, t ∈ (−1, 0]
, g′2(t + 2) = g′2(t),

and g′2(t) is indeed continuous everywhere.

Figure 3.9 The graphs of periodic (odd) g2(t) and g′2(t).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1 period of g
2
(t)

0

The derivative
of g

2
(t)

Since both g1(t) and g2(t) are everywhere continuous, their expansions converge to the
original functions at all points. However, this is no longer the case when we study the con-
vergence of the third expansion which is, strictly speaking, the Fourier series of the periodic
function g3(t), −∞ < t <∞, deÞ ned as

g3(t) = t− t2, t ∈ (−1, 1], g3(t + 2) = g3(t).

From the graph of g3(t) in Figure 3.10, we see that g3(t) has jump discontinuities at t =

±1,±3,±5, According to DirichletÕs theorem, while the third expansion still converges
to g3(t) at points of continuity, for every tα at which g3(tα) has a jump discontinuity, the
Fourier series converges to the average of its right- and left-hand limits. That is, at tα =

±1,±3,±5, . . . ,

g3 (t+α) + g3

(
t−α

)
2

= −1

3
− 4

π2

∞∑
k=1

(−1)k cos kπtα
k2

− 2

π

∞∑
k=1

(−1)k sin kπtα
k

.

Observe that for function g3(t), the average of the right- and left-hand limits is equal to the
constant −1 for all tα = ±1,±3,±5, Therefore, while the third expansion converges to
the original function g3(t) at all points of continuity, the same expansion converges to the value
of −1 at all points of jump discontinuity.

82 CHAPTER 3. THE FOURIER SERIES

Figure 3.10 The graphs of three periods of g3(t).

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

3 periods of g
3
(t)

0 1−1

* *

Normalized value at
jump discontinuities

3.10.2 Pointwise convergence—a local property

As remarked earlier, piecewise smooth functions satisfy Dirichlet conditions and we will study
the convergence of their Fourier series. Using the functions g1(t), g2(t), and g3(t) shown in
Figures 3.8, 3.9, and 3.10 as examples, we see that both Ò cornersÓ and Ò jump discontinuitiesÓ
are permitted in a piecewise smooth functions; in addition, as we have remarked earlier, a
piecewise smooth function is not required to be deÞn ed at the points of jump discontinuities.

In the analysis we shall make use of the following properties of the Riemann integral from
the theory of calculus:

1. Every continuous function f is bounded and Riemann integrable on [a, b].

2. Every piecewise continuous function g on [a, b] is integrable.

3. Let g and h be integrable functions on [a, b] and let c be a real number, then

(a) cg is integrable and
∫ b

a cg(t) dt = c
∫ b

a g(t) dt.

(b) g + h is integrable and
∫ b

a
[g(t) + h(t)] dt =

∫ b

a
g(t)dt +

∫ b

a
h(t)dt.

(c) gh is integrable on [a, b].

(d) g2 is integrable on [a, b].

(e) |g| is integrable on [a, b], and
∣∣∫ b

a g(t) dt
∣∣ ≤ ∫ b

a |g(t)| dt.

(f) |g|2 is integrable on [a, b].

(g) changing the value of function g for a Þ nite number of points does not change the
value of

∫ b

a g(t) dt.

We now proceed to prove that the Fourier series of a periodic piecewise smooth function
converges to the normalized function value at every point. (Recall that g is piecewise smooth
on [a, b] if both g and its derivative g′ are piecewise continuous on [a, b].) Although the
analysis can be carried out using either variable t (with period T) or variable θ = 2πt/T (with
period 2π) and the Fourier series can be expressed in a number of mathematically equivalent

3.10. CONVERGENCE OF THE FOURIER SERIES 83

forms, a function g in variable θ and a corresponding Fourier series expressed using complex
exponential modes would be most compact and convenient for the presentation here.

To begin the analysis, let g be an integrable function of period 2π, we denote its truncated
Fourier series of N =2n+1 terms by

g̃N(θ) =

n∑
k=−n

Ckejkθ,

and we obtain the coefÞ cients from formula (3.16), i.e.,

Ck =
1

2π

∫ π

−π

g(θ) e−jkθ dθ, −n ≤ k ≤ n.

In mathematical terms, our objective is to prove that for every θ� ∈ [−π, π],

lim
N→∞

[
g̃N(θ�)− g(θ�)

]
= 0

where g
(
θ�

)
denotes the redeÞ ned normalized function value at every point θ�, i.e.,

g
(
θ�

) def
=

g
(
θ+

�

)
+ g

(
θ−�

)
2

.

Note that if θ� is a point of continuity, we have g(θ+
�) = g(θ−�), and the normalized function

preserves the values of the original function at all points of continuity. Therefore, the formula
we use to change the value of the original function at points of jump discontinuity may be used
to redeÞn e the function value everywhereÑ it will not affect the values of the original function
at points of continuity.

To achieve our objective, we need the results from the following two lemmas.

Lemma 3.58 Let g(θ) be an integrable function of period 2π. Show that the partial sum of
the N =2n+1 terms from the truncated Fourier series of g(θ) can be expressed in the integral
form

(3.66) g̃N(θ) =
1

2π

∫ π

−π

g(θ + λ)
sin

(
n + 1

2

)
λ

sin λ
2

dλ,

or equivalently,

(3.67) g̃N(θ) =
1

2π

∫ π

−π

g(θ − λ)
sin

(
n + 1

2

)
λ

sin λ
2

dλ.

84 CHAPTER 3. THE FOURIER SERIES

Proof:

g̃N(θ) =

n∑
k=−n

Ckejkθ =
1

2π

n∑
k=−n

[∫ π

−π

g(τ) e−jkτ dτ

]
ejkθ (by deÞn ition of Ck)

=
1

2π

n∑
k=−n

[∫ π+θ

−π+θ

g(τ) e−jkτ dτ

]
ejkθ (∵ g(τ) has period 2π)

=
1

2π

n∑
k=−n

[∫ π

−π

g(θ + λ) e−jk(θ+λ) dλ

]
ejkθ (let τ = θ + λ)

=
1

2π

n∑
k=−n

[∫ π

−π

g(θ + λ) e−jk(θ+λ)ejkθ dλ

]

=
1

2π

n∑
k=−n

[∫ π

−π

g(θ + λ) e−jkλ dλ

]

=
1

2π

∫ π

−π

g(θ + λ)

[
n∑

k=−n

e−jkλ

]
dλ.

To obtain the integral form (3.66), we are now required to show that

(3.68)
n∑

k=−n

e−jkλ =
sin

(
n + 1

2

)
λ

sin λ
2

. (limit of the right side exists as λ → 0)

We note that the left side is a power series expressed in z = e−jλ, and we could make use of
the following result:(

z−
1
2 − z

1
2

) n∑
k=−n

zk =

n∑
k=−n

zk− 1
2 −

n∑
k=−n

zk+ 1
2 = z−n− 1

2 − zn+ 1
2 ,(3.69)

which allows us to express the power series

n∑
k=−n

zk =
z−n− 1

2 − zn+ 1
2

z−
1
2 − z

1
2

if z−
1
2 	= z

1
2 .

Letting z = e−jλ, −π ≤ λ ≤ π, we obtain the desired result:

n∑
k=−n

e−jkλ =
ej(n+ 1

2)λ − e−j(n+ 1
2)λ

ej λ
2 − e−j λ

2

=
sin

(
n + 1

2

)
λ

sin λ
2

. (limit is 2n + 1 as λ→ 0)

Note that we have used Euler�s identity, namely, ejα − e−jα = 2j sin α, in the last step.
To convert (3.66) to the equivalent integral form (3.67), we change variable λ in (3.66) to

µ = −λ, and we obtain

g̃N(θ) = − 1

2π

∫ −π

+π

g(θ − µ)
− sin

(
n + 1

2

)
µ

− sin µ
2

dµ (∵ µ = −λ, λ = −µ, dλ = −dµ)

=
1

2π

∫ +π

−π

g(θ − µ)
sin

(
n + 1

2

)
µ

sin µ
2

dµ

=
1

2π

∫ π

−π

g(θ − λ)
sin

(
n + 1

2

)
λ

sin λ
2

dλ. (change dummy variable µ back to λ)

�

3.10. CONVERGENCE OF THE FOURIER SERIES 85

Lemma 3.59 The value of the function g(θ) de� ned for any point θ = θ� can be expressed
as an integral consistent with the partial sum g̃N(θ) from Lemma 3.58. Such an expression is
speci�cally constructed as

g(θ�) =
1

2π

∫ π

−π

g(θ�)
sin

(
n + 1

2

)
λ

sin λ
2

dλ.

Proof: Since θ� is a parameter independent of λ, we are asked to prove

g(θ�) = g(θ�)

[
1

2π

∫ π

−π

sin
(
n + 1

2

)
λ

sin λ
2

dλ

]
,

which is equivalent to showing that∫ π

−π

sin
(
n + 1

2

)
λ

sin λ
2

dλ = 2π.

This result can be easily obtained if we integrate both sides of equation (3.68), i.e,∫ π

−π

sin
(
n + 1

2

)
λ

sin λ
2

dλ =

∫ π

−π

n∑
k=−n

e−jkλ dλ

=

∫ π

−π

[
1 +

n∑
k=1

(
e−jkλ + ejkλ

)]
dλ

=

∫ π

−π

1 dλ +

∫ π

−π

[
n∑

k=1

2 cos kλ

]
dλ (by Euler�s formula)

= 2π +

n∑
k=1

[∫ π

−π

2 coskλ dλ

]
(integrate term by term)

= 2π +

n∑
k=1

4 sinkπ

k

= 2π. (sin kπ = 0, 1 ≤ k ≤ n)

�

Using the integral representation of g̃N(θ�) and g(θ�) from the last two lemmas, we can
now prove the pointwise convergence theorem.

Theorem 3.60 If g(θ) is a piecewise smooth function of period 2π, its Fourier series converges
to the normalized function value g(θ�) = 1

2

[
g(θ+

�) + g(θ−�)
]

at every point θ�.

Proof: Our objective is to show that for every θ� ∈ [−π, π],

lim
N→∞

[
g̃N(θ�)− g(θ+

�) + g(θ−�)

2

]
= 0.

On substituting the integral forms from Lemmas 3.58 and 3.59 for g̃N(θ�) and g(θ�), we may

express 1
2

[
g̃N(θ�)− g(θ�)

]
in two forms:

1
2

[
g̃N(θ�)− g(θ�)

]
=

1

4π

∫ π

−π

[
g(θ� + λ)− g(θ�)

] sin
(
n + 1

2

)
λ

sin λ
2

dλ(3.70)

1
2

[
g̃N(θ�)− g(θ�)

]
=

1

4π

∫ π

−π

[
g(θ� − λ)− g(θ�)

] sin
(
n + 1

2

)
λ

sin λ
2

dλ.(3.71)

86 CHAPTER 3. THE FOURIER SERIES

We then obtain, on summing (3.70) and (3.71),

(3.72)

g̃N(θ�)− g(θ�) =
1

4π

∫ π

−π

{[
g(θ� + λ)− 2g(θ�) + g(θ� − λ)

] sin
(
n + 1

2

)
λ

sin λ
2

}
dλ

=
1

2π

∫ π

0

{[
g(θ� + λ)− 2g(θ�) + g(θ� − λ)

] sin
(
n + 1

2

)
λ

sin λ
2

}
dλ.

In the derivation above it is valid to express
∫ π

−π

{
F (λ)

}
dλ = 2

∫ π

0

{
F (λ)

}
dλ because the

integrand F (λ) on the right side of (3.72) is an even function, i.e., F (λ) = F (−λ) for λ ∈
[0, π]. Since g(θ�) = 1

2

[
g(θ+

�) + g(θ−�)
]

at any point θ�, we substitute this into both sides
of (3.72), and we obtain

g̃N(θ�)− g(θ+
�) + g(θ−�)

2

=
1

2π

∫ π

0

[
g(θ� + λ)− g(θ+

�)− g(θ−�) + g(θ� − λ)
] sin

(
n + 1

2

)
λ

sin λ
2

dλ.

=
1

2π

∫ π

0

[
g(θ� + λ)− g(θ+

�)
] sin

(
n + 1

2

)
λ

sin λ
2

dλ

+
1

2π

∫ π

0

[
g(θ� − λ)− g(θ−�)

]sin
(
n + 1

2

)
λ

sin λ
2

dλ.

(3.73)

To prove that the limit of the left side tends to zero as N = 2n + 1 → ∞, we must show
that both of the integrals on the right side tend to zero as n → ∞. We show next that the � rst
integral tends to zero. Because we can rewrite

I1 =
1

2π

∫ π

0

[
g(θ� + λ)− g(θ+

�)
] sin

(
n + 1

2

)
λ

sin λ
2

dλ

=
1

2π

∫ π

0

[
g(θ� + λ) − g(θ+

�)

λ

] [
λ

sin λ
2

]
sin

(
n + 1

2

)
λ dλ,

we shall let

U(λ) =
g(θ� + λ)− g(θ+

�)

λ
, V (λ) =

λ

sin λ
2

,

and our objective now is to show that G(λ) = U(λ)V (λ) is integrable on [0, π]. With this
result we can immediately apply the identity (3.65) from Example 3.57 (an application of
Riemann�s lemma) to obtain

lim
n→∞

1

π

∫ π

0

G(λ) sin
(
n + 1

2

)
λ dλ = 0

and it follows that the integral I1 tends to zero as n →∞.
Since the product of two integrable functions is integrable, we examine U(λ) and V (λ)

separately. We see that U(λ) is unde� ned at λ = 0; for U(λ) to be piecewise continuous (and
thus integrable on [0, π]), we need to show that it has a �n ite limit as λ → 0+. This is indeed
the case, because

lim
λ→0+

U(λ) = lim
λ→0+

g(θ� + λ) − g(θ+
�)

λ
= g′(θ+

�),

3.10. CONVERGENCE OF THE FOURIER SERIES 87

and we know that the piecewise smooth function g(θ) has a � nite one-sided derivative every-
where.

For V (λ) we encounter the same dif� culty at λ = 0, and we need to show that it has a
�n ite limit as λ → 0+. By L�H�ospital�s rule, we obtain

lim
λ→0

V (λ) = lim
λ→0

λ

sin λ
2

= lim
λ→0

2

cos λ
2

= 2,

so V (λ) is piecewise continuous and thus integrable on [0, π].
The second integral in (3.73) can be shown to tend to zero in a similar manner. With both

integrals on the right side of (3.73) tending to zero, we obtain the desired result for every
θ� ∈ [−π, π],

lim
N→∞

[
g̃N(θ�)− g(θ+

�) + g(θ−�)

2

]
= 0.

�

It is worth noting that we may use the same proof for the following theorem, where the
Fourier series may not converge at every point because we do not require g to be piecewise
smooth.

Theorem 3.61 If g(θ) is an integrable function of period 2π, its Fourier series converges to
1
2

[
g(θ+

�) + g(θ−�)
]

at any point θ� where g has both a right-sided and a left-sided derivative.

Corollary 3.62 If g(θ) is an integrable function of period 2π, its Fourier series converges to
g(θ�) at any point where g is differentiable.

Proof: If g is differentiable at θ�, then

(i) g is continuous at θ� and we have g(θ�) = g(θ+
�) = g(θ−�);

(ii) g satis�es Theorem 3.61, and its Fourier series converges to 1
2

[
g(θ+

�) + g(θ−�)
]
, which

must equal g(θ�) based on the result from (i).
�

3.10.3 The rate of convergence—a global property

Given a piecewise smooth function g(θ) of period 2π, we have shown that its Fourier series
converges at every point θ� ∈ [−π, π] in Theorem 3.60. The pointwise convergence of the
Fourier series is a local property, because the number of terms required for a partial sum to get
closed to a limit at a particular point varies with the location of the point θ��i.e., the local rate
of convergence varies from point to point, which is the cause of the Gibbs phenomenon to be
discussed in the next subsection. In this subsection we study the convergence of the Fourier
series in the global sense; that is, we examine how fast the coef� cients Ak and Bk tend to
zero as k → ∞�th is provides a way to measure how fast a converging series tends to its
limit knowing only that all basis functions cos kθ and sin kθ are bounded by unity in size. As
demonstrated by Example 3.14 in Sections 3.4 and 3.10.1, it is possible to obtain more than
one Fourier series expansion when a time-limited function is extended into different periodic
functions (even, odd, or neither), and what affected the convergence rate is the continuity of
the nth derivative (n ≥ 0) of the extended function. This mathematical connection can now be
formally established as shown below.

88 CHAPTER 3. THE FOURIER SERIES

Let g(θ) be a piecewise smooth function of period 2π (whether g(θ) is given or it results
from a periodic extension does not affect our analysis.) We consider the formal Fourier series
expansion of g(θ) given by

g̃(θ) =
A0

2
+

∞∑
k=1

Ak cos kθ + Bk sin kθ,

with coef�cien ts from (3.14) and (3.15), namely,

Ak =
1

π

∫ π

−π

g(θ) cos kθ dθ, k = 0, 1, 2, . . .

Bk =
1

π

∫ π

−π

g(θ) sin kθ dθ, k = 1, 2,

Since both g(θ) and g′(θ) are presumed to be piecewise continuous, we obtain each coef-
�cien t by evaluating the integral on the right side overM subintervals (pieces)

Ak =
1

π

M∑
m=1

∫ θm

θm−1

g(θ) cos kθ dθ, Bk =
1

π

M∑
m=1

∫ θm

θm−1

g(θ) sin kθ dθ,

where θ0 = −π, θM = π, and the other θm�s mark the ends of each subinterval (piece) where
the potential jump discontinuities in the function or in its derivative occur. Note that g(θ) has
corners wherever g′(θ) has jump discontinuities.

To apply the technique of integration by parts to the integral
∫ b

a
g(θ) cos kθ dθ, we let

u = g(θ), dv = cos kθ dθ, and we obtain∫ b

a

g(θ) cos kθ dθ = uv
∣∣b
a
− vdu =

1

k
g(θ) sin kθ

∣∣∣b
a
− 1

k

∫ b

a

sin kθ g′(θ) dθ.

Using the above result with a = θm−1 and b = θm, we obtain

Ak =

[
1

kπ

M∑
m=1

g(θ) sin kθ
∣∣∣θm

θm−1

]
− 1

kπ

M∑
m=1

∫ θm

θm−1

g′(θ) sin kθ dθ.

By expanding the sum of the integrated terms, we have (for an example withM = 3)

1

kπ

3∑
m=1

g(θ) sin kθ
∣∣∣θm

θm−1

=
1

kπ

[
g(θ−1) sin kθ1 − g(θ+

0) sin kθ0

+ g(θ−2) sin kθ2 − g(θ+
1) sin kθ1

+ g(θ−3) sinkθ3 − g(θ+
2) sin kθ2

]
=

 0 if g(θ) is everywhere continuous,
αk

k
≤ c

k
if g(θ) has jump discontinuities,

where c is a constant independent of k, because g(θ+
m) and g(θ−m) do not vary with k, and

sin kθm is bounded by 1 in size. Note that g(θ−3) = g(π−), and g(θ+
0) = g(−π+) = g(π+)

because g(θ) has a period of 2π. When g(θ) is everywhere continuous, we have g(θ−3) =

g(θ+
0) and g

(
θ−m) = g

(
θ+

m) at all other end points, so the six integrated terms sum to zero. We

3.10. CONVERGENCE OF THE FOURIER SERIES 89

can then repeat the �in tegration by parts� process to evaluate the new integral that remains and
obtain

Ak = − 1

kπ

M∑
m=1

∫ θm

θm−1

g′(θ) sin kθ dθ

=

[
1

k2π

M∑
m=1

g′(θ) cos kθ
∣∣∣θm

θm−1

]
− 1

k2π

M∑
m=1

∫ θm

θm−1

g′′(θ) cos kθ dθ.

By the same argument we will again have the integrated terms summed to zero if the � rst
derivative g′(θ) is everywhere continuous, and we are left with a new integral which now in-
volves factor 1/k2 and g′′(θ) in the integrand. This process can be repeated until the integrated
terms involving the factor 1/kn+1 and the nth derivative g(n)(θ) cannot cancel out because
g(n)(θ) is discontinuous somewhere. A summary of our � ndings follows.

If g(θ) has jump discontinuities, we expect the coef� cients Ak to be of order 1/k, because
the integrated terms involving the factor 1/k do not cancel out in the analysis. As a result, as
k →∞, the coef�cien ts Ak approach zero at a rate proportional to 1/k. On the other hand, if
g(θ) is everywhere continuous, then the coef� cients Ak tend to zero at least as fast as 1/k2.
If, in addition, the � rst derivative g′(θ) is discontinuous somewhere, then Ak�s tend to zero at
a rate proportional to 1/k2.

In general, if piecewise smooth g(θ) and its �r st n− 1 derivatives are everywhere continu-
ous, then as k →∞, the coef�cients Ak tend to zero at least as fast as 1/kn+1. If, in addition,
the nth derivative is discontinuous somewhere, then the Ak�s tend to zero at a rate proportional
to 1/kn+1. By essentially identical analysis the preceding statements are true for coef�cien ts
Bk.

Now that we complete the analysis, it would be timely and useful to revisit Example 3.14
in Section 3.10.1, in which we examined and compared the different convergence rates of three
Fourier series.

3.10.4 The Gibbs phenomenon

We shall study the Gibbs phenomenon using Example 3.53 from Section 3.9.4, in which we
have shown that for the periodic � square wave� function

g(θ) =

{
1, 0 < θ ≤ π

−1, −π < θ ≤ 0
, g(θ + 2π) = g(θ),

the partial sum of the � rst N nonzero terms of its Fourier series is given by

(3.74) g̃N(θ) =
4

π

[
sin θ +

sin 3θ

3
+ · · ·+ sin(2N − 1)θ

2N − 1

]
=

4

π

N∑
k=1

sin(2k − 1)θ

2k − 1
.

Observe that g(θ) has jump discontinuities of size 2 at θ = 0,±π,±2π, . . . , and that the
graphs of g̃5(θ), g̃7(θ), g̃9(θ), and g̃11(θ) in Figure 3.11 show undying ripples moving toward
(and staying) at these discontinuities. This peculiar effect is known as the Gibbs phenomenon
which we can neither reduce nor eliminate by including more terms from the Fourier series,
because it is caused by the nonuniform pointwise convergence of the (in� nite) Fourier series
near the jump discontinuities.

90 CHAPTER 3. THE FOURIER SERIES

Figure 3.11 Gibbs phenomenon and � nite Fourier series of the square wave.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

2N−1 = 9

2N−1 = 13

2N−1 = 17

2N−1 = 21

Since the sizes of the ripples are determined by the local maxima and minima (correspond-
ing to the peaks and valleys in the graph) of g̃N(θ), we proceed to �nd the local maxima/minima
by � rst solving the nonlinear equation g̃′

N
(θ) = 0, where

g̃′N(θ) =
4

π

N∑
k=1

cos(2k − 1)θ =
4

π

[
1

sin θ

N∑
k=1

sin θ cos(2k − 1)θ

]

=
4

π

[
1

sin θ

N∑
k=1

sin(2k)θ − sin(2k − 2)θ

2

]

=
2

π

sin(2N)θ

sin θ
.

(3.75)

On solving g̃′
N
(θ) = 0 within the half period (0, π) we obtain zeros at θr = rπ/(2N), r =

1, 2, . . . , 2N − 1. To estimate the local maximum or minimum values of g̃N(θ) at the θr�s as
N →∞, we may express it as an integral obtained directly from its derivative g̃′N(θ) according
to the Fundamental Theorem of Calculus:

(3.76) g̃N(θ) = g̃N(θ)− g̃N(0) =

∫ θ

0

g̃′
N
(λ) dλ =

2

π

∫ θ

0

sin(2N)λ

sin λ
dλ.

3.10. CONVERGENCE OF THE FOURIER SERIES 91

At θ =
rπ

2N
, r = 1, 2, . . . , 2N − 1, we have

g̃N

(rπ

2N

)
=

2

π

∫ rπ/(2N)

0

sin(2N)λ

sin λ
dλ

=
2

π

∫ rπ

0

sin µ

sin
(

µ
2N

) 1

2N
dµ (change variable: µ = 2Nλ)

=
2

π

∫ rπ

0

sin µ

µ

µ
2N

sin
(

µ
2N

) dµ

=
2

π

∫ rπ

0

sin λ

λ

[
sin

(
λ

2N

)
λ

2N

]−1

dλ. (change µ to λ)

(3.77)

As N →∞ we have, by L�H �ospital�s rule,

lim
N→∞

sin
(

λ
2N

)
λ

2N

= lim
ν→0

sin ν

ν
= lim

ν→0

cos ν

1
= 1,

which allows us to obtain the limit value of (3.77):

(3.78) lim
N→∞

g̃N

(rπ

2N

)
= lim

ν→0

2

π

∫ rπ

0

sinλ

λ

[
sin ν

ν

]−1

dλ =
2

π

∫ rπ

0

sin λ

λ
dλ,

where the numerical values of the sine-integral function,

(3.79) Si (θ)
def
=

∫ θ

0

sinλ

λ
dλ,

can be found in standard mathematical tables. At θ1 = π/(2N) for N = 100, we have the � rst
local maximum

g̃100

(
θ1

)
= g̃100

(
0.016

) ≈ 2

π
Si (π) ≈ 2

π

(
1.8516

)
= 1.1788 > g

(
θ1

)
.

Since g(θ1) = 1 and the jump size is 2 at the discontinuity at θ = 0, the size of the � overshoot�
relative to the jump is measured by (1.1788−1)/2 ≈ 9%, which is based on the limiting value
so it can not be further reduced or eliminated by letting N approach∞. At θ2 = 2π/(2N) for
N = 100, we have the next local minimum

g̃100

(
θ2

)
= g̃100

(
0.0314

) ≈ 2

π
Si (2π) ≈ 2

π

(
1.4182

)
= 0.90285 < g

(
θ2

)
.

Since g(θ2) = 1 and the jumpsize is 2 at the nearest discontinuity at θ = 0, the size of the
�unders hoot� relative to the jump is measured by (1 − 0.90285)/2 ≈ 5%. Graphically, the
overshoots and undershoots of g̃N(θ) are compressed/pinched into a spike (of the same mag-
nitude) at the nearest jump as N → ∞. Mathematically, the pointwise convergence ensured
by Theorem 3.1 is not compromised because the nonin� nitesimal overshoot occurs over an
interval whose length approaches zero as N →∞.

3.10.5 The Dirichlet kernel perspective

In this subsection we shall try to understand the Gibbs phenomenon from a perspective which
can be applied to a wide range of functions, including but not limited to the square wave

92 CHAPTER 3. THE FOURIER SERIES

function studied exclusively in the last subsection. We begin by recalling Lemma 3.58, where
we proved that given an integrable function g(θ) of period 2π, we may express the N =(2n+1)-
term partial sum of its Fourier series in the integral form

(3.80) g̃N(θ) =
1

2π

∫ π

−π

g(θ − λ)
sin

(
n + 1

2

)
λ

sin λ
2

dλ.

By de�n ing the Dirichlet integrating kernel

(3.81) Dn(λ) ≡
n∑

k=−n

e−jkλ =
sin

(
n + 1

2

)
λ

sin λ
2

,
(
recall formula (3.68)

)
we may express (3.80) as

(3.82) g̃N(θ) =
1

2π

∫ π

−π

g(θ − λ)Dn(λ) dλ,

where both g(θ) and Dn(λ) are periodic with period 2π�th is property combined with the
change of variable allows us to derive one more useful expression for g̃N(θ):

g̃N(θ) =
1

2π

∫ π

−π

g(θ − λ)Dn(λ) dλ

=
1

2π

∫ θ+π

θ−π

g(µ)Dn(θ − µ) dµ (change variable: µ = θ − λ)

=
1

2π

∫ π

−π

g(µ)Dn(θ − µ) dµ. (∵ g and Dn are periodic)

We have thus proved that

(3.83) g̃N(θ) =
1

2π

∫ π

−π

g(θ − λ)Dn(λ) dλ =
1

2π

∫ π

−π

g(λ)Dn(θ − λ) dλ.

The Dirichlet kernel is an important tool in mathematical analysis and applications�we shall
discuss � rst its alternate forms and main properties before we use it to explain the Gibbs effect.

1. The Dirichlet kernel in common use may be de� ned by any one of the following formu-
las:

(3.84) Dn(λ) ≡
n∑

k=−n

e−jkλ =
sin

(
n + 1

2

)
λ

sin λ
2

.

When the same de�n itions are expressed in terms of N = 2n+1 instead of n, we shall
use a different notation to avoid confusion:

(3.85) D(N, λ) ≡
N−1

2∑
k=−N−1

2

e−jkλ =
sin

(
0.5Nλ

)
sin

(
0.5λ

) .

2. The Dirichlet kernel Dn(λ) is periodic and it is an even function as shown by the graphs
for n = 8, 12, 16, 20 in Figure 3.12 below. Over the period (−π, π) the function
Dn(λ) has zeros at λ±r = ±2rπ/(2n+1) for r = 1, 2, . . . , n. The area between
λ1 = 2π/(2n+1) and λ−1 = −2π/(2n+1) is called the �m ainlobe� of the kernel;
the � sidelobes� are areas between adjacent zeros on each side The graph of Dn(λ) for
n = 8 is shown with more details in Figure 3.13.

3.10. CONVERGENCE OF THE FOURIER SERIES 93

Figure 3.12 The Dirichlet kernel Dn(λ) for n = 8, 12, 16, 20.

−8 −6 −4 −2 0 2 4 6 8
−10

0

10

20

30

40

50

−8 −6 −4 −2 0 2 4 6 8
−10

0

10

20

30

40

50

n = 8

n = 12

−8 −6 −4 −2 0 2 4 6 8
−10

0

10

20

30

40

50

−8 −6 −4 −2 0 2 4 6 8
−10

0

10

20

30

40

50

n = 16

n = 20

Figure 3.13 One period of the Dirichlet kernel Dn(λ) for n=8.

−3 −2 −1 0 1 2 3
−5

−3

−1

1

3

5

7

9

11

13

15

17

19

λ
1
 = 2π/(2n+1)λ

−1

Height of the mainlobe
D

n
(0) = 2n+1

One period of the
Dirichlet kernel
D

n
(λ) for n = 8

The mainlobe area

λ
−8 λ

8

0

Positive sidelobes

Negative sidelobes

94 CHAPTER 3. THE FOURIER SERIES

3. The height of the mainlobe is given by max Dn(λ) = Dn(0)=2n+1, or equivalently,
D(N, 0)=N . There is also a local maximum or minimum between every pair of adja-
cent zeros, which occurs approximately at the midpoint
λ = ±(2r+1)π/(2n+1). The peak of the highest sidelobe (in absolute value) oc-
curs at λ = ±3π/(2n+1) and its value is approximately (2n + 1)/(1.5π), which is
obtained by taking the absolute value of the limit of Dn(λ) at λ = ±3π/(2n + 1):

lim
n→∞

Dn

(±3π

2n + 1

)
= lim

n→∞
sin(±1.5π)

sin

(±1.5π

2n + 1

) ≈ ∓1(±1.5π

2n + 1

) =
−(2n + 1)

1.5π
,

where we have made use of the approximation sin θ ≈ θ as θ tends to 0.

4. The ratio of the highest sidelobe to the mainlobe is therefore 1/1.5π. When this value
represents the signal-to-noise ratio in signal � ltering applications, it is customarily ex-
pressed in decibels (tenths of a bel), abbreviated dB, and it equals−13.5 dB = 20 log10(1/1.5π)

according to the de�n ition which equates ±20 dB to a ten-fold increase or decrease in
the peak values:

decibel units ≡ 20 log10

∣∣ratio
∣∣.

Observe that the height (in absolute value) of the sidelobes is decreasing on either side,
and each negative sidelobe is followed by a positive sidelobe. At each endpoint of the
period from −π to π, we have Dn(±π) = −1 (if n is odd) or 1 (if n is even).

5. Recall that in the proof of Lemma 3.59 we have shown that the total signed area

(3.86)
∫ π

−π

Dn (λ) dλ =

∫ π

−π

D(N, λ) dλ = 2π.

Observe from the graphs that the total area represented by the sidelobes must be negative,
because each negative area is larger than the next positive area. From this we may infer
that the area of the mainlobe is greater than 2π.

6. Because of the symmetry Dn(λ) = Dn(−λ), the graph of Dn(θ� − λ) can be obtained
by centering the graph of Dn(λ) at θ�.

We may now apply the Dirichlet kernel to the example from Section 3.10.4: recall that g(θ) is
the square wave function with g(θ) = 1 over (0, π] and g(θ) = −1 over (−π, 0]. Since 100
terms of nonzero B2k+1 correspond to n = 200 and N = 2n + 1 = 401 (including terms with
zero Ak and zero B2k coef�cien ts), we can now use the Dirichlet kernel D200(λ) to evaluate
the approximating partial sum g̃401(θ) at the jump at θ = 0:

g̃401(0) =
1

2π

∫ π

−π

g(λ)D200(0− λ) dλ, where Dn(−λ) = Dn(λ),

=
1

2π

[∫ π

0

(+1)D200(λ) dλ +

∫ 0

−π

(−1)D200(λ) dλ

]
= 0,

3.10. CONVERGENCE OF THE FOURIER SERIES 95

which is the (expected) midpoint between g(0+) = 1 and g(0−) =−1; the same formula can
also be used to evaluate g̃401(θ) in the neighborhood (0, ε] of the jump at θ = 0:

g̃401(ε) =
1

2π

∫ π

−π

g(λ)D200(ε− λ) dλ

=
1

2π

[∫ π

0

D200(ε− λ) dλ −
∫ 0

−π

D200(ε− λ) dλ

]
≈ 1

2π

∫ ε

−ε

D200(λ) dλ.

Now, if ε ≈ λ1 = 2π/401 ≈ 0.016 (as before), we know g̃401(0.016) > 1 because the area
inside the mainlobe must be greater than 2π so that the total signed area equals 2π. Since λ1 =

2π/(2n+1) tends to the origin as n→∞, the mainlobe becomes taller and narrower, whereas
its area remains greater than 2π. This explains the lack of disappearance of the overshoot at the
jump as n → ∞. To obtain the numerical values for the areas of the mainlobe and sidelobes,
we shall again make use of the Si (λ) function, which is related to the integral of the Dirichlet
kernel D(N, λ) as shown in the following lemma:

Lemma 3.63

(3.87) lim
N→∞

1

2π

∫ 2rπ/N

−2rπ/N

D (N, λ) dλ =
2

π
Si (rπ).

Proof:

lim
N→∞

1

2π

∫ 2rπ/N

−2rπ/N

D (N, λ) dλ = lim
N→∞

1

π

∫ 2rπ/N

0

D (N, λ) dλ

= lim
N→∞

1

π

∫ 2rπ/N

0

sin
(
0.5Nλ

)
sin

(
0.5λ

) dλ

= lim
N→∞

2

π

∫ rπ

0

sin µ

N sin µ
N

dµ (let µ = 0.5Nλ)

=
2

π

∫ rπ

0

sinµ

N
(

µ
N

) dµ (∵ sin θ → θ as θ → 0)

=
2

π

∫ rπ

0

sin µ

µ
dµ

=
2

π
Si (rπ).

�

3.10.6 Eliminating the Gibbs effect by the Cesaro sum

The Gibbs effect can be eliminated if we use the �ar ithmetic mean� of the successive partial
sums from the Fourier series of g(θ) to smooth the approximation. That is, instead of using the
partial sum g̃N(θ), we take the average of all partial sums from g̃1(θ) to g̃N(θ) in succession,
the result is called the �Cesar o sum,� which is formally de�n ed as

(3.88) f̃N(θ) ≡ 1

n + 1

n∑
�=0

g̃2�+1(θ) =
1

n + 1

(
g̃1(θ) + g̃3(θ) + · · ·+ g̃2n+1(θ)

)
,

96 CHAPTER 3. THE FOURIER SERIES

where N =2n+1, and g̃2�+1(θ)=
∑�

k=−�C�e
j�θ . We assume that g(θ) is discontinuous with

�nite jumps as before. Our objective is to show that the Cesaro sum f̃N(θ) does not exhibit the
Gibbs effect suffered by the partial sum g̃N(θ).

To relate the Cesaro sum f̃N(θ) directly to the general truncated Fourier series g̃N(θ) =∑n
k=−nCkejkθ , we express

f̃N(θ) ≡ 1

n + 1

n∑
�=0

g̃2�+1(θ)

=
1

n + 1

[(
n + 1

)
C0 + nC−1e

−jθ + nC1e
jθ + · · ·+ Cnejnθ

]
= C0 +

n∑
�=1

n + 1− �

n + 1

(
C−�e

−j�θ + Cj�θ
�

)
=

n∑
k=−n

(
αkCk

)
ejkθ ,

(3.89)

where each Fourier coef� cient Ck in the partial sum g̃N(θ) has been modi� ed by a factor αk

de� ned by

(3.90) αk =
n + 1− |k|

n + 1
, −n ≤ k ≤ n.

Observe that the αk factors are always positive and their values decay linearly from α0 =1 to

αn =
1

n + 1
as |k| increases from 0 to n.

To relate the Cesaro sum f̃N(θ) directly to the original function g(θ), we shall prove the
following lemma:

Lemma 3.64 The Cesaro sums of an integrable function g(θ) of period 2π can be expressed
in the integral form

(3.91) f̃N(θ) =
1

2π

∫ π

−π

g(θ − λ)Fn(λ) dλ,

where Fn(λ) is called the Fejer kernel, which is the arithmetic mean of the n+1 successive
Dirichlet kernels:

(3.92) Fn(λ) =
1

n + 1

n∑
�=0

D�(λ) =
sin2(n + 1)λ

2

(n + 1) sin2 λ
2

.

3.10. CONVERGENCE OF THE FOURIER SERIES 97

Proof:

f̃N(θ) ≡ 1

n + 1

n∑
�=0

g̃2�+1(θ)

=
1

n + 1

n∑
�=0

[
1

2π

∫ π

−π

g(θ − λ)D�(λ) dλ

]
(by Lemma 3.58)

=
1

2π

∫ π

−π

g(θ − λ)

[
1

n + 1

n∑
�=0

D�(λ)

]
dλ

=
1

2π

∫ π

−π

g(θ − λ)

[
n∑

�=0

sin
(
� + 1

2

)
λ

(n + 1) sin λ
2

]
dλ

(
by de�n ition of D�(λ)

)
=

1

2π

∫ π

−π

g(θ − λ)

[
1

(n + 1) sin λ
2

n+1∑
�=1

sin
(
2�− 1

)λ

2

]
dλ

=
1

2π

∫ π

−π

g(θ − λ)

[
sin2(n + 1)λ

2

(n + 1) sin2 λ
2

]
dλ.

(
by result from Example 1.4

)
=

1

2π

∫ π

−π

g(θ − λ)Fn(λ) dλ.

�

The Fejer kernel Fn(λ) is periodic with period 2π (one period is shown in Figure 3.14),
and it has the following properties:

Property 1. For every n, we have
∣∣Fn(λ)

∣∣ = Fn(λ) ≥ 0 for every λ.

Property 2. Fn(λ) = 0 for λ = ±2rπ/(n + 1), where 1 ≤ r ≤ n. At λ = 0, we have

(3.93) Fn(0) =
1

n + 1

n∑
�=0

D�(0) =
1

n + 1

n∑
�=0

(
2� + 1

)
= n + 1.

Property 3. Because the signed area of the Dirichlet kernel D�(λ) is 2π for every �, we im-
mediately have

(3.94)
∫ π

−π

∣∣Fn (λ)
∣∣ dλ =

∫ π

−π

Fn (λ) dλ =
1

n + 1

n∑
�=0

∫ π

−π

D� (λ) dλ = 2π

for every n. By contrast
∣∣Dn(λ)

∣∣ 	= Dn(λ), and∫ π

−π

∣∣Dn(λ)
∣∣ dλ > 2π.

Theorem 3.65 The Cesaro sums of an integrable function g of period 2π are bounded by the
maximum value of g. That is, if |g(θ)| ≤ M for every θ, then

∣∣f̃N(θ)
∣∣ =

∣∣∣∣ 1

2π

∫ π

−π

g(θ − λ)Fn(λ) dλ

∣∣∣∣ ≤M.

98 CHAPTER 3. THE FOURIER SERIES

Figure 3.14 One period of the Fejer kernel Fn(λ) for n = 8.

−3 −2 −1 0 1 2 3
−5

−3

−1

1

3

5

7

9

11

13

15

17

19

Height of the mainlobe
F

n
(0) = n+1

One period of
the Fejer kernel
F

n
(λ) for n = 8.

The mainlobe area

0

λ
1
 = 2π/(n+1)λ

−1

Note: The Fejer kernel does not have negative sidelobes.

Proof:

∣∣f̃N(θ)
∣∣ =

∣∣∣∣ 1

2π

∫ π

−π

g(θ − λ)Fn(λ) dλ

∣∣∣∣ (by Lemma 3.64)

≤ 1

2π

∫ π

−π

∣∣g(θ − λ)
∣∣ ∣∣Fn(λ)

∣∣ dλ

≤ M

2π

∫ π

−π

∣∣Fn(λ)
∣∣ dλ

= M.
(
by property 3 of Fn(λ)

)
�

Because for every N =2n+1, the Cesaro sum f̃N(θ) is bounded by the maximum value of
g(θ) according to Theorem 3.65, it cannot overshoot the function and the Gibbs phenomenon
will not occur with Cesaro sums. (There is no undershoot because the Fejer kernel has no
negative sidelobes.)

As illustrated in Figure 3.15, the computed Cesaro sums of the square wave converge with-
out suffering from the Gibbs effect. As indicated inside each plot in Figure 3.15, the same
result is obtained by either modifying the Fourier series coef� cient Ck or � nding the average
of the indicated number of partial sums. For example, in the � rst plot, the seven partial sums
used would be g̃1(θ), g̃3(θ), g̃5(θ), . . . , g̃13(θ). Because the Fourier series of the square wave
has only nonzero odd-indexed sine terms, g̃1(θ) involves one nonzero sine term, g̃3(θ) involves
two nonzero sine terms, and the last partial sum g̃13(θ) involves seven nonzero sine terms with
the highest index being 13.

3.10. CONVERGENCE OF THE FOURIER SERIES 99

Figure 3.15 Illustrating the convergence of the Cesaro sums of the square wave.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

 Cesaro sums converge without Gibbs phenomenon

up to C±13

up to C±17

up to C±51

up to C±101

(The average of 7 partial sums)

(The average of 9 partial sums)

(The average of 26 partial sums)

(The average of 51 partial sums)

3.10.7 Reducing the Gibbs effect by Lanczos smoothing

The Lanczos method smooths the partial sum g̃N(θ) at each θ by integration instead of sum-
mation. That is, we replace the partial sum by the averaged value computed by the de� nite
integral

(3.95) h̃N(θ) =
1

2τ

∫ θ+τ

θ−τ

g̃N(λ) dλ,

where τ = π/n, and the interval centered at θ has length 2τ , which is the period of the last
term e±jnθ = cosnθ ± j sin nθ in the unmodi� ed partial sum

g̃N(θ) =

n∑
k=−n

Ck ejkθ.

100 CHAPTER 3. THE FOURIER SERIES

It was observed by Lanczos that 2τ = 2π/n approximates the period of the ripples produced
by the Gibbs effect. By carrying out the integration, we obtain

h̃N(θ) =
1

2τ

∫ θ+τ

θ−τ

g̃N(λ) dλ =
1

2τ

∫ θ+τ

θ−τ

n∑
k=−n

Ck ejkλ dλ

=
1

2τ

n∑
k=−n

Ck

∫ θ+τ

θ−τ

ejkλ dλ

=

n∑
k=−n

Ck

[
ejk(θ+τ) − ejk(θ−τ)

2jkτ

]

=

n∑
k=−n

Ck ejkθ

[
sin(kτ)

kτ

]
(by Euler�s formula)

=

n∑
k=−n

[
Ck σk

]
ejkθ,

(3.96)

which shows the effect on the Fourier coef� cient: each Ck is modi� ed by the Lanczos sigma
factor

(3.97) σk ≡ sin(kπ/n)

kπ/n
.

The convergence of the Fourier series after its coef� cients are modi� ed by the Lanczos
sigma factor is illustrated in Figure 3.16.

3.10.8 The modification of Fourier series coefficients

The truncation of a Fourier series and the modi� cation of its coef� cients can both be under-
stood as the result of applying a spectral (or frequency-domain) window (in contrast to the
time-domain window treated in Chapter 8) to the Fourier coef� cients of

g̃∞(θ) =
∞∑

k=−∞
Ckejkθ.

The spectral window used to obtain the partial sum g̃2n+1(θ) is given by

(3.98) dk =

{
1, for − n ≤ k ≤ n ;

0, otherwise.

The truncated spectrum is the pointwise product of the two sequences {Ck} and {dk}, which
results in

g̃2n+1(θ) =

∞∑
k=−∞

(
dkCk

)
ejkθ =

n∑
k=−n

Ckejkθ .

Since dk�s are interpreted as the Fourier series coef� cients of the window function w(θ), using
the result from (3.81) we have

w(θ) =

∞∑
k=−∞

dkejkθ =

n∑
k=−n

ejkθ =

n∑
k=−n

e−jkθ =
sin

(
n + 1

2

)
θ

sin θ
2

= Dn(θ).

3.10. CONVERGENCE OF THE FOURIER SERIES 101

Figure 3.16 Fourier series with coef� cients modi� ed by the Lanzcos sigma factor.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

Fourier series with C
k
 modified by the Lanczos sigma factor

up to C±13

up to C±17

up to C±51

up to C±101

Following Lemma 3.58, we have

g̃2n+1(θ) =
1

2π

∫ π

−π

g(θ − λ)Dn(λ) dλ,

where the right side de� nes the periodic convolution of the signal function g(θ) and the window
function w(θ). (The subject of convolution is formally treated in Chapter 6. Readers are
referred to Section 6.4 for discussion on periodic convolution and Fourier series.)

The spectral window de� ned by nonzero dk = 1 for −n ≤ k ≤ n is called the N -point
(N =2n+1) rectangular frequency-domain window for obvious reason (see Figure 3.17). Be-
cause its corresponding window function in the time domain is the Dirichlet kernel Dn(θ), the
truncation of the Fourier expansion (of a function with jump discontinuities) by a rectangular
spectral window causes the Gibbs effect as explained in Section 3.10.5.

Following (3.90), the spectral window corresponding to the Fejer kernel is given by

(3.99) αk =


n + 1− |k|

n + 1
, for − n ≤ k ≤ n ;

0, otherwise.

The N nonzero αk�s de� ne an N -point (N =2n+1) triangular frequency-domain window (see
Figure 3.17). Using the result from (3.91), the modi� ed partial sum f̃2n+1(θ) can be expressed
as the periodic convolution of the signal function g(θ) and the window function w(θ) de� ned
by the Fejer kernel Fn(θ). That is,

f̃2n+1(θ) =
1

2π

∫ π

−π

g(θ − λ)Fn(λ) dλ.

102 CHAPTER 3. THE FOURIER SERIES

Figure 3.17 The three N -point frequency-domain windows for N = 2n+1=11.

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

d
k
 = 1

f
k
 = (n+1−|k|)/(n+1)

σ
k
 = sin(kπ/n)/(kπ/n)

Following (3.97), the spectral window for Lanczos smoothing is de� ned by the sigma fac-
tors

(3.100) σk =

{
sin(kπ/n)
(kπ/n) , for − n ≤ k ≤ n ;

0, otherwise.

The graph of the Lanczos window for N = 2n + 1 = 11 is also given in Figure 3.17. Our
analysis in Sections 3.10.6 and 3.10.7 shows that the Gibbs effect can be eliminated or reduced
by applying the two tapered frequency-domain windows.

3.11 Accounting for Aliased Frequencies in DFT

We now provide the mathematical argument behind our prior discussion on �al iasing� in Sec-
tions 2.2 and 2.3. Recall that the DFT coef� cients are de�ned by formula (2.7), which is
restated below for easy reference.

(3.101) Xr =
1

N

N−1∑
�=0

g�ω
−r�
N , ωN

def
= ej2π/N , r = 0, 1, . . . , N − 1,

where g� = g(��t), with�t = T/N , are the N equally spaced samples of g(t) over the period
[0, T). To link the DFT coef� cients Xr to the complex Fourier series coef� cients of g(t), we
simply evaluate the Fourier series of g(t) for its sample values. That is, we evaluate

g(t) =

∞∑
k=−∞

Ck ej2πkt/T

3.11. ACCOUNTING FOR ALIASED FREQUENCIES IN DFT 103

at t = ��t = �T/N , and we obtain

(3.102) g� =
∞∑

k=−∞
Ckej2πk�/N =

∞∑
k=−∞

Ckωk�
N

, 0 ≤ � ≤ N − 1.

Using the right-hand side of Equation (3.102) to replace g� in Equation (3.101), we obtain

Xr =
1

N

N−1∑
�=0

[∞∑
k=−∞

Ckωk�
N

]
ω−r�

N , for r = 0, 1, . . . , N − 1

=
1

N

N−1∑
�=0

∞∑
k=−∞

Ckω
(k−r)�
N

=

∞∑
k=−∞

Ck

[
1

N

N−1∑
�=0

ω
(k−r)�
N

]
.

To further simplify the result, we apply the properties of ωN to show that

Ck

[
1

N

N−1∑
�=0

ω
(k−r)�
N

]
=

{
Cr+mN , if k = r + mN,

0, if k 	= r + mN.

In the � rst case k = r + mN , we have (k − r) = mN ; hence, ω
(k−r)�
N =

(
ωN

N

)m�
= 1 for

every ��th e sum of the N terms is N , and the result given above follows immediately. In the
second case k 	= r + mN , we have (k − r) = q 	= mN . Therefore ωq

N 	= 1, and we can sum
the geometric series of ωq

N , which results in zero as shown below.

N−1∑
�=0

ω
(k−r)�
N =

N−1∑
�=0

(
ωq

N

)�
=

1− (
ωq

N

)N

1− ωq
N

=
1− (

ωN
N

)q

1− ωq
N

= 0. (∵ ωN

N
= 1)

We thus obtain

Xr =

∞∑
m=−∞

Cr+mN , r = 0, 1, . . . , N − 1,

which reveals how the frequencies aliased into the Nyquist interval by the sampling process are
accounted for in the resulting DFT coef�cients . It is interesting to note that the contributions
from the aliased frequencies effectively make the DFT coef� cients a periodic sequence with
period N , because Xr and Xr+kN (for every k) are represented by the sum of the same set of
Fourier series coef� cients.

To complete the story, let g̃(t) denote the function reconstructed from the N = 2n+1 DFT
coef�cients , and we express

g̃(t) =
Ã0

2
+

n∑
r=1

Ãr cos
2πrt

T
+ B̃r sin

2πrt

T
,

with the following remarks:

1. The reconstructed g̃(t) is periodic with commensurate frequencies fr = r
T for 1 ≤ r ≤

n, and we have g̃(t + T) = g̃(t).

2. The reconstructed g̃(t) is band-limited to the Nyquist interval [−fn, fn] =
[− n

T , n
T

]
.

(Recall that the Nyquist interval is imposed solely by the sampling interval�t = T/N ,
and sampling is an irreversible process.)

104 CHAPTER 3. THE FOURIER SERIES

3. The amplitudes of the sine and cosine components of g̃(t) are distorted by the aliased
frequencies as shown below.

Ã0

2
= X0 =

∞∑
m=−∞

CmN ,

Ãr = Xr + XN−r =
∞∑

m=−∞

(
Cr+mN + CN−r+mN

)
=

∞∑
m=−∞

(
Cr+mN + C−r+mN

)
,

B̃r = j
(
Xr −XN−r

)
=

∞∑
m=−∞

j
(
Cr+mN − C−r+mN

)
.

4. In contrast, the original continuous-time signal g(t) is not assumed to be band-limited,
and we express g(t) by its continuous Fourier series as

g(t) =
A0

2
+

∞∑
k=1

Ak cos
2πkt

T
+ Bk sin

2πkt

T
,

where
A0

2
= C0, Ak = Ck + C−k, and Bk = j(Ck − C−k) for every k.

5. Although the reconstructed g̃(t) has the �appearance� of a truncated Fourier series, it is
not equal to the truncated Fourier series of g(t)�t he corresponding components have
different amplitudes due to aliasing.

6. The faster the Fourier series coef� cients converge to zero, the less impact the aliased
frequencies have on the reconstructed signal. Our earlier investigation on the conver-
gence rate reveals that the Fourier series coef� cients of g(t) converges at a higher rate
if the derivate g′(t) exists�th is links the phenomenon of aliasing to the differentiability
of g(t).

7. To have undistorted Ãr = Ar and B̃r = Br for 0 ≤ r ≤ n, we need to remove
the components with frequencies higher than fn from the original signal g(t) before
sampling� this is where the �an ti-aliasing� �lter (discussed in Section 2.3) comes in.
Filtering is the topic of Chapter 10.

3.11.1 Sampling functions with jump discontinuities

Here is another hidden technical point: Since the Fourier series converges to the average of the
right-hand and left-hand limits at points of jump discontinuity, if any sampling point t� = ��t

happens to coincide with a point of jump discontinuity, then f� must be assigned the average
limit value (to which its Fourier series converges) regardless of whether f(t) is de�ned at
t = t� or not. Note that the points of jump discontinuity can occur inside or at the end points
of [0, T]; in either case the rule above must be followed in determining the sample values for
the DFT computation.

Example 3.66 In this example we show the signals reconstructed from N computed DFT
coef�cients . For N = 8, 16, 32, and 64, we obtain the DFT coef� cients by transforming N

3.11. ACCOUNTING FOR ALIASED FREQUENCIES IN DFT 105

equally spaced samples taken from the chosen period [0, 4) of the piecewise smooth function
given in Example 3.9:

f(t) =

{
t, 0 < t < 2,

2, 2 ≤ t < 4;
f(t + 4) = f(t).

Note that because there is a jump discontinuity at t0 = 0, the data sample f0 is assigned the
average limit value � 1� , which is explicitly shown here when N =8 samples of f(t) are taken
from the period [0, 4):

{f0, f1, f2, f3, f4, f5, f6, f7} = {1, 0.5, 1, 1.5, 2, 2, 2, 2}.

t0

f4

f0

t5 t6

f5

t
8

f7f6

t4

f3

f2

2

t1

f1

t7t3t2 4

For N =8, 16, and 32, the computed DFT coef� cients {X0, X1, . . . , XN−1} are recorded
in Table 3.1, which is MATLAB output (displayed in format short) from running the DFT
code �dft.m� provided in Section 4.7 in Chapter 4. The function reconstructed using N =

2n+2 DFT coef� cients can be expressed as

(3.103) f̃(t) =
Ã0

2
+ Ãn+1 cos

2π(n+ 1)t

T
+

n∑
r=1

(
Ãr cos

2πrt

T
+ B̃r sin

2πrt

T

)
,

where T = 4 because the N samples are taken from one period of f(t), 1
2 Ã0 = X0, Ãn+1 =

Xn+1, Ãr = Xr +XN−r, and B̃r = j(Xr−XN−r) for 1≤ r≤n. For N = 8, 16, 32, and 64,
the graphs of the reconstructed f̃(t) are shown in Figure 3.18.

Figure 3.18 Graphs of f̃(t) reconstructed using N computed DFT coef� cients.

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

2

2.5

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

2

2.5

N = 8

N = 16

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

2

2.5

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

2

2.5

N = 32

N = 64

106 CHAPTER 3. THE FOURIER SERIES

Table 3.1 The DFT coef� cients computed in Example 3.66 (N = 8, 16, 32).

r Xr (N = 8) Xr (N = 16) Xr (N = 32)
0 1.5000 1.5000 1.5000

1 −0.2134 + j0.3018 −0.2053 + j0.3142 −0.2033 + j0.3173

2 −0.0000 + j0.1250 −0.0000 + j0.1509 −0.0000 + j0.1571

3 −0.0366 + j0.0518 −0.0253 + j0.0935 −0.0232 + j0.1030

4 −0.0000− j0.0000 −0.0000 + j0.0625 −0.0000 + j0.0754

5 −0.0366− j0.0518 −0.0113 + j0.0418 −0.0088 + j0.0585

6 −0.0000− j0.1250 −0.0000 + j0.0259 −0.0000 + j0.0468

7 −0.2134− j0.3018 −0.0081 + j0.0124 −0.0049 + j0.0381

8 −0.0000 + j0.0000 −0.0000 + j0.0312

9 −0.0081− j0.0124 −0.0033 + j0.0256

10 −0.0000− j0.0259 −0.0000 + j0.0209

11 −0.0113− j0.0418 −0.0025 + j0.0167

12 −0.0000− j0.0625 −0.0000 + j0.0129

13 −0.0253− j0.0935 −0.0021 + j0.0095

14 −0.0000− j0.1509 −0.0000 + j0.0062

15 −0.2053− j0.3242 −0.0020 + j0.0031

16 −0.0000 + j0.0000

17 −0.0020− j0.0031

18 −0.0000− j0.0062

19 −0.0021− j0.0095

20 −0.0000− j0.0129

21 −0.0025− j0.0167

22 −0.0000− j0.0209

23 −0.0033− j0.0256

24 −0.0000− j0.0312

25 −0.0049− j0.0381

26 −0.0000− j0.0468

27 −0.0088− j0.0585

28 −0.0000− j0.0754

29 −0.0232− j0.1030

30 −0.0000− j0.1571

31 −0.2033− j0.3173

3.11. ACCOUNTING FOR ALIASED FREQUENCIES IN DFT 107

Remark: We will learn in Chapter 4 that κN sample values of the reconstructed f̃(t) can
be obtained by applying the inverse DFT to the sequence formed by the N computed DFT
coefÞcients and (κ−1)N zeros, provided that κ is an integer and the zeros are appropriately
inserted. In other words, the evaluation of the reconstructed f̃(t) at equally spaced κN data
points amounts to the inverse transform of κN zero-padded DFT coefÞ cients. The process of
zero padding the DFT is discussed in full detail in Section 4.6.2 in Chapter 4.

References

1. W. L. Briggs and V. E. Hensen. The DFT: An Owner’s Manual for the Discrete Fourier
Transform. The Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995.

2. H. F. Davis. Fourier Series and Orthogonal Functions. Allyn and Bacon, Inc., Boston,
MA, 1963.

3. J. C. Goswami and A. K. Chan. Fundamentals of Wavelets. John Wiley & Sons, Inc.,
New York, 1999.

4. R. W. Hamming. Digital Filters. Prentice-Hall, Inc., Englewood Cliffs, NJ, third edition,
1989.

5. Y. Nievergelt. Wavelets Made Easy. Birkh‹auser, Cambridge, MA, 1999.

6. H. J. Weaver. Applications of Discrete and Continuous Fourier Analysis. John Wiley &
Sons, Inc., New York, 1983.

7. C. R. Wylie. Advanced Engineering Mathematics. McGraw-Hall Book Company, New
York, fourth edition, 1975.

Chapter 4

DFT and Sampled Signals

We have seen the theoretical relationship between the DFT coefÞcien ts and the Fourier series
coefÞ cients of a periodic signal x(t) in the previous chapter, and that relation was established
by assuming, on the one hand, that x(t) can be represented by a Fourier series

x(t) =

∞∑
k=−∞

Ck ej2πkt/T , Ck =
1

T

∫ T/2

−T/2

f(t) e−j2πkt/T dt;

and assuming, on the other hand, that the N discrete-time samples {x�} transformed by the
DFT were equally spaced over Ò a single period T Ó o f the signal x(t); i.e., we have N�t = T .

However, because DFT is a numerical formula which we apply only to the sampled func-
tion values, the samples transformed by the DFT in practice are likely observations of an
unknown signal or phenomenon. For example, one use (among many important applications)
of the DFT is to analyze the frequency contents of an unknown signal f(t), and we must be
prepared to account for the distortions caused by the potential Òmi smatchÓ between the period
(N samples imply a period of N�t) irreversibly imposed by using the DFT and the (unknown)
true period of f(t). To understand and deal with such problems and their consequences, we
propose the following:

1. We will derive the DFT formulas to show why the samples are supposed to be taken over
a single period of the envelope function in the Þr st place. (The derivation was omitted
when DFT was Þr st introduced in Chapter 2.)

2. We will sample known functions for irregular intervals (longer or shorter than the known
periods) to create Ò mismatched periodsÓ for our experiment, so we can study the possible
consequences.

4.1 Deriving the DFT and IDFT Formulas

As indicated in Sections 2.5 and 2.6 in Chapter 2, there is more than one DFT formula de-
pending on the chosen sampling period and sample size. Following a similar derivation for the
odd-size DFT given in our earlier book on fast Fourier transform algorithms [13], we derive
the DFT formula for even sample size N = 2n + 2 over the period [0, T]. In addition, we will
show that the resulting formula can be converted to its alternate form for the symmetric period
[−T/2, T/2].

109

110 CHAPTER 4. DFT AND SAMPLED SIGNALS

We indicated in Section 2.6 that an even-size DFT can be derived from using the trigono-
metric polynomial

(4.1) p(t) = a0 + an+1 cos
2π(n + 1)t

T
+

n∑
r=1

ar cos
2πrt

T
+ br sin

2πrt

T

to interpolate the samples of a periodic function x(t). In anticipation of the desired change of
variable from t to θ = 2πt/T in the derivation, we perform the variable change at the outset
by directly using

(4.2) p(θ) = a0 + an+1 cos (n + 1)θ +
n∑

r=1

ar cos rθ + br sin rθ

to interpolate the N = 2n + 2 equally spaced samples of x(θ) over the period [0, 2π]. The
samples are denoted as x� = x(θ�) for 0 ≤ � ≤ 2n+1, where θ� = ��θ with �θ = 2π/N =

π/(n+1). For N = 2n+2 = 8, we show the mapping of {t0, t1, . . . , t7} to {θ0, θ1, . . . , θ7}
in Figure 4.1.

Figure 4.1 Mapping t� ∈ [0, T) to θ� = 2πt�/T ∈ [0, 2π) for 0 ≤ � ≤ 2n+1.

Mapping t
k

∈ [0, T) to θ
k

∈ [0, 2π),

k = 0, 1, ..., N − 1:

∆θ = 2π/N
(N = 2n+2 = 8)

θ
0
 = 0

θ
1

θ
2

θ
3

π = θ
4

θ
5

θ
6

θ
7
 = 2π−∆θ

0

θ
1

θ
2

θ
3 θ

4

θ
5

θ
6 θ

7θ
0

2π

In order to explicitly display all of the terms (for clarity) during the derivation without
loss of generality, we consider a particular size N = 2n + 2 = 6 with n = 2. Since p(θ)

interpolates every x�, we must have x� = p(θ�), i.e.,

(4.3) x� = p(θ�) = a0 + a1 cos θ� + b1 sin θ� + a2 cos 2θ� + b2 sin 2θ� + a3 cos 3θ�.

Corresponding to � = 0, 1, . . . , 5, we have a system of six equations

1 cos θ0 sin θ0 cos 2θ0 sin 2θ0 cos 3θ0

1 cos θ1 sin θ1 cos 2θ1 sin 2θ1 cos 3θ1

1 cos θ2 sin θ2 cos 2θ2 sin 2θ2 cos 3θ2

1 cos θ3 sin θ3 cos 2θ3 sin 2θ3 cos 3θ3

1 cos θ4 sin θ4 cos 2θ4 sin 2θ4 cos 3θ4

1 cos θ5 sin θ5 cos 2θ5 sin 2θ5 cos 3θ5





a0

a1

b1

a2

b2

a3


=



x0

x1

x2

x3

x4

x5


.

4.1. DERIVING THE DFT AND IDFT FORMULAS 111

Using EulerÕs formula ejθ = cos θ + j sin θ, we may now express

cos rθ� =
ejrθ� + e−jrθ�

2
and sin rθ� =

ejrθ� − e−jrθ�

2j
.

Note that when N = 2n + 2, we have θ� = ��θ = �π/(n + 1) and (n + 1)θ� = �π. Hence,
for the special case r = n + 1, we have

ej(n+1)θ� = ej�π = e−j�π = e−j(n+1)θ� ,

which implies
cos(n + 1)θ� = ej(n+1)θ� .

Using these complex exponentials to express the cosine and sine values in (4.3) yields

x� = p(θ�) =

(
a2 + jb2

2

)
e−j2θ� +

(
a1 + jb1

2

)
e−jθ� + a0

+

(
a1 − jb1

2

)
ejθ� +

(
a2 − jb2

2

)
ej2θ� + a3e

j3θ� .

Noting that e±jrθ� =
(
ejθ�

)±r
; we may use the power Ò±rÓ a s index and rename the coefÞ -

cients of e±jrθ� as X±r, we thus obtain

(4.4) x� = p(θ�) = X−2e
−j2θ� + X−1e

−jθ� + X0 + X1e
jθ� + X2e

j2θ� + X3e
j3θ� .

To further simplify the right-hand side, recall that θ� = ��θ, so θ1 = �θ = 2π/N , and

ejθ� = ej�θ1 =
(
ejθ1

)�
= ω� if we deÞn e

ω = ejθ1 = ej2π/N , N = 2n + 2.

Equation (4.4) can now be written as

(4.5) x� = p(θ�) = X−2ω
−2� + X−1ω

−� + X0 + X1ω
� + X2ω

2� + X3ω
3�,

where ω = ejπ/3 for N = 6.
We further note that ω = ej2π/N is the N th primitive root of unityÑit is easy to verify

that ωN = 1 and ω−r = ω−r+N . By changing
(
ω−r

)�
in the above equation to the equivalent(

ωN−r
)�

, where r = 1, 2 and N = 6, we obtain

(4.6) x� = p(θ�) = X0 + X1ω
� + X2ω

2� + X3ω
3� + X4ω

4� + X5ω
5�.

Corresponding to � = 0, 1, . . . , 5, we now have a system of six equations with unknowns being
Xr for r = 0, 1, . . . , 5:

(4.7)



1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5

1 ω2 ω4 ω6 ω8 ω10

1 ω3 ω6 ω9 ω12 ω15

1 ω4 ω8 ω12 ω16 ω20

1 ω5 ω10 ω15 ω20 ω25





X0

X1

X2

X3

X4

X5


=



x0

x1

x2

x3

x4

x5


.

This can be written as a matrix equation MX = x, and we shall obtain the scalar DFT
formula (2.11) for each Xr by solving this matrix equation analytically. To accomplish that,
three additional steps are required:

112 CHAPTER 4. DFT AND SAMPLED SIGNALS

Step 1. For ω ≡ ej2π/N = cos(2π/N) + j sin(2π/N), we need to prove the following prop-
erties (which are required in Step 2):

(a) ω−1 = ω, ω±N = 1, and ω±N/2 = −1.

(b) ω±�±N = ω±�.

(c)
∑

N−1
k=0 ωk = 1 + ω + ω2 + · · ·+ ωN−1 = 0.

(d) For 1 ≤ ρ, q ≤ N ,
∑

N−1
k=0 ωk(ρ−q) =

{
0 if ρ 	= q,

N if ρ = q.

(e) If ωN ≡ ej2π/N , prove ω2
N

= ωN/2. (Note: the notation ωN is used when we need to
refer to ω for more than one value of N at the same time.)

Proof: For part (a), we apply the deÞn ition of ω to obtain

ω−1 = e−j2π/N = cos(2π/N)− j sin(2π/N) = ω.

ω±N =
(
ej2π/N

)±N
= e±j2π = cos 2π ± j sin 2π = 1.

ω±N/2 =
(
ej2π/N

)±N/2
= e±jπ = cosπ ± j sin π = −1.

For part (b), using ω±N = 1 from (a), we immediately have

ω±�±N = ω±� ω±N = ω±�.

For part (c), we use the closed-form expression for the geometric series to obtain

N−1∑
k=0

ωk = 1 + ω + ω2 + · · ·+ ωN−1 =
1− ωN

1− ω
= 0.

(
∵ ωN = 1 from (a)

)
For part (d), let m = ρ − q. The condition 1 ≤ ρ, q ≤ N implies 0 ≤ m ≤ N − 1.
If ρ 	= q, then m 	= 0, and we use again the closed-form expression for the geometric
series to obtain

N−1∑
k=0

ωk(ρ−q) =
N−1∑
k=0

(
ωm

)k
=

1− (
ωm

)N

1− ωm
=

1− (
ωN

)m

1− ωm
= 0. (∵ ωN = 1)

If ρ = q, then we have

N−1∑
k=0

ωk(ρ−q) =

N−1∑
k=0

ω0 =

N−1∑
k=0

1 = N.

For part (e), we use the deÞn ition of ωN to obtain

ω2
N

=
(
ej2π/N

)2
= ej4π/N = ej2π/(N/2) = ωN/2.

�

Step 2. The Fourier matrix M is deÞn ed by M(ρ, q) = ω(ρ−1)(q−1) for 1 ≤ ρ, q ≤ N . With
the properties of ω now available from Step 1, we may prove that the Fourier matrix M

is invertible, and its inverse is 1
N M . (We have used M to denote the complex conjugate

of M .)

4.1. DERIVING THE DFT AND IDFT FORMULAS 113

Remarks: For N = 6, the Fourier matrix M appeared in (4.7), and it is a simple task
to verify that the elements in the ρth (1 ≤ ρ ≤ N) row are M(ρ, r) = ω(ρ−1)(r−1) for
1 ≤ r ≤ N ; and the elements in the qth (1 ≤ q ≤ N) column are M(r, q) = ω(r−1)(q−1)

for 1 ≤ r ≤ N .

Proof: To obtain M−1 = 1
N M , we may form the product D = MM and show that

D = NI, where I is the identity matrix. That is, for 1 ≤ ρ, q ≤ N , we must show

D(ρ, q) =

N∑
r=1

M(ρ, r)M(r, q) =

{
0 if ρ 	= q,

N if ρ = q.

We proceed to prove the desired result below.

D(ρ, q) =

N∑
r=1

M(ρ, r)M(r, q) =

N∑
r=1

ω(ρ−1)(r−1) ω(r−1)(q−1)

=

N∑
r=1

ω(ρ−1)(r−1) ω−(r−1)(q−1) (∵ ω = ω−1)

=

N∑
r=1

ω(r−1)(ρ−q)

=

N−1∑
k=0

ωk(ρ−q) (∵ k = r − 1)

=

{
0 if ρ 	= q,

N if ρ = q.
(from Step 1(d))

To demonstrate the result that we have just proved, we display D for N = 6:

D = MM =



6 0 0 0 0 0

0 6 0 0 0 0

0 0 6 0 0 0

0 0 0 6 0 0

0 0 0 0 6 0

0 0 0 0 0 6


= 6



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

Therefore, we have obtained

1
N MM = 1

N D = I,

which yields

M−1 = 1
N M .

�

Step 3. Solve the matrix equation MX = x by inverting the matrix M , i.e.,

X = M−1x = 1
N Mx.

114 CHAPTER 4. DFT AND SAMPLED SIGNALS

For N = 6, we obtain

(4.8)



X0

X1

X2

X3

X4

X5


=

1

6



1 1 1 1 1 1

1 ω−1 ω−2 ω−3 ω−4 ω−5

1 ω−2 ω−4 ω−6 ω−8 ω−10

1 ω−3 ω−6 ω−9 ω−12 ω−15

1 ω−4 ω−8 ω−12 ω−16 ω−20

1 ω−5 ω−10 ω−15 ω−20 ω−25





x0

x1

x2

x3

x4

x5


.

Since X = M−1x expresses X as a matrix-vector product, we can now express each element
of X by the corresponding scalar equation, which is the formula for the DFT:

(4.9) Xr =
1

N

N−1∑
�=0

x�ω
−r�
N

=
1

2n + 2

2n+1∑
�=0

x�ω
−r�
N

, 0 ≤ r ≤ 2n + 1.

Similarly, because x = MX , the inverse DFT formula (IDFT) has the form

(4.10) x� =

N−1∑
r=0

Xrω
r�
N =

2n+1∑
r=0

Xrω
r�
N , 0 ≤ � ≤ 2n + 1.

4.2 Direct Conversion Between Alternate Forms

We indicated in Section 2.6 that if the given N = 2n + 2 samples x̃(t�) are equally spaced
over [−T/2, T/2], we may obtain the alternate DFT/IDFT formulas.

(4.11) X̃r =
1

N

N
2∑

�=−N
2 +1

x̃�ω
−r�
N =

1

2n + 2

n+1∑
�=−n

x̃�ω
−r�
N , −n ≤ r ≤ n + 1;

(4.12) x̃� =

N
2∑

r=−N
2 +1

X̃rω
r�
N

=
n+1∑

r=−n

Xrω
r�
N

, −n ≤ � ≤ n + 1.

To convert the DFT formula given by (4.9) to its alternate form given by (4.11), we recall
the simple fact behind the derivation of a DFT formula: the periodic x(t) was uniformly sam-
pled for a single period of length T , so the sample sequence {x�} over [0, T] is related to the
sample sequence {x̃�} over [−T/2, T/2] through the periodicity of x(t). For the even sample
size N = 2n + 2, we have

(4.13) x� =

{
x̃� for 0 ≤ � ≤ n + 1;

x̃�−N for n + 2 ≤ � ≤ 2n + 1.

4.2. DIRECT CONVERSION BETWEEN ALTERNATE FORMS 115

Using this fact in the DFT formula (4.9), we obtain (4.11) as shown below.

Xr = 1
N

2n+1∑
�=0

x�ω
−r�
N = 1

N

n+1∑
�=0

x�ω
−r�
N + 1

N

2n+1∑
�=n+2

x�ω
−r�
N

= 1
N

n+1∑
�=0

x̃�ω
−r�
N

+ 1
N

2n+1∑
�=n+2

x̃�−Nω−r�
N

(from (4.13))

= 1
N

n+1∑
�=0

x̃�ω
−r�
N

+ 1
N

−1∑
m=−n

x̃mω
−r(m+N)

N (let m = �−N)

= 1
N

n+1∑
�=0

x̃�ω
−r�
N + 1

N

−1∑
m=−n

x̃mω−rm
N (∵ ω−N

N = 1)

= 1
N

n+1∑
�=0

x̃�ω
−r�
N

+ 1
N

−1∑
�=−n

x̃�ω
−r�
N

(denote m by �)

= 1
N

n+1∑
�=−n

x̃�ω
−r�
N . (combine partial sums)

Observe that the right-hand side represents X̃r if 0 ≤ r ≤ n + 1. For n + 2 ≤ r ≤ 2n + 1, the
right-hand side represents X̃r−N as shown below.

Xr = 1
N

n+1∑
�=−n

x̃�ω
−r�
N (for n + 2 ≤ r ≤ 2n + 1)

= 1
N

n+1∑
�=−n

x̃�ω
−(r−N)�
N (∵ ω−r+N

N
= ω−r

N
)

= X̃r−N . (∵ −n ≤ r − N ≤ −1)

These results reveal that the relationship between the two sets of DFT coefÞ cients mirrors the
relationship between the two sample sequences:

(4.14) Xr =

{
X̃r for 0 ≤ r ≤ n + 1;

X̃r−N for n + 2 ≤ r ≤ 2n + 1.

This is expected because Xr±N = Xr from either formula; i.e., {Xr} is a periodic sequence
with period N .

As to converting formula (4.11) back to (4.9), we simply make use of the same fact in the
opposite direction:

(4.15) x̃� =

{
x� for 0 ≤ � ≤ n + 1;

x�+N for − n ≤ � ≤ −1.

The corresponding IDFT formulas can be converted to each other by the same process.

116 CHAPTER 4. DFT AND SAMPLED SIGNALS

4.3 DFT of Concatenated Sample Sequences

If we concatenate the N -sample sequence {x0, x1, . . . , xN−1} to itself, then we obtain an M -
sample sequence {y0, y1, . . . , yM−1}, where M = 2N , and

y� =

{
x� for 0 ≤ � ≤ N − 1;

x�−N for N ≤ � ≤ 2N − 1.

Suppose that the N DFT coefÞ cients computed from the N -sample sequence are {X0, X1, . . . , XN−1};
how are they related to the 2N DFT coefÞ cients {Y0, Y1, . . . , Y2N−1} computed from the con-
catenated 2N -sample sequence? To answer this question, we apply the deÞn ition of DFT to
compute Y2r and Y2r+1 for r = 0, 1, . . . , N − 1:

Y2r =
1

M

M−1∑
�=0

y�ω
−2r�
M

=
1

2N

N−1∑
�=0

x�ω
−2r�
2N

+
1

2N

2N−1∑
�=N

x�−Nω−2r�
2N

=
1

2N

N−1∑
�=0

x�ω
−2r�
2N

+
1

2N

N−1∑
k=0

xkω
−2r(k+N)
2N

(let k = �−N)

=
1

2N

N−1∑
�=0

x�

(
ω−2r�

2N
+ ω

−2r(�+N)
2N

)
(rename k to be �)

=
1

2N

N−1∑
�=0

x�

(
ω−2r�

2N
+ ω−2r�

2N

) (
∵

(
ω−2N

2N

)r
= 1

)
=

1

N

N−1∑
�=0

x�ω
−r�
N

= Xr.

Through the same steps we obtain

Y2r+1 =
1

M

M−1∑
�=0

y�ω
−(2r+1)�
M

=
1

2N

N−1∑
�=0

x�ω
−(2r+1)�
2N

+
1

2N

2N−1∑
�=N

x�−Nω
−(2r+1)�
2N

=
1

2N

N−1∑
�=0

x�ω
−(2r+1)�
2N

+
1

2N

N−1∑
k=0

xkω
−(2r+1)(k+N)
2N

(let k = �−N)

=
1

2N

N−1∑
�=0

x�

(
ω
−(2r+1)�
2N

+ ω
−(2r+1)(�+N)
2N

)
(rename k to be �)

=
1

2N

N−1∑
�=0

x�

(
ω
−(2r+1)�
2N

− ω
−(2r+1)�
2N

) (
∵

(
ω−N

2N

)2r+1
= −1

)
= 0.

4.4. DFT COEFFICIENTS OF A COMMENSURATE SUM 117

This establishes the relationship between the DFT coefÞcien ts {Yk} and {Xk} as

(4.16) Yk =

{
Xk/2 if k = 2r

0 if k 	= 2r
, k = 0, 1, . . . , 2N − 1.

This result can be extended to multiple sequences: if the qN -sample sequence {y�} is obtained
by concatenating the N -sample sequence {x�}, where q ≥ 2 is a positive integer, then the DFT
coefÞcients {Yk} and {Xk} are related as

(4.17) Yk =

{
Xk/q if k = qr

0 if k 	= qr
, k = 0, 1, . . . , qN − 1.

The derivation given above for the case q = 2 can be adapted for the case q > 2 in an obvi-
ous way: instead of combining only two subsequences, we combine the q > 2 subsequences
resulted from applying the DFT deÞn ition to the concatenated sequence {y�} in a similar man-
ner.

4.4 DFT Coefficients of a Commensurate Sum

In preparation for the discussion forthcoming in this section, we assume that readers are famil-
iar with the contents of Chapter 2 and the following sections from Chapter 1:

• Section 1.6 ÒPer iodicity and Commensurate Frequencies.Ó

• Section 1.8 ÒExpres sing Single Component Signals.Ó

• Section 1.9.1 ÒExpre ssing sequence of discrete-time samples.Ó

• Section 1.9.2 ÒPer iodicity of sinusoidal sequences.Ó

In this section we shall relate the DFT coefÞcien ts of a commensurate sum to the DFT co-
efÞ cients of its components. Recall from Section 1.6 that a commensurate y(t) is periodic with
its fundamental frequency being the GCD of the individual frequencies and its common period
being the LCM of the individual periods. For example, when fk = k/T , the fundamental
frequency is f1 = 1/T , and the composite function

y(t) = C0 +

n∑
k=1

Ck cos
(2πkt

T
− φk

)
is commensurate and periodic with common period T , i.e., y(t + T) = y(t).

4.4.1 DFT coefficients of single-component signals

We consider sampling a single-component signal

x(t) = Ck cos(2πfkt− φk), where fk =
k

T
,

at intervals of �t = T/N , where N is chosen to satisfy the Nyquist condition
1/�t > 2k/T so that aliasing will not occur. Note that because T = N�t, the Nyquist

118 CHAPTER 4. DFT AND SAMPLED SIGNALS

condition is equally deÞn ed by N > 2k. From fk = k/T , we know that x(t) completes k

cycles as t varies from 0 to T = N�t; i.e., the N samples span k periods of x(t).
For single-component signals, we may obtain the IDFT formula for x� directly: for � =

0, 1, . . . , N − 1 with N > 2k (ensured by satisfying the Nyquist condition),

(4.18)

x� ≡ x(��t) = Ck cos(2πfk��t− φk)

= Ck cos(2π�k/N − φk) (∵ fk�t = k/N)

= Ck cos(k�θ1 − φk) (let θ1 = 2π/N)

=
(

1
2Cke−jφk

)
ejk�θ1 +

(
1
2Ckejφk

)
e−jk�θ1 (by EulerÕs formula)

= Xkωk�
N + X−kω−k�

N (∵ ωN = ejθ1)

= Xkωk�
N + XN−kω

(N−k)�
N . (∵ ω−k

N = ωN−k
N)

Accordingly, there are only two nonzero DFT coefÞ cients with indexes k and N − k in the
IDFT formula in this case, i.e,

x� =

N−1∑
r=0

Xrω
r�
N = Xkωk�

N + XN−kω
(N−k)�
N ,(4.19)

where 2k < N, Xk = 1
2Cke−jφk , XN−k = 1

2Ckejφk .

Remarks: If we change variable to θ = 2πt/T , then cos(2πkt/T − φk) = cos(kθ− φk), and
we would sample the mathematically equivalent

(4.20) x(θ) = Ck cos(kθ − φk)

at intervals of
�θ = 2π�t/(N�t) = 2π/N = θ1,

which leads to exactly the same formulation already used in (4.18):

x� = x(��θ) = Ck cos(k�θ1 − φk),

and we arrive at the same results given by (4.18) and (4.19).
However, formula (4.20) has its own role to play in signal reconstruction: while the contin-

uous function x(θ) can be reconstructed from the DFT coefÞ cients X±k alone, the reconstruc-
tion of the analog signal x(t) requires the actual value of T = N�t (∵ fk = k/T), which
may or may not be available depending on whether the sampling rate or interval is known or
not, although this does not prevent us from constructing an analog signal at any desired out-
put frequencyÑr ecall the following comments from Section 1.9.1: Ò by simply adjusting �t

at the time of output, the same set of digital samples may be converted to analog signals with
different frequencies.Ó

Example 4.1 In this example we study the sampling and reconstruction of a single-component
signal x(t) = 3.2 cos (1.5πt− π/4) for two cases:

(i) The Nyquist condition is satisÞed.

4.4. DFT COEFFICIENTS OF A COMMENSURATE SUM 119

(ii) The Nyquist condition is not satisÞed .

At Þr st we identify the physical frequency of the analog signal by expressing

x(t) = 3.2 cos (2πfkt− π/4) with fk =
3

4
=

k

T
=

k

N�t
.

For case (i), we choose the sample size N = 8 over T = 4 seconds, so the condition N >

2k = 6 is satisÞed , and the result from using k = 3 and N = 8 in (4.19) is the IDFT formula:

(4.21) x� = X3ω
3�
8 + X5ω

5�
8 = 1.6e−jπ/4ω3�

8 + 1.6ejπ/4ω5�
8 .

We can now reconstruct the function x(θ) from the DFT coefÞ cients obtained from (4.21):

x(θ) = Ck cos (kθ − φk)(4.22)

= 3.2 cos(3θ − π/4). (∵ k = 3, Xk = 1
2Cke−jφk = 1.6e−jπ/4)

Since θ = 2πt/T , we can rewrite (4.22) as

x(t) = 3.2 cos (2πfkt− π/4) with fk =
k

T
=

3

N�t
=

3

8�t
.

Since we have chosen N = 8 over T = 4 sec, the sampling interval is �t = 0.5 sec, and
we obtain fk = 3/(8�t) = 0.75 Hz, with which we get back the original signal x(t) =

3.2 cos(1.5πt − π/4). Hence, we can reconstruct the analog signal x(t) if we know the sam-
pling rate used to obtain {x�} in the Þ rst place; more importantly, we can output x(t) at any
physical frequency by setting and adjusting the sampling interval�t as desired.

For case (ii), we choose the sample size N = 4 over T = 4 seconds, thus N ≯ 2k = 6 and
we expect to see the effect of aliasing. We can determine the aliased frequency using different
methodsÑ although they lead to the same result, we gain valuable insight about the methods
themselves.

Method I. Since�t = T/N = 4/4 = 1 second, by sampling the given signal
x(t) = 3.2 cos(1.5πt− π/4) at intervals of�t we obtain

(4.23)

x� = x(��t) = 3.2 cos (1.5π��t− π/4), � = 0, 1, 2, 3,

= 3.2 cos (1.5π�− π/4) (∵ �t = 1 second)

= 3.2 cos (1.5π�− π/4− 2π�) (∵ cos (θ ± 2π�) = cos θ)

= 3.2 cos (−0.5π�− π/4)

= 3.2 cos (0.5π� + π/4) (note the phase reversal)

= 3.2 cos (2πfa� + π/4), where fa = 0.25 Hz.

Since fmax = 1/(2�t) = 0.5 Hz, we see that the higher frequency fk = 0.75 Hz present
in the original signal has been aliased into an equivalent lower frequency fa = 0.25 Hz
inside the Nyquist interval [−fmax, fmax] = [−0.5, 0.5] in this case.

Remarks: Recall that the sampling rate R = 1/�t (samples per second or Hz). For this
example we have�t = 1 and R = 1, so

1
2R < fk = 0.75 Hz < R.

120 CHAPTER 4. DFT AND SAMPLED SIGNALS

We shall learn in Chapter 7 that the Fourier transform of a sampled sequence is periodic
with period R, hence the aliased frequency f̃a ∈ [− 1

2R, 1
2R] can be computed directly

as

(4.24) f̃a = fk − R = 0.75− 1 = −0.25 Hz,

where the negative frequency is interpreted as phase reversal (discussed previously in
Section 1.9), which occurs when we turn f̃a = −0.25 Hz into positive fa = −f̃a = 0.25

Hz through the trigonometric identity cos(−θ) = cos θ. Note that the phase reversal can
be avoided when the following relation holds.

(4.25) R < fk < 3
2R, because 0 < fk − R < 1

2R.

Method II. To show that we obtain the same aliased frequency from the DFT coefÞ cients, let
us adapt (4.18) for N < 2kÑwe begin by repeating the Þ rst part of (4.18):

(4.26)

x� ≡ x(��t), � = 0, 1, . . . , N − 1,

= Ck cos(2πfk��t− φk)

= Ck cos(2π�k/N − φk) (∵ fk�t = k/N)

= Ck cos(k�θ1 − φk) (let θ1 = 2π/N)

=
(

1
2Cke−jφk

)
ejk�θ1 +

(
1
2Ckejφk

)
e−jk�θ1 (by EulerÕs formula)

=
(

1
2Cke−jφk

)
ωk�

N
+

(
1
2Ckejφk

)
ω−k�

N
. (∵ ωN = ejθ1)

At this point, we can apply formula (4.26) to a problem with known numerical values
for Ck, φk , k, and N . However, because we choose N < 2k, we must use the properties
ω±mN

N = 1 to reduce k to r < N/2 so that ωr
N and ωN−r

N correspond to the terms in the
IDFT formula.

For our example, we continue from the last line in formula (4.26) with Ck = 3.2, φk =

π/4, k = 3, and N = 4:

(4.27)

x� = 1.6e−jπ/4ω3�
4 + 1.6ejπ/4ω−3�

4 , � = 0, 1, 2, 3,

= 1.6e−jπ/4ω−�
4 + 1.6ejπ/4ω�

4 (∵ ω±4
4 = 1, ∴ ω3

4 = ω−1
4 , ω−3

4 = ω4)

= X−1ω
−�
4 + X1ω

�
4 (note r = 1 and r < N/2)

= X3ω
3�
4 + X1ω

�
4.

Hence the two nonzero DFT coefÞcients are

X1 = 1.6ejπ/4, X3 = 1.6e−jπ/4.

We can now reconstruct the function y(θ) using the DFT coefÞ cients:

(4.28)
y(θ) = Cr cos(rθ − φr), where r < N/2,

= 3.2 cos(θ + π/4). (∵ r = 1, Xr = 1
2Cre

−jφr = 1.6ejπ/4)

Since θ = 2πt/T = 2πt/(N�t) = 2πt/4 = 0.5πt, the reconstructed analog signal

(4.29) y(t) = 3.2 cos(0.5πt + π/4)

contains aliased frequency fa = 0.25 Hz. Note again the phase reversal from φk = π/4

in x(t) or x(θ) to φr = −π/4 in the reconstructed y(θ) or y(t).

4.4. DFT COEFFICIENTS OF A COMMENSURATE SUM 121

4.4.2 Making direct use of the digital frequencies

Recall that using the digital frequency deÞ ned by

Fk = fk�t =
k

T
�t =

k

N
,

we may conveniently express

x� = Ck cos(2πFk�− φk),

where Fk < 1
2 , because 2k < N when the Nyquist condition is satisÞed. Note that Fk = k/N

directly conveys the following information:

1. If k and N do not share a common factor, then the period of the N -sample sequence
{x�} is indeed N samples, and they span k periods of its envelope function, which leads
to two nonzero DFT coefÞ cients indexed by k and N − k.

2. If k and N share a common factor q, then we have

Fk =
k

N
=

qk̃

qÑ
=

k̃

Ñ
,

which tells us that

xÑ = Ck cos(2πk̃ − φk)

and the period of {x�} is Ñ = N/q samples. The fact that we have computed the DFT
coefÞcients based on N = qÑ samples simply means that the DFT coefÞcien ts are
positioned at index k = qk̃ and N − k, which are their rightful places when the sample
size is N = qÑ .

Let us now turn to the composite signal: suppose that we sample

y(t) = C0 +
n∑

k=1

Ck cos
(2πkt

T
− φk

)
to obtain the N -sample sequence (with N > 2n)

y� = C0 +

n∑
k=1

Ck cos(2πFk�− φk);

we immediately see that Fk = k/N if T = N�t for k = 1, 2, . . . , n, and the DFT coefÞcients
of {y�} are exactly the Ò unionÓ of the DFT coefÞ cients of each component.

Recall that the period of composite y(t) is determined by its fundamental frequency f1 =

1/T . It is now clear that when we sample the composite signal y(t) for a single period, we have
in fact sampled its components for multiple periods. Since the N samples span k periods for
the kth component, it has the effect of putting the DFT coefÞ cients from different components
in their separate positions so they will not interfere with each other. It turns out that sampling
a signal (whether composite or single-component) for integer number of periods is the key to
avoid theÒl eakageÓ of frequencies, which is the subject of Section 4.5.

122 CHAPTER 4. DFT AND SAMPLED SIGNALS

Example 4.2 To determine the appropriate sampling rate and duration for the signal x(t) =

10 cos(10πt), we rewrite x(t) = 10 cos(2πfαt) with fα = 5 Hz, and we obtain the digital
frequency Fα = fα�t = 5�t. To satisfy the Nyquist condition, we must have

Fα = 5�t ≤ 1

2
,

which immediately leads to �t ≤ 0.1 sec. By choosing �t = 0.05 sec, we obtain Fα =

5�t = 0.25, which enables us to express Fα as a rational fraction

Fα =
1

4
=

k

N
.

Therefore, by sampling x(t) at intervals of 0.05 sec, the N = 4 samples will span k = 1

period of x(t), and the sampling duration is N�t = 4× 0.05 = 0.2 sec. The sampling rate is
R = 1/�t = 1/0.05 = 20 (samples per second or Hertz).

From the resulting discrete-time sinusoid

x� = 10 cos(2πFα�) = 10 cos(2πk�/N), where k = 1, N = 4,

we obtain the two nonzero DFT coefÞ cients

X1 = 1
2 (10) = 5, and X3 = 1

2 (10) = 5.

This result can be veriÞed by actually computing

x� = 10 cos(2πFα�) = 10 cos(0.5π�), � = 0, 1, 2, 3,

to obtain the sequence
{x0, x1, x2, x3} = {10, 0,−10, 0}

and use the DFT formula to obtain
X0

X1

X2

X3

 =
1

4


1 1 1 1

1 ω−1
4 ω−2

4 ω−3
4

1 ω−2
4 ω−4

4 ω−6
4

1 ω−3
4 ω−6

4 ω−9
4




10

0

−10

0

 =
1

4


1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j




10

0

−10

0

 =


0

5

0

5


Observe that we have simpliÞed the DFT matrix using the value

ω4 = ej2π/4 = cos(0.5π) + j sin(0.5π) = j

and the deÞn ition j2 = −1.

Example 4.3 Using the experience gained from the last example, we can now determine the
appropriate sampling rate and duration for y(t) = 3.2 cos(1.5πt− π/4) in two simple steps:

Step 1. We require Fβ = 0.75�t ≤ 1

2
, which leads to�t ≤ 2

3
.

Step 2. We choose�t = 0.2 to obtain Fβ = 0.75× 0.2 = 0.15 =
3

20
=

k

N
.

Therefore, the sampling duration is N�t = 20× 0.2 = 4 (sec), and the N = 20 samples span
k = 3 periods of y(t). The sampling rate is R = 1/�t = 1/0.2 = 5 (Hertz). The two nonzero
DFT coefÞ cients of {y�} so sampled are indexed by k = 3 and N − k = 17:

Y3 = 1.6e−jπ/4 = 4
√

2
5 − j 4

√
2

5 , and Y17 = 1.6ejπ/4 = 4
√

2
5 + j 4

√
2

5 .

4.4. DFT COEFFICIENTS OF A COMMENSURATE SUM 123

Example 4.4 We now repeat Step 2 in Example 4.3 with �t = 0.5, and we obtain

Fβ = 0.75× 0.5 = 0.375 =
3

8
=

k

N
.

The sampling duration is N�t = 8 × 0.5 = 4 (sec), and we have N = 8 samples spanning
over k = 3 periods of y(t). The sampling rate is now reduced to R = 1/0.5 = 2 (Hertz). The
two nonzero DFT coefÞcients of the eight-sample sequence {y�} are indexed by k = 3 and
N − k = 5:

Y3 = 1.6e−jπ/4 = 4
√

2
5 − j 4

√
2

5 , and Y5 = 1.6ejπ/4 = 4
√

2
5 + j 4

√
2

5 .

4.4.3 Common period of sampled composite signals

Suppose the composite signal

x(t) = Cα cos(2πfαt) + Cβej2πfβt

has been sampled above the Nyquist rate at intervals of�t seconds (which is the reciprocal of
the sampling rate of R Hertz), and we express the sample sequence as

x� = Cα cos(2πFα�) + Cβej2πFβ�, � = 0, 1, . . . ,

where the digital frequencies Fα = fα�t < 1
2 and Fβ = fβ�t < 1

2 . To determine the
periodicity of the sample sequence {x�}, we take the following steps:

Step 1: Express the digital frequency of each component signal as a rational fraction. For the
given signal, let us assume

Fα =
k1

N1
and Fβ =

k2

N2
.

Step 2: Find the common period N = LCM (N1, N2).

We now verify that x�+N = x�. To proceed, we assume N = m1N1 = m2N2 (because N is
the least common multiple of N1 and N2), and we obtain

Cα cos
(
2πFα(� + N)

)
= Cα cos(2πFα� + 2πk1m1) = Cα cos(2πFα�),

and
Cβej2πFβ(�+N) = Cβej2πFβ�ej2πk2m2 = Cβej2πFβ�.

The desired result follows immediately:

x�+N = Cα cos
(
2πFα(� + N)

)
+ Cβej2πFβ(�+N)

= Cα cos(2πFα�) + Cβej2πFβ�

= x�.

If we denote the fundamental frequency of the composite envelope function x(t) by fo, then
fo is the greatest common divisor of the individual frequencies (recall Section 1.6):

fo = GCD(fα, fβ),

124 CHAPTER 4. DFT AND SAMPLED SIGNALS

and the period of the composite signal x(t) is To = 1/fo sec. Since the sampling duration is
TN = N�t seconds in total, we have sampled Λ = TN/To periods of x(t) for the N samples.

It also turns out that we may directly obtain Λ = GCD(k1, k2), because

1

To
= fo = GCD(fα, fβ) = GCD

(
k1

N1�t
,

k2

N2�t

)
,

and we obtain

TN

To
= TN × fo = TN × GCD

(
k1m1

N�t
,

k2m2

N�t

)
(∵ N = N1m1 = N2m2)

= TN × 1

N�t
× GCD(k1m1, k2m2)

= GCD(k1m1, k2m2) (∵ TN = N�t)

= GCD(k1, k2). (∵ GCD(m1, m2) = 1)

Example 4.5 The function

y(t) = 4.5 cos (2πfαt) + 7.2 cos (2πfβt) = 4.5 cos (1.2πt) + 7.2 cos (1.8πt)

was used in Examples 1.1 and 1.2 in Section 1.6 to demonstrate a commensurate sum with
fundamental frequency fo = 0.3 Hz. Suppose y(t) has been sampled at intervals of�t = 0.5

(sec) so that y� = 4.5 cos (2πFα�) + 7.2 cos (2πFβ�), where

Fα = fα�t = 0.6× 0.5 =
3

10
=

k1

N1
; Fβ = fβ�t = 0.9× 0.5 =

9

20
=

k2

N2
.

We can now determine the period of the sequence {y�}, which is N = LCM(N1, N2) =

LCM(10, 20) = 20 (samples), and they span over Λ = GCD(k1, k2) = GCD(3, 9) = 3

periods of the original signal y(t). Since the total time for taking 20 samples is TN = N�t =

20× 0.5 = 10 seconds, we get the same result from computing Λ = TN × fo = 10× 0.3 = 3

periods.
Applying the DFT formula to the N = 20 sample sequence {y0, y1, . . . , y19}, we obtain

four nonzero DFT coefÞ cients indexed by k̃1 = k1m1 = 6, N − k̃1 = 14, k̃2 = k2m2 = 9,
and N − k̃2 = 11, i.e.,

Y6 = 1
2Cα = 2.25, Y−6 = 1

2Cα = 2.25 = Y14;

Y9 = 1
2Cβ = 3.6, Y−9 = 1

2Cβ = 3.6 = Y11.

The original function y(θ) can be reconstructed from

y(θ) =

N
2∑

r=−N
2 +1

Yre
jrθ =

10∑
r=−9

Yre
jrθ

= 3.6e−j9θ + 2.25e−j6θ + 2.25ej6θ + 3.6ej9θ

= 2.25
(
ej6θ + e−j6θ

)
+ 3.6

(
ej9θ + e−j9θ

)
= 4.5 cos (6θ) + 7.2 cos (9θ).

Observe that y
(
θ + 2

3π
)

= 4.5(6θ + 4π) + 7.2(9θ + 6π) = y(θ). To convert the variable from
θ back to t, it is important to recall that the DFT formula was derived by assuming that the

4.4. DFT COEFFICIENTS OF A COMMENSURATE SUM 125

N samples are equally spaced over T = TN = N�t seconds, so θ = 2πt/T = 2πt/TN =

2πt/(10) = 0.2πt, and we are able to reconstruct the original signal

y(t) = 4.5 cos (1.2πt) + 7.2 cos (1.8πt).

Remark 1: For the chosen �t = 0.5 sec (or sampling rate R = 2 Hz), the common period
N = 20 represents the smallest number of samples we must take so that the period
TN = N�t imposed by the DFT is an integer multiple of the fundamental period To of
the original signal y(t)Ñin this case, we have TN =3To. The sampling of y(t) based on
these choices is illustrated in the top plot in Figure 4.2.

Figure 4.2 Sampling y(t) at 2 Hz (for three periods) and 3 Hz (for one period).

−10

−5

0

5

10

15

−10

−5

0

5

10

15

Sampling y(t) at 2 Hertz for three periods (N = 20)

Sampling y(t) at 3 Hertz for one periods (N = 10)

10/30 20/3 10 sec

1st period 2nd period 3rd period

one period

10/3 sec0

Remark 2: The sampling rate may vary as long as (i) the Nyquist condition is satisÞed and
(ii) TN = N�t = mTo, where m ≥ 1 is a positive integer. For this example, using
�t = 1

3 will result in Fα = 1
5 and Fβ = 3

10 . Since N = LCM(5, 10) = 10 and
Λ = GCD(1, 3) = 1, the ten samples are equally spaced over a single period of y(t),
and we verify that TN = N�t = 10 × 1

3 = To. Applying the DFT to the ten samples,
we obtain the four nonzero DFT coefÞ cients: Y2 = 2.25, Y−2 = 2.25 = Y8, Y3 = 3.6,
and Y−3 = 3.6 = Y7. The reconstructed y(θ) is now given by

y(θ) = 4.5 cos (2θ) + 7.2 cos (3θ).

Observe that y(θ + 2π) = y(θ). Letting θ = 2πt/TN = 0.6πt, we again recover

y(t) = 4.5 cos (1.2πt) + 7.2 cos (1.8πt).

126 CHAPTER 4. DFT AND SAMPLED SIGNALS

The sampling of y(t) based on these new choices is illustrated in the second plot in Figure 4.2.
The signal fully reconstructed based on the twenty computed DFT coefÞ cients {Y0, Y1, . . . , Y19} =

{0, 0, . . . , 0, Y6, 0, 0, Y9, 0, Y11, 0, 0, Y14, 0, 0, . . . , 0} from Table 4.1 is shown in Figure 4.3.

Table 4.1 Numerical values of M DFT coefÞ cients when TM = To and TM = 3To.

M = 10 (one period) M = 20 (three periods)
r DFT Yr Ar Br DFT Yr Ar Br

0 0 0 — 0 0 —
1 0 0 0 0 0 0
2 2.25 4.5 0 0 0 0
3 3.60 7.2 0 0 0 0
4 0 0 0 0 0 0
5 0 0 — 0 0 0
6 0 2.25 4.5 0
7 3.60 0 0 0
8 2.25 0 0 0
9 0 3.6 7.2 0

10 0 0 —
11 3.6
12 0
13 0
14 2.25
15 0
16 0
17 0
18 0
19 0

4.5 Frequency Distortion by Leakage

In the context of Example 4.5 from the previous section, the term Ò leakageÓ refers to the
consequent distortion of frequency contents when the total number of samples M is neither
equal to N = LCM(N1, N2) nor equal to an integer multiple of N . We study again the
function used in the cited example:

y(t) = 4.5 cos (2πfαt) + 7.2 cos (2πfβt) = 4.5 cos (1.2πt) + 7.2 cos (1.8πt).

For sampling rate R = 2 Hz the digital frequencies of {y�} were determined to be

Fα =
k1

N1
=

3

10
, Fβ =

k2

N2
=

9

20
,

with N = LCM (N1, N2) = 20. Suppose we have sampled y(t) at R = 2 Hz to obtain a total
of M = 10 samples, then M = 0.5N , and the sampling duration TM = M�t = M/R = 5

seconds. Since the ratio TM/To = TM × fo = 5×0.3 = 1.5, the function y(t) is now sampled

4.5. FREQUENCY DISTORTION BY LEAKAGE 127

Figure 4.3 Signal reconstructed using computed DFT coefÞ cients from Table 4.1.

0 1 2 3 4 5 6 7 8 9 10

−10

−5

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10

−10

−5

0

5

10

15

Sampling y(t) for three full periods (N = 20)

Signal reconstructed using DFT coefficients Y
6
, Y

9
, Y

11
, and Y

14

y(t) = 4.5 cos(1.2πt) + 7.2 cos(1.8πt)

Figure 4.4 Sampling y(t) at 2 Hz for 1.5 periods.

−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

−7.5 −5 −2.5 0 2.5 5 7.5
−15

−10

−5

0

5

10

15

−5/3 5/3 0 5 sec−5 0 2.5−2.5

Periodic y(t) Sampling y(t) for 1.5 periods

Periodic extension of truncated y(t) with period T
M

 = 5 sec.

Period T
M

= 5 sec

5 sec

sec

N =10

N =10

z(t) ≠ y(t)

1.5 periods

128 CHAPTER 4. DFT AND SAMPLED SIGNALS

for Ò 1.5 periodsÓ instead of an integer number of periods. The sampling of y(t) based on these
choices is illustrated in Figure 4.4.

To investigate the consequence of applying the DFT to the M -sample sequence with M =

10, we express the digital frequencies as

Fα =
3

10
=

3

M
, Fβ =

9

20
=

4.5

10
=

4.5

M
,

and we obtain the analytical expression

(4.30)

y� = 4.5 cos
(
2π 3

M �
)

+ 7.2 cos
(
2π 4.5

M �
)
, � = 0, 1, . . . , M − 1,

= 4.5 cos (3�θ1) + 7.2 cos (4.5�θ1)
(
let θ1 = 2π

M

)
= 2.25

(
ej3�θ1 + e−j3�θ1

)
+ 3.6

(
ej4.5�θ1 + e−j4.5�θ1

)
(by EulerÕs formula)

= 2.25 ω3�
M

+ 2.25 ω−3�
M

+ 3.6 ω4.5�
M

+ 3.6 ω−4.5�
M

(
let ωM = ejθ1

)
= 2.25 ω3�

M + 2.25 ω7�
M + 3.6 ω4.5�

M + 3.6 ω5.5�
M .

(
∵ ωM±r

M = ω±r
M

)
Comparing the right-hand side of (4.30) with the M -term IDFT formula

y� =
M−1∑
r=0

Yrω
r�
M

, where ωM

def
= ej2π/M ,

clearly we wonÕt Þ nd terms to match ω4.5�
M and ω5.5�

M , because the exponent r in the IDFT
formula must be an integer. This happens because the corresponding component in the original
signal y(t) is nonharmonic with respect to the interval TM = 5 seconds chosen for the DFT
computation:

7.2 cos (1.8πt) = 7.2 cos

(
2π

4.5

5
t

)
= 7.2 cos

(
2π

4.5

TM

t

)
,

which shows a frequency fβ = 4.5/TM instead of fk = k/TM required by a harmonic compo-
nent. We will show how the frequency content of a nonharmonic component spreads across the
entire DFT spectrum. Because of such leakage from the nonharmonic component, while the
two terms 2.25 ω3�

M
and 2.25 ω7�

M
from the harmonic component 4.5 cos (1.2πt) contribute to

the corresponding terms in the IDFT formula, they are no longer solely responsible for the val-
ues of Y3 and Y7Ñthe effect of leakage on the entire DFT spectrum is studied in the following
sections.

4.5.1 Fourier series expansion of a nonharmonic component

To determine the ten DFT coefÞ cients of the nonharmonic component

z(t) = 7.2 cos (1.8πt) = 7.2 cos

(
2π

4.5

TM

t

)
,

which was sampled at R = 2 Hz for TM = 5 seconds in the last example, we can proceed
analytically by Þ nding, at Þ rst, the Fourier series coefÞ cients of z(t) using formula (3.12) from

4.5. FREQUENCY DISTORTION BY LEAKAGE 129

Chapter 3:

Ck =
1

TM

∫ TM /2

−TM /2

z(t) e−j2πkt/TM dt

=
7.2

5

∫ 5/2

−5/2

cos (1.8πt) e−j2πkt/5 dt (∵ TM = 5)

=
7.2

5

∫ 5/2

−5/2

[
ej1.8πt + e−j1.8πt

2

]
e−j2πkt/5 dt (by EulerÕs formula)

=
3.6

5

∫ 5/2

−5/2

ej2π(4.5−k)t/5 + ej2π(−4.5−k)t/5 dt.

To evaluate the deÞn ite integral on the right-hand side, we make use of the following result:

1

2τ

∫ τ

−τ

ejαt dt =
1

2τ

ejαt

jα

∣∣∣∣∣
τ

−τ

=
1

ατ

[
ejατ − e−jατ

2j

]
=

sinατ

ατ
.

Letting τ = 5/2, α = 2π(4.5− k)/5, and β = 2π(−4.5− k)/5, we immediately obtain

Ck =
3.6

2τ

∫ τ

−τ

ejαt + ejβt dt

= 3.6

[
sin ατ

ατ
+

sin βτ

βτ

]
= 3.6

[
sin(4.5− k)π

(4.5− k)π
+

sin(−4.5− k)π

(−4.5− k)π

]
= 3.6

[
sin(4.5− k)π

(4.5− k)π
+

sin(4.5 + k)π

(4.5 + k)π

]
.

We can further simplify the right-hand side using

sin (γπ ∓ kπ) = sin γπ cos kπ ∓ cos 4.5π sin kπ = (−1)k sin γπ

with γ = 4.5, and we obtain

Ck = 3.6(−1)k sin 4.5π

[
1

(4.5− k)π
+

1

(4.5 + k)π

]
= 3.6(−1)k

[
9(

4.52 − k2
)
π

]
. (∵ sin 4.5π = 1)

Note that Ck 	= 0 for every integer k ∈ (−∞,∞). Because the factor
(
4.52 − k2

)
occurs in

the denominator, C±4 has the largest magnitude when
(
4.52 − k2

)
takes on the smallest value

with k = ±4.

4.5.2 Aliased DFT coefficients of a nonharmonic component

Using the results from the last section, we can express the component z(t) (which is non-
harmonic with respect to the sampling duration TM chosen for the DFT computation) by its

130 CHAPTER 4. DFT AND SAMPLED SIGNALS

Fourier series expansion, i.e.,

z(t) = 7.2 cos (1.8πt) = 7.2 cos

(
2π

4.5

TM

t

)
=

∞∑
k=−∞

Ck ej2πkt/TM , where

TM = 5, Ck =
3.6× 9× (−1)k(

4.52 − k2
)
π

.

As discussed previously in Section 3.11, the Fourier series coefÞ cients Ck of z(t) can be
directly linked to the DFT coefÞ cients Zr deÞ ned by

Zr =
1

M

M−1∑
�=0

z�ω
−r�
M

, ωM = ej2π/M , r = 0, 1, . . . , M−1,

where z� = z(��t) are the M equally spaced samples of z(t) over the imposed period [0, TM].
The relationship

Zr =

∞∑
m=−∞

Cr+mM , r = 0, 1, . . . , M−1

derived in Section 3.11 explains how all of the DFT coefÞ cients of sampled z(t) are affected
by the inÞ nite number of nonzero Fourier series coefÞ cients.

Recall that in our example we were analyzing the DFT coefÞ cients of sampled composite
signal

y(t) = 4.5 cos (1.2πt) + 7.2 cos (1.8πt),

for which we have the IDFT formula

y� = 2.25 ω3�
M + 2.25 ω7�

M +

M−1∑
r=0

Zrω
r�
M =

M−1∑
r=0

Yrω
r�
M , � = 0, 1, . . . , M−1;

hence, the DFT coefÞcients Yr can now be expressed as

Yr =


Z3 + 2.25 if r = 3

Z7 + 2.25 if r = 7

Zr if r 	= 3 & r 	= 7

for r = 0, 1, . . . , M−1 (recall M =10 in our example), where

Zr =

∞∑
m=−∞

Cr+mM

=

∞∑
m=−∞

3.6× 9× (−1)r+mM(
4.52 − (r + mM)2

)
π

=

∞∑
m=−∞

32.4(−1)r

20.25π − (r + 10M)2π
. (∵ M =10, (−1)mM = 1)

To approximate the DFT coefÞ cients Yr using this analytical formula, we may evaluate

Zr =

K∑
m=−K

Cr+mM ,

4.5. FREQUENCY DISTORTION BY LEAKAGE 131

using sufÞ ciently large Þ nite K . For M = 10, using K = 500, we obtain Y0 ≈ 0.1143,
Y1≈−0.1267, Y2≈0.1768, Y3≈1.9032, Y4≈1.5667, Y5≈4.5456, Y6≈1.5667, Y7≈1.9032,
Y8 ≈ 0.1768, and Y9 ≈ −0.1267. Therefore, the entire DFT spectrum is affected by leakage
from the nonharmonic frequency.

4.5.3 Demonstrating leakage by numerical experiments

In the last section we used the composite signal from Example 4.5 to study frequency distor-
tion by leakage analytically; we shall now do the same numerically. We have sampled the
composite signal

y(t) = 4.5 cos (1.2πt) + 7.2 cos (1.8πt)

at intervals of �t = 0.5 for M = 10 samples over the duration TM = 1.5To = 5 seconds, and
we apply the DFT formula to compute {Yr} directly from the M -sample sequence {y�}. The
computed DFT coefÞ cients {Y0, Y1, . . . , Y9} are given in Table 4.2. The reconstructed signal

(4.31)

z(t) =

9∑
r=0

Yr ej2πrt/TM

=
A0

2
+ A5 cos

20πt

TM

+

4∑
r=1

Ar cos
2πrt

TM

+ Br sin
2πrt

TM

=
A0

2
+ A5 cos (4πt) +

4∑
r=1

Ar cos (0.4πrt) + Br sin (0.4πrt)

contains M = 10 terms with coefÞcien ts Ar and Br explicitly given in Table 4.2. Note
that Br = 0 for every r because the function in the sampled interval remains to be an even
function; however, we now have Ar 	= 0 for r = 0, 1, 2, 3, 4, 5. Clearly the reconstructed
signal z(t) 	= 4.5 cos (1.2πt) + 7.2 cos (1.8πt), and we illustrate how z(t) deviates from y(t)

in Figure 4.5. In Figure 4.6 we show that leakage can be reduced by increasing the number of
samples from N =10 to N =20.

4.5.4 Mismatching periodic extensions

In this section we offer another useful perspective on the cause of frequency leakage. Suppose
we have sampled a signal x(t) with period T to obtain M equally spaced samples over [0, TM]

for spectrum analysis, and TM is not an integer multiple of T . By carrying out the DFT on the

M samples denoted by z�
def
= x� for � = 0, 1, . . . , M−1, we obtain

(4.32) Zr =
1

M

M−1∑
�=0

z�ω
−r�
M (r = 0, 1, . . . , M−1);

by carrying out the IDFT on computed Zr, we recover

(4.33) z� =

M−1∑
r=0

Zrω
r�
M (� = 0, 1, . . . , M−1).

Observe that the periodicity of the M -sample sequence, expressed as z�+M = z�, is imposed
by the IDFT computation prescribed by (4.33), which reinforces the fact that the M samples
are taken by the DFT to represent a single period of some unknown signal z(t); hence, the

132 CHAPTER 4. DFT AND SAMPLED SIGNALS

Table 4.2 Numerical values of M distorted DFT coefÞ cients when TM =1.5To.

M = 10 (TM = 1.5To) M = 20 (TM = 1.5To)
r DFT Yr Ar Br DFT Yr Ar Br

0 0.1140368 0.2280736 — 0.4215058 0.8430116 —
1 −0.1264108 −0.2528215 0 −0.4474678 −0.8949357 0

2 0.1765708 0.3531417 0 0.5448626 1.0897252 0

3 1.9034602 3.8069204 0 1.4256876 2.8513752 0

4 1.5664108 3.1328215 0 2.3303310 4.6606621 0

5 4.5459011 4.5459011 — 2.2729506 4.5459011 0

6 1.5664108 −0.7639203 −1.5278405 0

7 1.9034602 0.4777726 0.9555452 0

8 0.1765708 −0.3682918 −0.7365835 0

9 −0.1264108 0.3210571 0.6421141 0

10 −0.3074691 −0.3074691 —
11 0.3210571

12 −0.3682918

13 0.4777726

14 −0.7639203

15 2.2729506

16 2.3303310

17 1.4256876

18 0.5448626

19 −0.4474678

4.5. FREQUENCY DISTORTION BY LEAKAGE 133

Figure 4.5 Signal reconstructed using M =10 DFT coefÞ cients from Table 4.2.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−10

−5

0

5

10

15

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−10

−5

0

5

10

15

Sample y(t) for 1.5 periods (N = 10)

y(t) = 4.5cos(1.2πt)
 + 7.2cos(1.8πt)

Reconstructed z(t) using 10 (distorted) DFT coefficients

z(t):
y(t):

Figure 4.6 Signal reconstructed using M =20 DFT coefÞ cients from Table 4.2.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−10

−5

0

5

10

15

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−10

−5

0

5

10

15

Sampling y(t) for 1.5 periods (N = 20)

y(t) = 4.5 cos(1.2πt)
 + 7.2 cos(1.8πt)

Reconstructed z(t) using N = 20 (distorted) DFT coefficients

z(t):
y(t):

134 CHAPTER 4. DFT AND SAMPLED SIGNALS

reconstructed signal must satisfy z
(
t+TM

)
= z(t). Clearly, x�+M 	= x� and x(t+TM) 	= x(t)

when TM/T is not an integer, so the signal z(t) analyzed by the DFT is not the original signal
x(t). By treating z(t) as a time-limited function over [0, TM] at Þ rst, its periodic extension
gives us the protracted version of z(t) with period TM . That is,

z(t)
def
=

{
x(t), t ∈ [0, TM],

x
(
t−mTM

)
, |t| > TM , t−mTM ∈ [0, TM], m is an integer.

Since the Fourier series expansion of the TM -periodic z(t) is different from that of the T -
periodic x(t), so are the corresponding DFT coefÞ cients; i.e., Zr 	= Xr. The leakage error
in the computed Zr can thus be attributed to truncating x(t) at the wrong place, and for this
reason the leakage error is also referred to as the truncation error or Þ nite sample error in the
literature.

Understanding frequency leakage from this perspective will be useful when we connect the
error in the computed spectrum to the application of Ò windowsÓ in Chapter 8.

4.5.5 Minimizing leakage in practice

While in theory we can eliminate leakage by sampling a given signal for an integer number of
periods, this cannot be easily accomplished in practice when we attempt to analyze samples
from an unknown signalÑbecaus e we would not know its period. The usual strategies em-
ployed to minimize leakage are to (i) experiment with increasing sampling rate and sampling
duration if this option is available (in general, a higher sampling rate and a longer sampling
duration help minimize the effects of aliasing and leakage); (ii) run the DFT on increasing
number of samples until there is little change in the computed spectrum (for example, we have
demonstrated how leakage can be reduced by increasing the number of samples from N =10

in Figure 4.5 to N = 20 in Figure 4.6); and (iii) use tapered windows to truncate the sample
sequence before running the DFTÑ this is a topic covered in Chapter 8.

4.6 The Effects of Zero Padding

4.6.1 Zero padding the signal

There are two commonly cited reasons for extending the sample sequence by adding zeros.
(i) Some FFT computer programs require the user to input exactly 2n samples. (When this
condition is not met, some program will automatically append zeros to the input data so the
data length is extended to the next power of two.) We remark that the radix-2 FFT is simply
one fast method of computing the DFT coefÞ cientsÑ it does not alter the mathematical deÞ ni-
tion or properties of the DFT. Although FFT algorithms for other lengths (including arbitrary
prime length) have been developed, their implementations may not be available in every FFT
package. (ii) When the DFT spectrum is too sparse for us to visualize a continuous analog
spectrum X(f), one may wish to decrease the spectral spacing�f on the frequency grid. Re-
call that �f = 1/(N�t); hence, �f can be reduced if we enlarge N by adding zeros. (The
continuous analog spectrum X(f) is called the Fourier transform of x(t), which is formally
treated in Chapter 5.)

How does zero padding affect the DFT spectrum? In the Þ rst case, the zero-padding of
input data to the next power of two M̃ = 2s ≥ N may result in M̃ = αN , where α is not

4.6. THE EFFECTS OF ZERO PADDING 135

an integer. In such case the zero-padded input data of length M̃ = αN may be interpreted as
the result obtained by truncating zero-padded input data sequence of length M = qN , where
q > a is an integerÑ the case we study next, and the frequency distortion caused by improper
truncation of the data sequence in the time-domain will be studied in Chapter 8.

We develop next the zero-padding strategy which allows us to obtain the additional values
needed for visualizing a continuous spectrum without distorting the original DFT spectrum;
i.e., the original DFT coefÞ cients can be recovered from the new results. To accomplisth that,
we need to append zeros to an N -sample sequence {x�} to extend its length to M =qN , where
q is an integer and q ≥ 2, and when we assume N = 2n+2 and M = 2m+2, the DFT of the
zero-padded M -sample sequence {z�} is given by

(4.34)

Zr =
1

M

m+1∑
�=−m

z�ω
−r�
M , ωM

def
= ej2π/M (−m ≤ r ≤ M−m+1)

=
1

M

n+1∑
�=−n

z�ω
−r�
M

. (∵ z� = 0 for � < −n or � > n + 1))

Note that neighboring Zr and Zr+1 are now separated by

�f̃ =
1

M�t
=

1

q

[
1

N�t

]
=

1

q
�f.

Letting r = q × k for −n ≤ k ≤ n−1 in the deÞn ing formula (4.34) for Zr, we obtain

(4.35)

Zq×k =
1

M

n+1∑
�=−n

z�ω
−qk�
M

=
1

qN

n+1∑
�=−n

z�ω
−qk�
qN

(∵ M = qN)

=
1

qN

n+1∑
�=−n

z�ω
−k�
N

(∵ ωq
qN

= ej2π/N = ωN)

=
1

q

[
1

N

n+1∑
�=−n

x�ω
−k�
N

]
(∵ z� = x�, −n ≤ � ≤ n + 1)

=
1

q
Xk. (by deÞn ition of DFT)

Hence we can recover Xk = qZq×k for −n ≤ q ≤ n+1. (An example is shown later in
Figures 4.7, 4.8, 4.9, and Table 4.3.)

How do we interpret the q−1 values of Zr between Zq×k and Zq×(k+1)? Since we can
obtain the deÞ ning formula of 1

q Xk by evaluating

(4.36) Z(θ) =
1

q

[
1

N

n+1∑
�=−n

x�e
−j�θ

]
=

1

M

n+1∑
�=−n

z�e
−j�θ

at θ = k(2π/N), and we can also obtain the deÞ ning formula (4.34) of Zr by evaluating the
same Z(θ) at θ = r(2π/M), the Zr values between 1

q Xn and 1
q Xn+1 are simply additional

interpolating frequency points supplied by the same function Z(θ).
Therefore, by zero padding the signal, we effortlessly obtain additional values of Z(θ) so

that we can plot a visually denser spectrum. The IDFT of {qZr} returns the original N samples
plus M−N zerosÑ no information is gained or lost by zero padding. This explains why zero
padding in the time domain leads to Ò interpolationÓ in the frequency domain.

136 CHAPTER 4. DFT AND SAMPLED SIGNALS

To directly and explicitly demonstrate ZrÕs interpolation of the DFT, we begin with the
DFT (of zero-padded sequence) deÞ ned by Equation (4.34) and proceed as shown below.

(4.37)

Zr =
1

qN

n+1∑
�=−n

x� ω−r�
qN

, where N = 2n + 2, M = qN,

=
1

M

n+1∑
�=−n

[
n+1∑

k=−n

Xkωk�
N

]
ω−r�

M (by IDFT deÞ niton)

=
1

M

n+1∑
k=−n

Xk

[
n+1∑

�=−n

ωk�
N ω−r�

M

]

=
1

M

n+1∑
k=−n

Xk

[
n+1∑

�=−n

ω
�(k−r/q)
N

]
(∵ ωq

M = ωq
qN = ej2π/N = ωN)

=
1

M

n+1∑
k=−n

XkLk

(
k − r/q

)
,

where

Lk

(
k − r/q

)
=

n+1∑
�=−n

ω
�(k−r/q)
N =


N if m = k − r/q = 0;

0 if m = k − r/q 	= 0 is an integer;
1− e j2πλk

1− ωλk
N

if λk = k − r/q 	= 0 is not an integer.

Note that ωλkN
N

= ej2πλk 	= 1 when λk is not an integer. Assuming that q = M/N is an
integer as before, we may now use (4.37) to show

Zq×µ =
1

M

n+1∑
k=−n

XkLk

(
k − q×µ

q

)
=

1

M
XµLµ

(
µ− q×µ

q

)
=

N

M
Xµ =

1

q
Xµ;

for Zr with r not being an integer multiple of q, we have the interpolated value according
to (4.37):

Zr =
1

M

n+1∑
k=−n

XkLk(k − r/q) =
1

M

n+1∑
k=−n

Xk

[
1− e j2πλk

1− e j2πλk/N

]
,

where λk = k − r/q is not an integer.
When the zero-padded data length M is not an integer multiple of the original length N ,

then q = M/N is not an integer; while Zr is still deÞned by Equation (4.34), we no longer
have the conventional DFT {Xµ} appear as a subset of the new DFT {Zr}.

Example 4.6 In Figures 4.8 and 4.9 we demonstrate the effect of zero padding using the Gaus-
sian function

x(t) = e−at2 (a > 0), t ∈ (−∞,∞),

and its Fourier transform

X(f) =
√

π/a e−π2f2/a, f ∈ (−∞,∞);

4.6. THE EFFECTS OF ZERO PADDING 137

the latter represents the continuous analog spectrum of the nonperiodic time-domain function
x(t) in the frequency domain. (The Fourier transform pair involving the Gaussian function is
derived in Example 5.2 in Chapter 5.) The graphs of x(t) and X(f) are shown for t ∈ [−5, 5]

in Figure 4.7. To obtain the DFT coefÞ cients in Figure 4.8, we have performed the following
steps:

Step 1. Take N =10 equally spaced samples

{x−4, x−3, x−2, x−1, x0, x1, x2, x3, x4, x5}

from the interval−5 < t ≤ 5 as identiÞed in the Þ rst plot in Figure 4.8.

Step 2. Compute N =10 DFT coefÞ cients using the formula

Xr =
1

N

5∑
�=−4

x� ω−r�
N , −4 ≤ r ≤ 5.

The computed XrÕs (scaled by T = 10) are identiÞed in the second plot in Figure 4.8,
and their numerical values are recorded in Table 4.3.

Remark: In this step, if needed, we may rearrange the data to obtain

{x̃0, x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8, x̃9}
={x0, x1, x2, x3, x4, x5, x−4, x−3, x−2, x−1},

and compute the N =10 DFT coefÞ cients by the alternate formula:

Xr =
1

N

9∑
�=0

x̃� ω−r�
N , 0 ≤ r ≤ 9.

Using the relationship Xr = Xr−N , we can convert the computed Xr, 6 ≤ r ≤ 9, back
to X−4, X−3, X−2, and X−1.

This is a useful strategy in computing practice when only one of the two equivalent DFT
formulas is implemented by an available FFT computer program.

To obtain the extra ten DFT coefÞ cients in Figure 4.9, we have performed the following
steps:

Step 1. Take N =10 equally spaced samples

{x−4, x−3, x−2, x−1, x0, x1, x2, x3, x4, x5}

from the interval−5 < t ≤ 5 as identiÞed in the Þ rst plot in Figure 4.9.

Step 2. Zero-pad the 10-sample sequence {x�} by appending ten more zeros. That is, we
double the sample length from N to qN with q = 2. As shown below, the ten zeros
are split up and appended to both ends of the given sequence. The resulting 20-sample
sequence {z�} is

{z−9, z−8, . . . , z−1, z0, z1, . . . , z10}
= {0, 0, 0, 0, 0, x−4, x−3, x−2, x−1, x0, x1, x2, x3, x4, x5, 0, 0, 0, 0, 0}.

138 CHAPTER 4. DFT AND SAMPLED SIGNALS

Step 3. Compute M =20 DFT coefÞ cients using the formula

Zr =
1

M

10∑
�=−9

z� ω−r�
M , −9 ≤ r ≤ 10.

The computed ZrÕs (scaled by qT = 20) are identiÞed in the second plot in Figure 4.9.
The numerical values of ZrÕs are recorded in Table 4.3, so they can be compared with
the ten previously computed XrÕs directly.

Remark: In this step, if needed, we may rearrange the data to obtain

{z̃0, z̃1, . . . , z̃10, z̃11, . . . , z̃19} = {z0, z1, . . . , z10, z−9, . . . , z−1},

and compute the M =20 DFT coefÞ cients by the alternate formula:

Zr =
1

M

19∑
�=0

z̃� ω−r�
M , 0 ≤ r ≤ 19.

Using the relationship Zr = Zr−M , we can convert the computed Zr, 11 ≤ r ≤ 19,
back to Z−9, Z−8, . . . , Z−1.

We mention again that this is a useful strategy in computing practice when only one of
the two equivalent DFT formulas is implemented by an available FFT computer pro-
gram.

Figure 4.7 The Gaussian function x(t) and its Fourier transform X(f).

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

Fourier transform

x(t) = e−at
2

 (a = 0.5)

X(f) = (π/a)1/2e−2π2
f
2

time t (seconds)

frequency f (cycles per second)

4.6. THE EFFECTS OF ZERO PADDING 139

Figure 4.8 Computing ten DFT coefÞ cients from ten signal samples.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3
The ten computed DFT coefficients (multiplied by T)

X± k
T

Taking N = 10 samples from x(t), t ∈ (−5, 5]

x(t)

Figure 4.9 Computing twenty DFT coefÞ cients by zero padding ten signal samples.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3
The twenty computed Z±k

 (multiplied by q and T)

qZ± k
T (q = 2)

x(t)

Taking N = 10 samples from x(t), t ∈ (−5, 5]

140 CHAPTER 4. DFT AND SAMPLED SIGNALS

Table 4.3 Numerical values of the DFT coefÞcie nts plotted in Figures 4.8 and 4.9.

N =10 (T =10) M =qN =20 (T =10)
±r X±rT ±r qZ±rT (q=2)

−9 0.0524351

−4 0.1085813 −8 0.1085813

−7 0.2239264

−3 0.4243447 −6 0.4243447

−5 0.7300004

−2 1.1381158 −4 1.1381158

−3 1.6077044

−1 2.0576168 −2 2.0576168

−1 2.3859337

0 2.5066245 0 2.5066245

1 2.3859337

1 2.0576168 2 2.0576168

3 1.6077044

2 1.1381158 4 1.1381158

5 0.7300004

3 0.4243447 6 0.4243447

7 0.2239264

4 0.1085813 8 0.1085813

9 0.0524351

5 0.0360585 10 0.0360585

4.6. THE EFFECTS OF ZERO PADDING 141

4.6.2 Zero padding the DFT

In view of the symmetry in the formulation of DFT and IDFT, it is expected that zero padding
the DFT will lead to Òsig nal interpolationÓ in the time domain. This is indeed the case provided
that we preserve the DFT property |Zr| = |ZM−r| (for r > 0) in the M -point zero-padded
{Zr}, because this would have held when the DFT and IDFT are derived directly from any
M -point sequence. To show how to transplant this property from the original N -point DFT to
the zero-padded M -point DFT, we shall use a concrete example to help with the explanation
that follows. In the example we are required to extend the DFT length from N =2n+2=6 to
M =2m+2=10, and the questions are: Where should we put the zeros? What other changes
should we make to ensure |Zr| = |ZM−r| in the zero-padded new DFT?

We Þ rst review some key relationships embedded in the derivation of the DFT. Recall that
DFT was derived to give us the N = 2n+2 coefÞ cients of the interpolating trigonometric
polynomial when the latter is expressed in complex exponential modes:

(4.38) x(t) =

n+1∑
r=−n

Xre
j2πrt/T .

By evaluating (4.38) at N equally spaced signal samples x� over [0, T] , we obtain the system
of equations:

(4.39) x� =

n+1∑
r=−n

Xrω
r�
N , ωN = ej2π/N , 0 ≤ � ≤ N − 1.

For N = 2n + 2 = 6, the coefÞ cients in (4.39) are

{X−2, X−1, X0, X1, X2, X3},

and we have |Xr| = |X−r| for 1 ≤ r ≤ 2; because it is through deÞ ning
ÔX±r = 1

2 (Ar ∓ jBr)Õ we convert x(t) from the expression using the pure cosine and sine
modes to the one using complex exponential modes. By making use of the fact ω−r

N
= ωN−r

N
,

we relabel the terms X−rω
−r�
N in (4.39) as XN−rω

(N−r)�
N to obtain the IDFT

(4.40) x� =
N−1∑
r=0

Xrω
r�
N

, 0 ≤ � ≤ N − 1,

which then leads to the DFT formula for Xr (1≤ r≤N − 1). Hence the DFT coefÞ cients in
our example for N = 6 are

{X0, X1, X2, X3, X4, X5} = {X0, X1, X2, X3, X−2, X−1},

and |Xr| = |X−r| for 1 ≤ r ≤ n in (4.39) is translated to |Xr| = |XN−r| for 1 ≤ r ≤ n

in (4.40).
To Þ gure out where to insert the zeros in the N -point DFT {Xr}, we start with the equa-

tions deÞ ned by (4.39) (or its equivalent for odd N), because any additional terms in the DFT
must originate from (4.39). Depending on N being even or odd, we take the following steps
to arrive at the deÞn ition of zero-padded DFT {Zr}:
Step 1. (Skip this step if N is odd.) Starting with (4.39), we split the term with coefÞ cient

Xn+1 (which is X3 in the example) into two halves so that we can extend the property

142 CHAPTER 4. DFT AND SAMPLED SIGNALS

|Xr| = |X−r| for 1 ≤ r ≤ n to |X̂r| = |X̂−r| over the extended symmetric range for
1≤r≤n + 1 as shown below.

(4.41)

x� =

n+1∑
r=−n

Xrω
r�
N

(
start with (4.39)

)
= 1

2Xn+1ω
(n+1)�
N +

[
n∑

r=−n

Xrω
r�
N

]
+ 1

2Xn+1ω
(n+1)�
N

= 1
2Xn+1ω

−(n+1)�
N +

[
n∑

r=−n

Xrω
r�
N

]
+ 1

2Xn+1ω
(n+1)�
N

(∵ N =2n+2, ωn+1
N =ejπ =e−jπ =ω−n−1

N)

=

n+1∑
r=−n−1

X̂rω
r�
N

,

where

(4.42) X̂r =


1
2Xn+1 if r = −(n + 1),

Xr if − n ≤ r ≤ n,
1
2Xn+1 if r = n + 1.

For N =2n+2=6 in our example, we split X3 to obtain

{X̂−3, X̂−2, X̂−1, X̂0, X̂1, X̂2, X̂3} = { 1
2X3, X−2, X−1, X0, X1, X2,

1
2X3}.

Observe that |X̂r| = |X̂−r| for 1 ≤ r ≤ 3.

Step 2(a). (For even N) We now add M−N−1 = 2(m−n)−1 zeros to the (N +1)-point
sequence {X̂r} in the following manner: add m−n−1 zeros before X̂−(n+1), and add
m−n zeros after X̂n+1. For M =10 and N =6, we have M−N−1 = 3 in our example,
so we obtain

{Z−4, Z−3, Z−2, Z−1, Z0, Z1, Z2, Z3, Z4, Z5}
= {0, X̂−3, X̂−2, X̂−1, X̂0, X̂1, X̂2, X̂3, 0, 0}
= {0, 1

2X3, X−2, X−1, X0, X1, X2,
1
2X3, 0, 0}, (

from (4.42)
)

where |Zr| = |Z−r| holds for 1≤ r ≤ 4. Observe that |Z3| = |Z−3| because we split
the X3 term, which is no longer the last term in the zero-padded 10-point sequence.
Because the condition |Z−r| = |Zr| for 1 ≤ r ≤ m is satisÞed , we may now interpret
Zr (−m ≤ r ≤ m + 1) as the coefÞcien ts of

(4.43) z� =

m+1∑
r=−m

Zrω
r�
M , ωM = ej2π/M , 0 ≤ � ≤M − 1.

Step 2(b). (For odd N) When N = 2n+1, we already have equal number of Xr and X−r,
so the term splitting in Step 1 is not needed. Since M −N is an even number when
M =2m+1 and N =2n+1 are both odd, we add exactly m−n zeros before X−n and
exactly m−n zeros after Xn.

4.6. THE EFFECTS OF ZERO PADDING 143

Step 3(a). (For even N) The property ω−r
M = ωM−r

M enables us to relabel the terms Z−rω
−r�
M

in (4.43) as ZM−rω
(M−r)�
M to obtain the M -point IDFT

(4.44) z� =

M−1∑
r=0

Zrω
r�
M , ωM = ej2π/M , 0 ≤ � ≤M − 1.

To complete our example, the zero-padded DFT contains

{Zr} = {Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9}
= {Z0, Z1, Z2, Z3, Z4, Z5, Z−4, Z−3, Z−2, Z−1}
= {X0, X1, X2,

1
2X3, 0, 0, 0, 1

2X3, X−2, X−1}
(

from step 2(a)
)

= {X0, X1, X2,
1
2X3, 0, 0, 0, 1

2X3, X4, X5}. (∵ X−r = XN−r)

We have thus arrived at the following deÞn ition of Zr (0 ≤ r ≤ M − 1) in terms of
given Xr (0 ≤ r ≤ N − 1) with M = 2m + 2 and N = 2n + 2:

(4.45) Zr =



Xr, 0 ≤ r ≤ n,
1
2Xn+1, r = n + 1,

0, n + 2 ≤ r ≤ M − n− 2,
1
2Xn+1, r = M − n− 1,

Xr−M+N , M − n ≤ r ≤ M−1.

The process we use to arrive at the deÞn ition of the new DFT {Zr} ensures that |Zr| =
|ZM−r| holds for 1 ≤ r ≤ m.

Step 3(b). (For odd N) Repeating the process in 3(a) on the zero-padded sequence from step
2(b) mandates that M−N zeros should be inserted between Xn and Xn+1 when N =

2n + 1.

With the zero-padded DFT properly deÞ ned, we can now demonstrate how the computed M -
sample sequence {z�} interpolates the N -sample sequence {xd} in the time domain. Assuming
that q = M/N is an integer, we show next that the computed {z�} contains {xd}Ñth e value
of z� agrees with the value of x�/q when � is an integer multiple of q, i.e., z� = x�/q for
0 ≤ �/q ≤ N − 1.

We proceed by computing z� from the zero-padded {Zr} deÞ ned in (4.45) using the M -
point IDFT, where � is an integer multiple of q, and we assume q=M/N =(2m+2)/(2n+2)

is an integer:

(4.46)

z� =

M−1∑
r=0

Zr ωr�
M , (0 ≤ � ≤ M−1)

=

n∑
r=0

Xr ωr�
M +

[
1
2Xn+1

(
ω

(n+1)�
M + ω

(M−n−1)�
M

)]
+

M−1∑
r=M−n

Xr−M+N ωr�
M

=

n∑
r=0

Xr ωr�
M + Xn+1e

jπ�/q +

M−1∑
r=M−n

Xr−M+N ωr�
M .

Note that in deriving this intermediate result we have made use of the fact that ωM
M

= 1 and
ω
±(n+1)�
M = e±j2π(n+1)�/M = e±jπ�/q , where q = M/N . Since �/q is an integer, we have

144 CHAPTER 4. DFT AND SAMPLED SIGNALS

ejπ�/q = e−jπ�/q, and the result follows. We continue to simplify formula (4.46):

(4.47)

z� =

n+1∑
r=0

Xr ωr�
M +

M−1∑
r=M−n

Xr−M+N ωr�
M (∵ Xn+1ω

(n+1)�
M = Xn+1e

jπ�/q)

=

n+1∑
r=0

Xr ωr�
M +

N−1∑
d=n+2

Xd ω
(d+M−N)�
M (deÞ ne d = r −M + N)

=

n+1∑
r=0

Xr ωr�
M +

N−1∑
r=n+2

Xr ωr�
M ωM�

M ω−N�
M (relabel d as r ; note ωM�

M = 1)

=

n+1∑
r=0

[
1

N

N−1∑
k=0

xkω−kr
N

]
ωr�

M +

N−1∑
r=n+2

[
1

N

N−1∑
k=0

xkω−kr
N

]
ωr�

M ω−N�
M

=
1

N

N−1∑
k=0

xk

[
n+1∑
r=0

ω−kr
N ωr�

M

]
+

1

N

N−1∑
k=0

xk

[
N−1∑

r=n+2

ω−kr
N ωr�

M

]
ω−N�

M

=
1

N

N−1∑
k=0

xk

[
n+1∑
r=0

ω
−r(k−�/q)
N + ω

−N�/q
N

N−1∑
r=n+2

ω
−r(k−�/q)
N

]
(∵ ωq

M
= ωN)

=
1

N

N−1∑
k=0

xk

N−1∑
r=0

ω
−r(k−�/q)
N (∵ ω

−N�/q
N = 1 when �/q is an integer)

=
1

N

N−1∑
k=0

xk Tk(k − �/q),

where Tk(k − �/q) =

N−1∑
r=0

ω
−r(k−�/q)
N

=

{
N if k − �/q = 0,

0 otherwise. (∵ k − �/q is a nonzero integer)

Since � is an integer multiple of q, we express the result from (4.46) with � = q× d, we
immediately obtain

z� = zq×d =
1

N

N−1∑
k=0

xkTk

(
k − q×d

q

)
=

1

N
xdTd

(
d− q×d

q

)
= xd = x�/q

for 0 ≤ �/q ≤ N − 1.

Example 4.7 To demonstrate the effect of zero padding the DFT, we make use of the DFT co-
efÞ cients from Table 3.1, which were computed in Example 3.66 (in Section 3.11.1, Chapter 3)
from data taken from the function

f(t) =

{
t, 0 < t < 2,

2, 2 ≤ t < 4;
f(t + 4) = f(t).

For N =8 and 16, we display the zero-padded DFT coefÞ cient sequences of length 2N =16

and 32 in Table 4.4. Observe that the steps given in this section for padding zeros have been
followed: for N =8, the coefÞcien t X4 is split and seven zeros are inserted; for N =16, X8 is

4.6. THE EFFECTS OF ZERO PADDING 145

split and 15 zeros are inserted. In Figure 4.10, we explicitly contrast the signal sample values
obtained by inverse transforming the N DFT coefÞ cients (without zero-padding) with those
obtained from inverse transforming the 2N zero-padded DFT coefÞ cients.

Note that for the two cases N = 8 and N = 16 we demonstrate in this example, doubling
the sample sizes to 2N serves our purpose because our objective is to explicitly show where
the extra values occur. To plot a smooth graph of the function f̃(t) reconstructed from N DFT
coefÞ cients in Example 3.66, one may extend N to κN by padding zeros, where κ can take on
an integer value as large as needed. (A reminder: Depending on whether N is even or odd, the
zeros are padded in different manners as explained earlier in this section.)

Table 4.4 Zero pad the DFT coefÞ cients computed in Example 3.66 (N = 8, 16).

r Zero-padded Xr (2N = 16) Zero-padded Xr (2N = 32)
0 1.5000000 1.5000000

1 −0.2133884 + j0.3017767 −0.2052667 + j0.3142087

2 −0.0000000 + j0.1250000 0.0000000 + j0.1508884

3 −0.0366117 + j0.0517767 −0.0253112 + j0.0935379

4 0− j0.0000000 0.0000000 + j0.0625000

5 0 −0.0113005 + j0.0417612

6 0 0.0000000 + j0.0258884

7 0 −0.0081216 + j0.0124320

8 0 0 + j0.0000000

9 0 0

10 0 0

11 0 0

12 0− j0.0000000 0

13 −0.0366117− j0.0517767 0

14 −0.0000000− j0.1250000 0

15 −0.2133884− j0.3017767 0

16 0

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0 + j0.0000000

25 −0.0081216− j0.0124320

26 0.0000000− j0.0258884

27 −0.0113005− j0.0417612

28 0.0000000− j0.0625000

29 −0.0253112− j0.0935379

30 0.0000000− j0.1508884

31 −0.2052667− j0.3242087

146 CHAPTER 4. DFT AND SAMPLED SIGNALS

Figure 4.10 The effect of zero padding the DFT as done in Table 4.4.

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

2

2.5

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

2

2.5

N = 8

2N = 16

one period

one period

Samples of f(t) obtained by inverse transforming N = 8 DFT coefficients

Extra samples of f(t) from zero padding the DFT coefficients

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

 Samples of f(t) obtained by inverse transforming N = 16 DFT coefficients

Extra samples of f(t) from zero padding the DFT coefficients

one period

one period

N = 16

2N = 32

4.7. COMPUTING DFT DEFINING FORMULAS PER SE 147

4.7 Computing DFT Defining Formulas Per Se

While there is no doubt that appropriate FFT algorithms should be used to compute the DFT at
all times, it remains useful to learn to program and compute the DFT as matrix-vector products
according to its various deÞ ning formulas for the following reasons:

1. The various FFT algorithms are tailored to DFT of speciÞ c lengths. While there is a
mismatch in lengths, zero-padding commonly occurs, and the DFT computed from the
zero-padded signal may not contain the original DFT as we discussed in Section 4.6.

Therefore, when test problems of small sizes are used for debugging or aiding theoretical
understanding, it is often useful to compute the exact DFT as matrix-vector products.

2. There are a number of different ways to formulate the DFT depending on the sampling
period and sample size as discussed in Sections 2.5 and 2.6. While each formula can
be computed as a matrix-vector product, the FFT programs available will not compute
every formula directly and exactly. Even when the FFT program which computes the
desired DFT formula of the given length is available, the FFT output may not be in the
desired order.

We can eliminate such uncertainties by checking the output of a selected FFT program
against the desired DFT matrix-vector product on small test problems.

3. Since the DFT formulas are numerical formulas at the core of digital signal processing
(DSP), there are DFT-like formulas which cannot be computed by the FFTÑ e.g., part of
the Chirp-FFT codes implements DFT-like formula per se; learning to program the DFT
in an environment suitable for DSP applications can only help with our future tasks.

Since we use MATLAB R©1 for all numerical computation in this book, we want to show how
to and how not to compute the product of a DFT matrix and a vector in MATLAB. At the
same time we also want to use the very specially structured DFT matrix as a vehicle to bring
out those programming techniques which set MATLAB apart from other high-level procedural
programming languages such as C, Fortran, and Pascal.

4.7.1 Programming DFT in MATLAB

For comparison and contrast, we show multiple MATLAB implementations of the same for-
mula, and we also show how to simulate a C, Fortran, or Pascal program in MATLAB. The
various MATLAB programs and timing results demonstrate that very signiÞ cant reduction in
execution time may be achieved by using built-in functions, high-level matrix operators, and
aggregated data structures.

In order to connect the MATLAB code to the mathematical equations, the following vari-
able names are chosen to denote the mathematical symbols indicated. Since M (r, �) ≡ ωr�

N

(note that ωN is redeÞn ed as ωN = ω−1
N so the negative power can be omitted in coding the

DFT matrix), it is important to note that M (r, �) is stored in M dft(r+1,ell+1), because
the index range of arrays in MATLAB begins at one instead of zero.

Suppose that matrix A and vector x have been entered, the MATLAB command for com-
puting their product is simply y=A*x. Therefore, to compute the DFT of sequence x with
period N according to the matrix equation X = 1

N Mx, one only needs to generate the DFT
1MATLAB is a registered trademark of The MathWorks, Inc.

148 CHAPTER 4. DFT AND SAMPLED SIGNALS

Table 4.5 Variable names in MATLAB code.

Variable types Mathematical expressions MATLAB expressions

matrix Ω or ΩN×N Omega or Omega(1:N, 1:N)

M or MN×N M_dft or M_dft(1:N, 1:N)

matrix element Ωr,�, 0 ≤ r, � ≤ N − 1. Omega(r+1, ell+1)

Mr,�, 0 ≤ r, � ≤ N − 1. M dft(r+1, ell+1)

matrix row Mr∗ or M [r, ∗] M dft(r+1, :)

Ωr∗ or Ω[r, ∗] Omega(r+1, :)

matrix column M∗� or M [∗, �] M dft(:, ell+1)

Ω∗� or Ω[∗, �] Omega(:, ell+1)

scalar ω or ωN = e−j2π/N w = exp(-j*2*pi/N)

matrix M , which is deÞ ned by M r,� ≡ ωr�
N , with 0 ≤ r, � ≤ N − 1. In MATLAB, this can be

done in more than one wayÑ four programs are discussed below.

1. Simulating C, Fortran, or Pascal Code in MATLAB: (Not recommended)

function M_dft = dft1_matrix(N)
%
% Input N: order of the DFT matrix
% Output M_dft: the DFT matrix (without division by N)
%
w = exp(-j*2*pi/N); % j is MATLAB constant for sqrt(-1)
for r = 0:N-1 % access matrix elements row by row

for ell = 0:N-1
power = r*ell;
M_dft(r+1,ell+1) = wˆpower; % compute each scalar

end % element
end

For DFT matrices of order N = 100, 200, 400, 512, and 800, the execution times
and total ßop counts are given in Table 4.6. (Note that MATLAB 5.3 built-in function
flops.m is used to obtain the ß op counts reported here, but this function is no longer
avaiable in the current version 7.4 of MATLAB.)

2. Using MATLAB’s matrix building functions and operators: We review the needed func-
tions and operators before the code of functions dft2 matrix.m and dft2b matrix.m
are presented.

•MATLAB command A=ones(M,N) generates an M ×N matrix of all ones. If M =

N , one would commonly use A=ones(N) instead of A=ones(N,N), although the
latter is also correct. Since MATLAB supports the product of a scalar and a matrix, the
command Omega=w*ones(N) generates a constant matrix with all entries Ωr,� = ω.

•MATLAB command v=0:N-1 generates a row vector v = [0, 1, · · · , N − 1]. To get
a column vector, simply use MATLAB�s matrix transpose operator as in the command
u=v’.

4.7. COMPUTING DFT DEFINING FORMULAS PER SE 149

Table 4.6 Testing function dft1 matrix.m using MATLAB 5.3 and 7.4.

MATLAB 5.3 MATLAB 7.4
M-File Timings Total Flop M-�le Timings

N (CPU 1.3 GHz) Counts N (CPU 3.2 GHz)
100 0.13 sec 990,246 100 0.03 sec
200 0.52 sec 4,697,686 200 0.16 sec
400 3.39 sec 21,715,446 400 1.73 sec
512 7.03 sec 37,285,462 512 3.39 sec
800 25.13 sec 98,477,476 800 12.13 sec

•MATLAB commands v=0:N-1 and Power=v’*v compute the outer product given
below.

Power = v’*v =



0 0 0 0 · · · 0

0 1 2 3 · · · N − 1

0 2 4 6 · · · 2(N − 1)

0 3 6 9 · · · 3(N − 1)

. .

0 (N − 1) 2(N − 1) 3(N − 1) · · · (N − 1)2


.

• MATLAB command C=A.ˆB computes elements Cr,� = A
Br,�

r,� . This implies Cr,� =

ωk if Ar,� = ω and Br,� = k. Therefore, the DFT matrix may be generated by the
command M_dft=(w*ones(N)).ˆPower. For example, the DFT matrix of order
N = 4 may be generated as

M dft = (w*ones(N)) .̂ Power =


ω ω ω ω

ω ω ω ω

ω ω ω ω

ω ω ω ω

 .̂


0 0 0 0

0 1 2 3

0 2 4 6

0 3 6 9



=


ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω3

ω0 ω2 ω4 ω6

ω0 ω3 ω6 ω9

 .

To avoid storing the matrix of all ones and to eliminate the redundant computation of
w*1 entailed by the command w*ones(N), the MATLAB command M_dft=w.ˆPower
could be used because the operator .ˆ supports mixed-mode operands.

M dft = w .̂ Power = ω .̂


0 0 0 0

0 1 2 3

0 2 4 6

0 3 6 9

 =


ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω3

ω0 ω2 ω4 ω6

ω0 ω3 ω6 ω9

 .

Using these matrix building functions and operators, we construct the function dft2 matrix.m
below. Observe that the code works with the � contents� of the vector or matrix directly�
one need not address the individual elements according to their positions in the ar-
rays. Speci� cally, comparing with dft1 matrix.m, we no longer address the elements
M dft(r+1,ell+1) explicitly in the code of dft2 matrix.m.

150 CHAPTER 4. DFT AND SAMPLED SIGNALS

function M_dft = dft2_matrix(N)
%
% Input N: order of the DFT matrix
% Output M_dft: the DFT matrix (without division by N)
%
w = exp(-j*2*pi/N); % j is MATLAB constant for sqrt(-1)
v = 0:N-1; % content of v is [0,1, ..., N-1]
Power = v’*v; % store outer product in matrix Power
M_dft = w.ˆPower; % compute DFT matrix w/o division by N

Since the inverse DFT matrix is the complex conjugate of the (symmetric) DFT matrix,
the command M inv = conj(dft2 matrix(N)) produces the inverse. Alterna-
tively, one may choose to output both matrices as shown in the modi� ed listing below.
Note that we have added the second output argument M inv.

function [M_dft, M_inv] = dft2b_matrix(N)
%
% Input N: order of the DFT matrix
% Output M_dft: the DFT matrix (without division by N)
% M_inv: the inverse DFT matrix
%
w = exp(-j*2*pi/N); % j is MATLAB constant for sqrt(-1)
v = 0:N-1; % content of v is [0,1, ..., N-1]
Power = v’*v; % store outer product in matrix Power
M_dft = w.ˆPower; % compute DFT matrix w/o division by N
M_inv = conj(M_dft); % compute the inverse DFT matrix

For DFT matrices of order N = 100, 200, 400, 512, and 800, the execution times and
total � op counts are given in Table 4.7. Comparing these results with those in Table 4.6,
we see the dramatic decrease in execution times, although both functions perform essen-
tially the same sequence of arithmetic operations.

Table 4.7 Testing function dft2 matrix.m using MATLAB 5.3 and 7.4.

MATLAB 5.3 MATLAB 7.4
M-File Timings Total Flop M-�le Timings

N (CPU 1.3 GHz) Counts N (CPU 3.2 GHz)
100 0.06 sec 980,146 100 0.03 sec
200 0.19 sec 4,657,486 200 0.08 sec
400 0.83 sec 21,555,046 400 0.36 sec
512 1.45 sec 37,022,806 512 0.61 sec
800 3.65 sec 97,836,676 800 1.58 sec

3. Reducing redundant arithmetic in building the DFT matrix: Inside both of the functions
dft1 matrix.m and dft2 matrix.m, each individual matrix element Mr,� = ωr�

N

is computed by literally raising ωN to the power of r × �. By noting that

ω
r(�+1)
N = ωr�

N ∗ ωr
N ,

4.7. COMPUTING DFT DEFINING FORMULAS PER SE 151

and that
M dft(r+1,ell+2) = ω

r(�+1)
N ,

M dft(r+1,ell+1) = ωr�
N , and M dft(r+1,2) = ωr

N ,

we obtain

M dft(r+1,ell+2) = M dft(r+1,ell+1) ∗ M dft(r+1,2).

Accordingly, to compute the entire column M dft(:,ell+2), we simply apply the
componentwise operator .* to multiply column M dft(:,ell+1) and column M dft(:,2)
element by element. That is, using the DFT matrix of order 4 as an example, the com-
mand

M dft(:,ell+2) = M dft(:,ell+1). ∗ M dft(:,2)

computes the third and the fourth column as shown below:

M dft(:,2). ∗ M dft(:,2) =


ω0

ω1

ω2

ω3

 . ∗


ω0

ω1

ω2

ω3

 =


ω0

ω2

ω4

ω6

 = M dft(:,3).

M dft(:,3). ∗ M dft(:,2) =


ω0

ω2

ω4

ω6

 . ∗


ω0

ω1

ω2

ω3

 =


ω0

ω3

ω6

ω9

 = M dft(:,4).

Thus, the cost for computing the N elements in each column is N (complex) multiplica-
tions. To generate column 2, which is needed for computing all subsequent columns, we
tailor the command C=A.ˆB introduced earlier to a special case. Here A is a scalar in-
stead of a matrix, and B and C are vectors instead of matrices. Thus, the same command
now computes vector element C� = AB� . That is, the MATLAB commands

w = exp(-j*2*pi/4); f = 0:3; v = w.ˆf’

compute

v = ω.ˆ


0

1

2

3

 =


ω0

ω1

ω2

ω3

 , where ω = e−j2π/4.

The code of function dft3 matrix is given below.

function M_dft = dft3_matrix(N)
%
% Input N: order of the DFT matrix
% Output M_dft: the DFT matrix (without division by N)
%
M_dft(:,1)=ones(N,1); % generate the first column
If N > 1

w = exp(-j*2*pi/N); % j is MATLAB constant for sqrt(-1)

152 CHAPTER 4. DFT AND SAMPLED SIGNALS

v = (0:N-1)’; % column vector v=[0,1,2,...,N-1]’
M_dft(:,2) = w.ˆv; % generate the second column
for ell = 2:N-1

M_dft(:,ell+1) = M_dft(:,ell).*M_dft(:,2);
end

end

For DFT matrices of order N = 100, 200, 400, 512, and 800, the execution times and
total � op counts are given in Table 4.8. Comparing these results with those in Tables 4.6
and 4.7, we see the dramatic reduction in total � op counts (as expected), but such reduc-
tion does not necessarily reduce execution times! On the contrary, the execution times
of function dft3 matrix are signi� cantly longer than function dft2 matrix. This example
shows that we must be aware of such potential tradeoff when we apply the conventional
wisdom in � op count reduction.

Table 4.8 Testing function dft3 matrix.m using MATLAB 5.3 and 7.4.

MATLAB 5.3 MATLAB 7.4
M-File Timings Total Flop M-�le Timings

N (CPU 1.3 GHz) Counts N (CPU 3.2 GHz)
100 0.02 sec 64,259 100 0.004 sec
200 0.12 sec 250,287 200 0.065 sec
400 1.62 sec 984,143 400 1.188 sec
512 4.03 sec 1,605,603 512 2.625 sec
800 16.70 sec 3,895,455 800 10.078 sec

4. Generating DFT matrix one column at a time: If the matrix columns can be generated
and used one by one in forming the matrix-vector product, we will not need to store
the entire matrix, and can reduce storage from Θ

(
N2

)
to Θ(N). To accomplish this

goal, we need to view the matrix-vector product as a linear combination of the matrix
columns. For example, we compute X = 1

N Mx, where

Mx=


1 1 1 1

1 ω1 ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω1



x0

x1

x2

x3

=x0


1

1

1

1

+x1


1

ω1

ω2

ω3

+x2


1

ω2

1

ω2

+x3


1

ω3

ω2

ω1

 .

Note that such computation can be done literally in MATLAB�s interactive environment
by entering the following command:

X = x(1)*M dft(:,1)+x(2)*M dft(:,2)+x(3)*M dft(:,3)+x(4)*M dft(:,4);
X = X/N;

where x(k) denotes the kth element in vector x, and M dft(:,k) denotes the kth
column in matrix M dft. Therefore, in order not to store all columns, we must �n d an
efficient way to generate the columns one at a time. We show next how this can be done
for the DFT matrix de� ned by M r,� = ωr�

N for 0 ≤ r, � ≤ N − 1.

4.7. COMPUTING DFT DEFINING FORMULAS PER SE 153

Observe � rst that since ωN
N = 1, one has ωk+mN

N = ωk
N for 0 ≤ k ≤ N − 1, which

implies that ωr�
N

= ωq
N with q = r� mod N . Since 0 ≤ q ≤ N − 1, ωq

N is the (q + 1)st
element in the second column (or row) of the DFT matrix M . This relationship is
demonstrated below using the DFT matrix of order N = 4, in which ω ≡ ω4 = e−j2π/4.

M dft=


1 1 1 1

1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

=


ω0 ω0 ω0mod 4 ω0mod 4

ω0 ω1 ω2mod 4 ω3mod 4

ω0 ω2 ω4mod 4 ω6mod 4

ω0 ω3 ω6mod 4 ω9mod 4

=


ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω3

ω0 ω2 ω0 ω2

ω0 ω3 ω2 ω1

 .

Clearly, the N distinct values of ωr�
N are contained in a single vector� column 2 of the

matrix M_dft, and the other columns are formed by a subset of elements from column 2.
In MATLAB, when the elements of u=[b b a f g c c] are to be chosen from an-
other vector v=[a b c d e f g], one could use the command u=v([2 2 1 6 7 3 3]),
in which the integer index vector contains the original positions of the desired ele-
ments in vector v. It can be easily veri�ed that u(1)=v(2)=b, u(2)=v(2)=b,
u(3)=v(1)=a, and so on.

Note that the MATLAB command

u = v([2 2 1 6 7 3 3])

is equivalent to the command

u = [v(2) v(2) v(1) v(6) v(7) v(3) v(3)]).

This is a convenient programming technique when the relationship between the contents
of vectors u and v is re�ected by the index array, assuming that such an array can be
easily established. We next show that this is indeed the case when building other columns
in the DFT matrix from column 2.

Recall that for correctness in MATLAB code, we must store M r,� = ωr�
N in M dft(r+1,

ell+1), because 0 ≤ r, � ≤ N − 1, whereas array indices in MATLAB begin at one
instead of zero. By noting that

M dft(r+1, ell+1) = ωr�
N = ωr� mod N

N = ωq
N , where � ≥ 2,

and
M dft(q+1, 2) = ωq

N ,

we obtain the value of M dft(r+1,ell+1) by entering these MATLAB commands:

q = rem(r*ell,N); M dft(r+1, ell+1) = M dft(q+1, 2).

Note that rem.m is the MATLAB built-in function for computing the quantity q = r�

mod N . Applying this relationship to the DFT matrix of order 4, we see that from the
second column of matrix M dft,

M dft(:,2) = v =


ω0

ω1

ω2

ω3

 ,

154 CHAPTER 4. DFT AND SAMPLED SIGNALS

one obtains the third and fourth columns of matrix M_dft as shown below.

M dft(:,3) = v([1 3 1 3]) = v([1 3 1 3]′) =


v(1)

v(3)

v(1)

v(3)

 =


ω0

ω2

ω0

ω2

 ,

and

M dft(:,4) = v([1 4 3 2]) = v([1 4 3 2]′) =


v(1)

v(4)

v(3)

v(2)

 =


ω0

ω3

ω2

ω1

 .

Note that the index vector, i.e., the integer vector [1 3 1 3] in the MATLAB expres-
sion v([1 3 1 3)]), can be either a row vector or a column vector, and the result
is always a column vector if v is a column vector. As expected, if either index vector
is used with a row vector, the result will always be a row vector. Therefore, one should
never need to transpose an index vector for such usage in a MATLAB program.

Another unique feature of MATLAB is that many of its built-in functions accept both
scalar and array input arguments. This is so for function rem.m in the DFT computation.
For example, suppose v is an integer column vector of length N = 4, the command
p=rem(v,N) produces a column vector p with p(r) ≡ v(r)mod N :

p = rem(v’,N) =


rem(v(1),N)
rem(v(2),N)
rem(v(3),N)
rem(v(4),N)

 =


v(1)mod N

v(2)mod N

v(3)mod N

v(4)mod N

 .

Finally, recall that MATLAB�s binary operators accept operands in mixed-modes. For
example, let p be a column vector of length N = 4, the MATLAB command p+1 adds
the scalar 1 to each element of vector p. That is,

p + 1 =


p(1)

p(2)

p(3)

p(4)

 + 1 =


p(1) + 1

p(2) + 1

p(3) + 1

p(4) + 1

 .

As expected, if q is a row vector, the MATLAB expression q+1 produces a row vector
with q(r) = q(r) + 1.

The programming techniques introduced above are now used to build function dft.m.

function Xout = dft(x)
%
% Input x: One period of the sequence to be transformed.
% Output Xout: Xout = (1/N)*M_dft*x
%
% Reference: Introduction to Scientific Computing by
% Charles F. Van Loan (p. 181)

4.7. COMPUTING DFT DEFINING FORMULAS PER SE 155

%
N = length(x); % determine period N
Xout = x(1)*ones(N,1); % M_dft(:,1) is a column of all ones
if N > 1

w = exp(-j*2*pi/N); % j is MATLAB constant for sqrt(-1)
v = (0:N-1)’; % column vector v=[0,1,...,N-1]’
Mdf2 = w.ˆv; % compute 2nd column M_dft(:,2)
for ell = 1:N-1 % start with column ell+1 = 2

q = rem(v*ell, N); % compute row vector q=r*ell mod N
% for building index vector q+1

Xout = Xout + x(ell+1)*Mdf2(q+1);% accumulate partial
% sums: add one column

end % each time
end
Xout = Xout/N; % including division by N in Xout

For sequences of randomly generated complex numbers x of length N = 100, 200, 400, 512,
and 800, the execution times and total � op counts are given in Table 4.9. Note that because
only one column of the DFT matrix is actually computed, and the matrix is not stored in its
entirety, function dft requires Θ(N) storage. However, for transforming x of length N , it
is still a Θ

(
N2

)
algorithm in time. Comparing with the results in Tables 4.6, 4.7, and 4.8,

function dft is the fastest Θ
(
N2

)
algorithm for transforming x� note the huge reduction of

execution time: for N = 800, the M-� le timing is 0.34 seconds, which compares with 25.13
seconds, 3.65 seconds, and 16.70 seconds reported in Tables 4.6 to 4.8.

Table 4.9 Testing function dft.m using MATLAB 5.3 and 7.4.

MATLAB 5.3 MATLAB 7.4
M-File Timings Total Flop M-�le Timings

N (CPU 1.3 GHz) Counts N (CPU 3.2 GHz)
100 0.02 sec 135,360 100 0.003 sec
200 0.04 sec 532,488 200 0.008 sec
400 0.11 sec 2,108,544 400 0.029 sec
512 0.15 sec 3,446,304 512 0.047 sec
800 0.34 sec 8,384,256 800 0.114 sec

References

1. A. Ambardar. Analog and Digital Signal Processing. Brooks/Cole Publishing Company,
Paci� c Grove, CA, second edition, 1999.

2. W. L. Briggs and V. E. Hensen. The DFT: An Owner’s Manual for the Discrete Fourier
Transform. The Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995.

3. E. Chu and A. George. Inside the FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms. CRC Press, Boca Raton, FL, 2000.

156 CHAPTER 4. DFT AND SAMPLED SIGNALS

4. B. Porat. A Course in Digital Signal Processing. John Wiley & Sons, Inc., New York,
1997.

5. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in C++: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK,
second edition, 2001.

6. C. F. Van Loan. Computational Frameworks for the Fast Fourier Transform. The Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1992.

Chapter 5

Sampling and Reconstruction of
Functions—Part II

In Chapter 2 we introduce a number of fundamental concepts in function sampling through
the Fourier series representation of a periodic band-limited function. In the real world we
encounter many signals which are not periodic and they are not time limited. Although it is
useful to think of such a signal as a periodic signal with period T = ∞ at times, the unmod-
i� ed Fourier series which represents a periodic signal with � nite period is no longer a proper
representation.

In this chapter we consider sampling a signal x(t) which is not required to be periodic and
it is not required to be time-limited either. The frequency-domain contents of x(t) are de�ned
by its Fourier transform (to be derived in this chapter)

(5.1) X(f) =

∫ ∞

−∞
x(t) e−j2πft dt,

where the independent variable f represents the continuously varying frequency, and the fre-
quency domain is the entire real axis. If X(f) is a real-valued function, its frequency-domain
plot is the graph of X(f) versus f ; if X(f) is complex-valued, its frequency-domain plot con-
sists of the graph of Re

(
X(f)

)
versus f and the graph of Im

(
X(f)

)
versus f . The frequency

contents may be formally represented by
{(

f, Re(X(f)), Im(X(f))
)}

: an in� nite set made
up of a continuous spectrum of the frequency f .

Under conditions which are to be discussed, the analytical form of the original function
in the time domain can be recovered from the inverse Fourier transform (to be derived in this
chapter) of X(f), i.e.,

(5.2) x(t) =

∫ ∞

−∞
X(f) ej2πft df.

The right-hand side of this equation is called the Fourier integral representation of x(t). Note
that there is a noncountable number of frequencies in the Fourier integral because each real
number f corresponds to one frequency.

For a function x(t) which is de�n ed for every t, the suf� cient condition for the existence
of a Fourier transform X(f) is given by

(5.3)
∫ ∞

−∞
|x(t) | dt < ∞.

157

158 CHAPTER 5. SAMPLING AND RECONSTRUCTION� PART II

That is, the function x(t) is absolutely integrable. Since this is not a necessary condition, there
are functions which have Fourier transforms even though they are not absolutely integrable.
For example, a Fourier transform can be formally de� ned for a periodic function xp(t) (see
Chapter 7) with the help of the generalized functions (see Chapter 6.)

Observe that the Fourier transform X(f) de� ned by the integral (5.1) remains unchanged
if we let the absolutely integrable function x(t) take on different values at any � nite number of
points. This means that if x(t) is not continuous, then it is possible that two different functions
share the same transform X(f). Therefore, the function x(t) cannot be uniquely determined
by inverse transforming X(f) unless it is continuous or it satis�es two more conditions: (i)
x(t) has only a � nite number of maxima and minima on any � nite interval; (ii) x(t) has on any
�n ite interval at most a � nite number of discontinuities, each of which is a jump discontinuity.
In the latter case, the inverse Fourier transform of X(f) produces x̃(t), which agrees with x(t)

at every t at which x(t) is continuous, and x̃(t) equals the average of the left-hand limit x(t−α)

and the right-hand limit x(t+α) at every tα at which a jump discontinuity occurs. The proof
for the existence of the inverse Fourier transform may be found in texts treating the theory of
Fourier integrals [3, 22, 51, 54].

We shall begin this chapter by deriving the sampling theorem for nonperiodic band-limited
functions in Section 5.1. The theorem determines an appropriate choice of sampling rate so
that the original (unknown) function x(t) can be reconstructed analytically. This process is
directly connected to the inverse Fourier transform of a frequency-limited X(f) as de�ned
by (5.2). The Fourier transform pair de� ned by (5.1) and (5.2) is derived next in Section 5.2.
The frequency contents represented by the Fourier transform are then examined, the properties
of the Fourier transform are derived, examples of Fourier transform pair are given, and the
relationship between Fourier series coef� cients and sampled Fourier transforms of time-limited
and almost time-limited x(t) is established in the sections that follow.

5.1 Sampling Nonperiodic Band-Limited Functions

The nonperiodic x(t) is said to be band limited up to the maximum frequency fmax if its
Fourier transform X(f) is zero outside the interval [−F/2, F/2] = [−fmax, fmax], which
is called the Nyquist interval as introduced in Chapter 2. (Note that F = 2fmax.) By as-
suming that X(f) is a real-valued function with a � nite range of independent variable f , we
de� ne a periodic Xp(f) which is the protracted version of the frequency-limited X(f); i.e.,
Xp(f) ≡ X(f) for f ∈ [−F/2, F/2] and Xp(f ± F) = Xp(f) holds for arbitrary f . The
sampling theorem for nonperiodic band-limited functions makes use of the Fourier integral
representation of x(t) as well as the Fourier series representation of Xp(f) (which is a peri-
odic extension of X(f)). To proceed, we assume that the following two conditions have been
met: (i) x(t) is suf� ciently well-behaved so that its Fourier transform exists; (ii) Xp(f) is
real-valued and it satis� es the Dirichlet conditions given by Theorem 3.1 (in Chapter 3) so it
possesses a Fourier series.

5.1. SAMPLING NONPERIODIC BAND-LIMITED FUNCTIONS 159

5.1.1 Fourier series of frequency-limited X(f)

Since Xp(f) is periodic with a � nite period F = 2fmax, its Fourier series representation can
be written (using complex exponential modes) as

Xp(f) =

∞∑
�=−∞

C� ej2π�f/F , where(5.4)

C� =
1

F

∫ F/2

−F/2

Xp(f) e−j2π�f/F df.(5.5)

Since Xp(f) = X(f) for f ∈ [−F/2, F/2], we immediately obtain

X(f) =

∞∑
�=−∞

C� ej2π�f/F , where(5.6)

C� =
1

F

∫ F/2

−F/2

X(f) e−j2π�f/F df.(5.7)

So the frequency-limited X(f) has a Fourier series representation in the frequency domain.
(Note that there is an in� nite number of terms in the Fourier series above.)

5.1.2 Inverse Fourier transform of frequency-limited X(f)

To construct x(t) analytically, we begin with Equation (5.2), which expresses x(t) as the in-
verse Fourier transform of X(f), and recall that frequency-limited X(f) = 0 outside the
interval [−F/2, F/2]; hence,

(5.8) x(t) =

∫ ∞

−∞
X(f) ej2πft df =

∫ F/2

−F/2

X(f) ej2πft df.

Since x(t) is not time-limited, the temporal variable t may take on any value. If we let t =

−�/F ,

(5.9) x

(
− �

F

)
=

∫ F/2

−F/2

X(f) e−j2π�f/F df.

Note that the integral on the right-hand side of the last equation is identical to the integral that
occurs in equation (5.7) which de� nes the Fourier series coef� cient C�. Thus, the coef� cients
C� are now connected to the discrete-time samples of x(t) at t = −��t if we de�n e �t =

1/F . That is, for every integer �,

(5.10) C� =
1

F
x

(
− �

F

)
=

x(−��t)

F
, where F = 2fmax.

The Fourier series coef� cients of X(f) are therefore isomorphic to the values of its inverse
transform x(t) sampled at intervals of �t = 1/F . The corresponding sampling rate is given
by 1/�t = F = 2fmax, which is the Nyquist rate de� ned in Chapter 2. Since fmax (cycles
per unit time) is the highest frequency present in the band-limited signal x(t), a sampling rate
of 2fmax (samples per unit time) results in two samples per cycle for the highest frequency
present, which is the lowest sampling rate we can possibly use to avoid aliasing.

160 CHAPTER 5. SAMPLING AND RECONSTRUCTION� PART II

5.1.3 Recovering the signal analytically

To reconstruct x(t) from the equally spaced discrete-time samples, we combine the inverse
Fourier transform with the Fourier series representation of X(f) so that

x(t) =

∫ ∞

−∞
X(f) ej2πft df (by the de�n ition of inverse Fourier transform)

=

∫ F/2

−F/2

X(f) ej2πft df, ∵ X(f) = 0 when f < −F/2 or f > F/2

=

∫ F/2

−F/2

(∞∑
�=−∞

C�e
j2π�f/F

)
ej2πft df (use Fourier series representation)

=

∫ F/2

−F/2

(∞∑
�=−∞

x(−��t)

F
ej2π�f�t

)
ej2πft df, ∵ C� =

x(−��t)

F
, �t =

1

F

=

∞∑
�=−∞

x(−��t)

F

∫ F/2

−F/2

ej2π(t+��t)f df

=

∞∑
�=−∞

x(−��t)

F

(
ejπ(t+��t)F − e−jπ(t+��t)F

j2π(t + ��t)

)

=

∞∑
�=−∞

x(−��t)
sin

(
πF (t + ��t)

)
πF (t + ��t)

, ∵
ejθ − e−jθ

2j
= sin θ

=

∞∑
�=−∞

x(��t)
sin

(
πF (t− ��t)

)
πF (t− ��t)

=
∞∑

�=−∞
x(��t) sinc

(
F (t− ��t)

)
, ∵ sinc (λ) ≡ sin πλ

πλ
.

(5.11)

Note that each component function is a sinc function de� ned by sinc(λ) = sin(πλ)/(πλ).
Since sinc(λ) = 0/0 at λ = 0, we apply L�H �ospital�s rule to evaluate the limit as λ→ 0:

lim
λ→0

sinc(λ) = lim
λ→0

sin πλ

πλ
= lim

λ→0

π cosπλ

π
= cos 0 = 1,

and we de�ne sinc(0) = 1 based on the limit obtained. Observe that sinc(λ) = 0 for λ =

±1,±2,±3, Observe further that the function sinc(λ) = sin(πλ)/(πλ) is not periodic,
because when the numerator sin(λ) does repeat over each 2π interval, the denominator will
never be the same, and the function sinc(λ) will never repeat itself.

The results we have derived are summarized in the sampling theorem given below.

Theorem 5.1 (Sampling theorem) If the signal x(t) is known to be band-limited with band-
width F = 2fmax, then x(t) can be sampled at the Nyquist rate 1/�t = 2fmax, and we can
determine a unique x(t) by interpolating the sequence of samples according to the formula

x(t) =

∞∑
�=−∞

x(��t)
sin

(
πF (t− ��t)

)
πF (t− ��t)

.

5.1. SAMPLING NONPERIODIC BAND-LIMITED FUNCTIONS 161

5.1.4 Further discussion of the sampling theorem

To clearly show the nature of the interpolating formula and the properties of the individual
sinc function, we let t� = ��t and de�ne

L�(t) =
sin

(
πF (t− t�)

)
πF (t− t�)

.

Now we express the same interpolating formula as

p(t) =

∞∑
�=−∞

x(t�)L�(t),

and we show next that at each Nyquist sample point tk = k�t, we have

L�(tk) =

{
1, if � = k;

0, if � 	= k.

Note that when the running index � = k, because Lk(tk) = sin 0/0 = 0/0 is in an indeter-
minate form, we establish Lk(t) = 1 in the limit as t → tk by applying L�H�ospital�s rule:

lim
t→tk

Lk(t) = lim
t→tk

πF cos
(
πF (t− tk)

)
πF

= cos 0 = 1.

When � 	= k, we have (tk − t�) = (k − �)�t = (k − �)/F , yielding

L�(tk) =
sin

(
πF (tk − t�)

)
πF (tk − t�)

=
sin

(
π(k − �)

)
π(k − �)

= 0.

Since Lk(tk) = 1 and Lk(tm) = 0 for every m 	= k, the sinc function denoted by Lk(t)

crosses the t-axis at all Nyquist sample points except for the one at tk = k�t. The graphs of
L−3(t), L0(t), and L1(t) are shown in Figure 5.1.

Accordingly, for every integer k ∈ (−∞,∞), we have

p(tk) =

∞∑
�=−∞

x(t�)L�(tk)

= x(tk)Lk(tk) (∵ L�(tk) = 0 if � 	= k)

= x(tk), (∵ Lk(tk) = 1)

which means that p(t) takes on the sample value x(tk) at t = tk for every k. Therefore, the
interpolating formula p(t) passes all sample values as long as they are spaced �t = 1/F =

1/ (2fmax) apart as required.
While the sampling theorem gives us insight and guidance to the sampling process, we are

still faced with the following dilemma: in order to sample the signal at the Nyquist rate, we
need to know the bandwidth a priori. Strictly speaking, the bandwidth is not known unless we
have already obtained the complete set of values of X(f)�th is is not possible when x(t) is
an unknown function, which we wish to sample in order to recover its frequency contents. In
practice this dilemma is usually resolved by sampling the signal frequently enough so that its
graph resembles the physical signal. Of course, for signals with known bandwidth (e.g., speech
or voice information of certain quality), we would be able to sample at or above Nyquist rate
to suit our processing needs. There are other legitimate concerns:

162 CHAPTER 5. SAMPLING AND RECONSTRUCTION� PART II

Figure 5.1 The graphs of L�(t) for � = −3, 0, 1.

−0.5

0

0.5

1

−0.5

0

0.5

1

−0.5

0

0.5

1

L
−3

(t)

L
0
(t)

L
1
(t)

1

1

1

t
−3

t
0

t
1

L
−3

(t
k
) = 0 if k ≠ −3.

L
0
(t

k
) = 0 if k ≠ 0.

t
3

t
4

t
−2

t
−1

L
1
(t

k
) = 0 if k ≠ 1.

t
−3

 t
−2

1. To use the interpolating formula given in the theorem, we need an in� nite number of
samples extended from −∞ to∞.

2. In theory we can interpolate x(t) between sample points. However, this interpolating
formula is very expensive to compute, because it involves trigonometric function in every
term.

3. As mentioned earlier we actually need two nonzero samples per cycle for the highest
frequency present. Therefore, when this cannot be guaranteed by the sampling process,
we must sample at a rate higher than the minimum Nyquist rate required by the sampling
theorem.

4. Many signals in the real world are not band limited. In fact, the uncertainty principle of
quantum mechanics [21, 27, 37] does not permit a signal to be arbitrarily narrow in both
time and frequency. For example, several rectangular pulses and their Fourier transforms
are shown in Figure 6.1 in Chapter 6: we see that the narrower the pulse becomes in the
time domain, the wider its transform spreads out in the frequency domain.

We will return to address these issues after we learn more about the Fourier transform.

5.2 Deriving the Fourier Transform Pair

We derive the Fourier transform of x(t) by thinking of it as a periodic signal with period
T = ∞ in the time domain. We then investigate how the Fourier series representation of a
periodic function should be modi� ed when the period T approaches∞.

We begin with the Fourier series of a periodic signal xp(t), which is expressed using the

5.2. DERIVING THE FOURIER TRANSFORM PAIR 163

complex exponential modes below.

xp(t) =

∞∑
�=−∞

C� ej2π�t/T , where(5.12)

C� =
1

T

∫ T/2

−T/2

xp(t) e−j2π�t/T dt.(5.13)

We are interested in representing the nonperiodic signal

x(t) = lim
T→∞

xp(t) = lim
T→∞

∞∑
�=−∞

C� ej2π�t/T .

To have a closed-form representation of the right-hand side, we modify the Fourier series and
the formula for the Fourier coef� cients in the following manner:

1. When T → ∞, the frequency spacing �f = 1/T becomes in� nitesimal, and we may
replace it by df when turning the summation into an integral in the limit.

2. When T → ∞, �f = 1/T → 0, the set of discrete frequencies fk = k/T = k�f

turns into a noncountable set of continuous frequencies f ∈ (−∞,∞)�each frequency
is represented by a real number f .

3. With regard to the formula for the Fourier coef� cient C�, we preserve the closed-form
integral by evaluating

lim
T→∞

TC� = lim
T→∞

∫ T/2

−T/2

xp(t) e−j2π�t/T dt

=

∫ ∞

−∞
x(t) e−j2πft dt (This is the Fourier transform of x(t).)

= X(f).

Note that in evaluating the limit as T → ∞, we have replaced xp(t) with x(t) in the
integrand, and we replace the particular discrete frequency �/T = ��f in the exponent
with a real number f . The outcome is the Fourier transform of x(t).

4. With these changes in place, we return to modify the Fourier series representation itself:

x(t) = lim
T→∞

∞∑
�=−∞

C� ej2π�t/T

= lim
T→∞

∞∑
�=−∞

(TC�) ej2π(�/T)t

(
1

T

)
=

∫ ∞

−∞
X(f) ej2πft df. (This is the inverse Fourier transform of X(f).)

The two functions x(t) and X(f) are de� ned in terms of each other, and they form the Fourier
transform pair. It will be convenient on many occasions to denote the Fourier transform of x(t)

by F{x(t)}, so we have

F{x(t)} = X(f) =

∫ ∞

−∞
x(t) e−j2πft dt.

164 CHAPTER 5. SAMPLING AND RECONSTRUCTION� PART II

Similarly, the inverse Fourier transform of X(f) may be denoted byF−1{X(f)}, and we have

F−1{X(f)} = x(t) =

∫ ∞

−∞
X(f) ej2πft df.

Observe that by evaluating the integral forms of x(t) and X(f) at the central ordinates, i.e., at
t = 0 and f = 0 respectively, we obtain another useful relationship:

(5.14) X(0) =

∫ ∞

−∞
x(t) dt; x(0) =

∫ ∞

−∞
X(f) df.

The operators F and F−1 may be used to express the relationship between transforms of
different functions conveniently. For example, we may use the compact notation

F{x(t− ta)} = X(f) e−j2πfta

to express the relation between the Fourier transform of the shifted function x(t− ta) and that
of the original function x(t). (The relation itself needs to be proved and that will be shown in
Section 5.6.)

5.3 The Sine and Cosine Frequency Contents

In the last section we derived the Fourier transform from the Fourier series using complex
exponential modes, and we saw some connection between X(f) = F{x(t)} and the Fourier
series coefÞcients . Recall that the Fourier series has alternate forms; in particular, it may be
expressed using sine and cosine modes. Since the different sets of coefÞ cients used by alternate
forms of the Fourier series are directly convertible from each other, we expect to obtain the
sine and cosine frequency contents of x(t) from its Fourier transform X(f) too. We begin our
derivation by seeking an alternate form of the Fourier integral representation of x(t).

x(t) =

∫ ∞

−∞
X(f) ej2πft df

=

∫ ∞

−∞
X(f)

(
cos(2πft) + j sin(2πft)

)
df

=

∫ ∞

0

(
X(f) cos(2πft) + X(−f) cos

(
2π(−f)t

)
+ jX(f) sin(2πft) + jX(−f) sin

(
2π(−f)t

))
df

=

∫ ∞

0

(
X(f) + X(−f)

)
cos(2πft) df +

∫ ∞

0

j
(
X(f)−X(−f)

)
sin(2πft) df

=

∫ ∞

0

Xcos(f) cos(2πft) df +

∫ ∞

0

Xsin(f) sin(2πft) df,

where we have obtained the cosine and sine contents in terms of X(f) and X(−f), namely,

Xcos(f) = X(f) + X(−f),

and
Xsin(f) = j

(
X(f)−X(−f)

)
.

5.4. TABULATING TWO SETS OF FUNDAMENTAL FORMULAS 165

By combining the integrals deÞn ing X(f) and X(−f), we may also express Xcos(f) and
Xsin(f) each as an integral transform of x(t). In the derivation below, we apply EulerÕs for-
mulas

cos(θ) =
ejθ + e−jθ

2
and sin(θ) =

ejθ − e−jθ

2j

with θ = 2πft, and we obtain

Xcos(f) = X(f) + X(−f)

=

∫ ∞

−∞
x(t) e−j2πft dt +

∫ ∞

−∞
x(t) e−j2π(−f)t dt

=

∫ ∞

−∞
x(t)

(
e−j2πft + ej2πft

)
dt

= 2

∫ ∞

−∞
x(t) cos(2πft) dt (by EulerÕs formula)

and

Xsin(f) = j
(
X(f)−X(−f)

)
= j

∫ ∞

−∞
x(t)

(
e−j2πft − ej2πft

)
dt

= 2

∫ ∞

−∞
x(t) sin(2πft) dt. (by EulerÕs formula)

We now have two integral representations for x(t):

x(t) =

∫ ∞

−∞
X(f) ej2πft df

=

∫ ∞

0

Xcos(f) cos(2πft) df +

∫ ∞

0

Xsin(f) sin(2πft) df.

Note that for f ∈ [0,∞), the complete set of the values of Xcos(f) deÞ nes the cosine frequency
contents of x(t), and the complete set of the values of Xsin(f) deÞ nes the sine frequency
contents of x(t).

5.4 Tabulating Two Sets of Fundamental Formulas

We have seen earlier that the interplay between the Fourier series and the Fourier transform
is critical in developing the sampling theorem, and we will continue to rely on the connection
between the two in future development. Since there are commonly used alternate forms for
both, we tabulate the fundamental formulas and their alternates for easy reference in Table 5.1.

5.5 Connections with Time/Frequency Restrictions

Our derivations in this chapter and Chapter 3 show that under suitable conditions, a given signal
x(t) may be represented by a Fourier integral, a Fourier series, or an interpolating formula.
These alternate forms are valid and connected under the conditions identiÞed in Table 5.2, in
which we use the shorthand notation Ò x(t) ⇐⇒ X(f)Ó t o denote a Fourier transform pair.

166 CHAPTER 5. SAMPLING AND RECONSTRUCTION—PART II

Table 5.1 Two sets of fundamental formulas in Fourier analysis.

Fourier series and its coefÞcien ts of Fourier transform and its inverse of
periodic real-valued function xp(t) nonperiodic real-valued function x(t)

xp(t) =
∑∞

k=−∞ Ckej2πkt/T x(t) =
∫∞
−∞X(f) ej2πftdf

Ck = 1
T

∫ T/2

−T/2
xp(t) e−j2πkt/T dt X(f) =

∫∞
−∞ x(t) e−j2πftdt

xp(t) = 1
2A0 +

∑∞
k=1 Ak cos 2π k

T t x(t) =
∫∞
0

Xcos(f) cos(2πft)df

+
∑∞

k=1 Bk sin 2π k
T t +

∫∞
0 Xsin(f) sin(2πft)df

Ak = 2
T

∫ T/2

−T/2
xp(t) cos 2π k

T t dt, Xcos(f) = 2
∫∞
−∞ x(t) cos(2πft)dt

k = 0, 1, 2, . . .

Bk = 2
T

∫ T/2

−T/2 xp(t) sin 2π k
T t dt, Xsin(f) = 2

∫∞
−∞ x(t) sin(2πft)dt

k = 1, 2, . . .

Ak = Ck + C−k = 2Re(Ck) Xcos(f) = X(f) + X(−f)

Bk = j(Ck − C−k) = −2Im(Ck) Xsin(f) = j
(
X(f)−X(−f)

)

C±k = 1
2 (Ak ∓ jBk) X(±f) = 1

2

(
Xcos(f)∓ jXsin(f)

)

Table 5.2 Connections with time/frequency restrictions.

Generic pair Assumptions:
x(t) ⇐⇒ X(f) x(t) =

∫∞
−∞X(f) ej2πftdf, x(t) is real-valued;

t ∈ (−∞,∞) X(f) is either real-valued
f ∈ (−∞,∞) X(f) =

∫∞
−∞ x(t) e−j2πftdt. or complex-valued

Time-limited pair Fourier series connection:
x(t) ⇐⇒ X(f) x(t) =

∫∞
−∞X(f) ej2πftdf, x(t) =

∑∞
k=−∞ Ckej2πkt/T ,

t ∈ [−T/2, T/2] for t ∈ [−T/2, T/2], where

f ∈ (−∞,∞) X(f) =
∫ T/2

−T/2
x(t) e−j2πftdt. coefÞcient Ck = 1

T X
(

k
T

)
,

for k = . . . ,−1, 0, 1, . . .

Band-limited pair Sampling theorem connection

x(t) ⇐⇒ X(f) x(t) =
∫ F/2

−F/2 X(f) ej2πftdf, (assume X(f) is real-valued):

t ∈ (−∞,∞) x(t) =
∑∞

k=−∞ x(tk) sin πF (t−tk)
πF (t−tk)

f ∈ [−F/2, F/2] X(f) =
∫∞
−∞ x(t) e−j2πftdt. where tk = k�t,�t = 1/F ,

for k = . . . ,−1, 0, 1, . . .

5.5. CONNECTIONS WITH TIME/FREQUENCY RESTRICTIONS 167

5.5.1 Examples of Fourier transform pair

Example 5.1 The Fourier transform of the decaying exponential function

x(t) =

{
e−at, for t ∈ [0,∞) (a > 0);

0, for t ∈ (−∞, 0)

can be easily obtained from the deÞn ition

X(f) =

∫ ∞

−∞
x(t) e−j2πftdt =

∫ ∞

0

e−ate−j2πftdt

=

∫ ∞

0

e−(a+j2πf)tdt

=
1

a + j2πf

=
a

a2 + 4π2f2
− j

2πf

a2 + 4π2f2
.

Since X(f) is complex-valued, the frequency-domain plot of x(t) consists of the graph of
Re

(
X(f)

)
and the graph of Im

(
X(f)

)
versus f for every f ∈ (−∞,∞), which are shown in

Figure 5.2.

Figure 5.2 Time-domain and frequency-domain plots of x(t) = e−at.

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

time t (seconds)

 a
m

pl
itu

de

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

1.5

2

frequency f (cycles per second)

am
pl

itu
de

1

x(t) = e−at (a = 0.5)

2

X(f) = (a+j2πf)−1 Re(X(f))

Im(X(f))

0

−1

Example 5.2 The Gaussian function

x(t) = e−at2 (a > 0)

168 CHAPTER 5. SAMPLING AND RECONSTRUCTION—PART II

is deÞn ed for every t ∈ (−∞,∞). We Þ nd its Fourier transform by evaluating the integral

X(f) =

∫ ∞

−∞
{e−at2}e−j2πftdt

=

∫ ∞

−∞
e−a(t2+j2πft/a)dt

=

∫ ∞

−∞
e−a[(t+jπf/a)2+π2f2/a2]dt

= e−π2f2/a

∫ ∞

−∞
e−a(t+jπf/a)2dt

= e−π2f2/a

∫ ∞

−∞
e−aλ2

dλ (change variable to λ = t + jπf/a; dλ = dt)

=
1√
a
e−π2f2/a

∫ ∞

−∞
e−u2

du (change variable to u =
√

aλ; du =
√

a dλ)

=
√

π/a e−π2f2/a. (using the known result
∫ ∞

−∞
e−u2

du =
√

π)

We thus have

X(f) = F{e−at2} =
√

π/a e−π2f2/a for every f ∈ (−∞,∞).

Observe that X(f) is real-valued and it is also a Gaussian function (see Figure 5.3). In this
example, x(t) is neither time limited nor band limited. Furthermore, when the scalar constant
a = π, we have self-reciprocity: F{x(t)} = x(f).

Example 5.3 (Figure 5.4 Time-Limited Pair) We consider the rectangular pulse function (also
known as the square wave or boxcar function), which is assumed to have a pulse width of 2t0
and it is deÞned as

xrect(t) =


1

2t0
, for t ∈ [−t0, t0];

0, for |t| > t0.

Its Fourier transform is

X(f) =

∫ ∞

−∞
xrect(t) e−j2πftdt

=
1

2t0

∫ t0

−t0

e−j2πftdt

=
e−j2πft0 − ej2πft0

−j4πft0

=
sin(2πft0)

2πft0
(by EulerÕs formula)

= sinc(2ft0), ∵ sinc(x) ≡ sin(πx)/(πx).

Thus the time-limited rectangular pulse and the frequency-domainsinc function form a Fourier
transform pair (see Figure 5.4). By letting t0 = 1/2, we obtain the pair

zrect(t) =

{
1, t ∈ [−1/2, 1/2];

0, |t| > 1/2.
⇐⇒ Z(f) = sinc(f) =

{
sin(πf)/(πf), f 	= 0;

1, f = 0.

5.5. CONNECTIONS WITH TIME/FREQUENCY RESTRICTIONS 169

Figure 5.3 Gaussian function and its real-valued Fourier transform.

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

time t (seconds)

am
pl

itu
de

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

frequency f (cycles per second)

am
pl

itu
de

x(t) = e−at
2

 (a = 0.5)

X(f) = (π/a)1/2e−2π2
f
2

Almost time−limited

Almost band−limited

Figure 5.4 Time-limited rectangular pulse and its Fourier transform.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
time t (seconds)

am
pl

itu
de

−8 −6 −4 −2 0 2 4 6 8
−0.5

0

0.5

1

frequency f (cycles per second)

am
pl

itu
de

1

x(t) = 1/(2t
0
),

for t ∈ (−t
0
, t

0
).

(t
0
 = 0.5)

Time−limited

X(f) = sin(2π f t
0
)/(2π f t

0
),

for f ∈ (−∞, ∞).

0

1

0

1

170 CHAPTER 5. SAMPLING AND RECONSTRUCTION—PART II

Note that Z(f) is deÞn ed for every f ∈ (−∞, ∞).
To demonstrate the Fourier series connection, we give the Fourier series representation of

xp
rect(t), which is the periodic extension of xrect(t), and the two functions agree over the period

[−T/2, T/2]. The periodic pulse function xp
rect(t) with period T is deÞned as

xp
rect(t) =


1

2t0
, for t ∈ [−t0, t0];

0, for t0 < |t| ≤ T/2.

It is worth noting that because there are discontinuities at t = ±t0, the Fourier series obtained
for xp

rect(t) actually converges to the normalized function shown in Figure 5.5:

x̂p
rect(t) =


1

2t0
, for t ∈ (−t0, t0);

1

4t0
, for t = ±t0;

0, for t0 < |t| ≤ T/2.

This is so because the Fourier series converges to the average of the left- and right-hand limits
at the point of discontinuity.

Figure 5.5 Connecting Fourier series coefÞ cients to Fourier transform.

−4 −3 −2 −1 0 1 2 3 4

−8 −6 −4 −2 0 2 4 6 8
−0.5

0

0.5

1

ooooo o o o0.5

1

0

period
T = 2

f
1

f
5

f
3

f
7

f
9

f
11

f
13f

0

Fourier series coefficients

C±k
 = X(f±k

)/T:

 X(f
0
) = TC

0

X(f
1
) = TC

1

The normalized periodic pulse function

Fourier coefficients

f
−3

f
−5

f
−7

f
−9

f
−11

f
−13

We can now Þ nd the Fourier series of xp
rect(t), which converges to x̂p

rect(t). Using the
complex exponential modes, we write

x̂p
rect(t) =

∞∑
k=−∞

Ckej2πkt/T ,

5.6. FOURIER TRANSFORM PROPERTIES 171

where the coefÞcients are computed from xp
rect(t):

Ck =
1

T

∫ T/2

−T/2

xp
rect(t) e−j2πkt/T dt

=
1

T

∫ t0

−t0

xrect(t) e−j2πkt/T dt

=
1

T

(
1

2t0

∫ t0

−t0

e−j2πkt/T dt

)
=

1

T
sinc(2kt0/T).

Comparing the equation deÞ ning Ck with the Fourier transform of the pulse function, we
immediately have

Ck =
1

T
sinc(2fkt0) =

1

T
X(fk), fk = k/T.

That is, we may obtain the Fourier series coefÞ cient Ck by evaluating the Fourier trans-
form X(f) = sinc(2ft0) at f = fk = k/T , and scale the result by 1/T , for all k =

. . . ,−1, 0, 1, This connection is illustrated in Figure 5.5.

Example 5.4 (Figure 5.6 Band-Limited Pair) We now consider the Fourier transform of the
time-domain function sinc(2fct), which turns out to be the rectangular pulse function

Xrect(f) =


1

2fc
, for f ∈ [−fc, fc];

0, for |f | > fc.

We show this by Þ nding the inverse Fourier transform of Xrect(f):

F−1{Xrect(f)} =

∫ ∞

−∞
Xrect(f) ej2πftdf

=
1

2fc

∫ fc

−fc

ej2πftdf

=
ej2πfct − e−j2πfct

j4πfct

=
sin(2πfct)

2πfct
(by EulerÕs formula)

= sinc(2fct).

We have thus shown that the time-domain function x(t) ≡ sinc(2fct) is band limited with
bandwidth 2fc (see Figure 5.6). Note that by letting fc = 1/2, we obtain the pair

z(t) = sinc(t) =

{
sin(πt)/(πt), t 	= 0;

1, t = 0.
⇐⇒ Zrect(f) =

{
1, f ∈ [−1/2, 1/2];

0, |f | > 1/2.

5.6 Fourier Transform Properties

The Fourier transform is a linear operation and obeys superposition. Its mathematical prop-
erties are summarized in Table 5.3, and their derivations follow the summary. While most of

172 CHAPTER 5. SAMPLING AND RECONSTRUCTION—PART II

Figure 5.6 A band-limited Fourier transform pair.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

time t (seconds)

am
pl

itu
de

−8 −6 −4 −2 0 2 4 6 8
−0.5

0

0.5

1

frequency f (cycles per second)

am
pl

itu
de

1

X(f) = 1/(2f
c
),

for f ∈ (−f
c
, f

c
).

(f
c
= 0.5)

Band−limited
1

for t ∈ (−∞, ∞).

x(t) = sin(2πf
c
t)/(2πf

c
t)

Time−domain function

0

the derivations are fairly straightforward, the experience and technical details are useful when
these properties need to be re-derived for alternate forms of Fourier transform. (For example,
the Fourier transform may be deÞ ned using angular frequency ω = 2πf instead of the rota-
tional frequency f . We will follow up on this later.) These properties are operational and their
utilities are demonstrated by examples.

5.6.1 Deriving the properties

1. Linearity

F{αx(t) + βy(t)} =

∫ ∞

−∞

(
αx(t) + βy(t)

)
e−j2πftdt

= α

∫ ∞

−∞
x(t) e−j2πftdt + β

∫ ∞

−∞
y(t) e−j2πftdt

= αX(f) + βY (f).

5.6. FOURIER TRANSFORM PROPERTIES 173

Table 5.3 Fourier transform properties.

1. Linearity F{αx(t) + βy(t)} = αX(f) + βY (f)

2. Time shift F{x(t− ta)} = X(f) e−j2πfta

3. Frequency shift F{x(t) ej2πfat} = X(f − fa)

4. Modulation F{x(t) cos 2πfat} =
1

2

(
X(f + fa) + X(f − fa)

)
F{x(t) sin 2πfat} =

j

2

(
X(f + fa)−X(f − fa)

)
5. Time scaling F{x(αt)} =

1

|α|X
(

f

α

)
, α 	= 0.

6. Folding F{x(−t)} = X(−f)

7. Transform of a transform F{F{x(t)}} = F{X(f)} = x(−t)

8. Transform of the derivative F{x′(t)} = j2πfX(f)

9. Derivative of the transform X ′(f) = −j2πF{tx(t)}

2. The Time-Shift Property

F{x(t− ta)} =

∫ ∞

−∞
x(t− ta) e−j2πft dt

=

∫ ∞

−∞
x(s) e−j2πf(s+ta) ds (∵ s = t− ta, t = s + ta, dt = ds)

=

∫ ∞

−∞
x(s) e−j2πfse−j2πfta ds

=

[∫ ∞

−∞
x(s) e−j2πfs ds

]
e−j2πfta

= X(f) e−j2πfta .

3. The Frequency-Shift Property

F{x(t) ej2πfat} =

∫ ∞

−∞

[
x(t) ej2πfat

]
e−j2πft dt

=

∫ ∞

−∞
x(t) e−j2π(f−fa)t dt

= X(f − fa).

174 CHAPTER 5. SAMPLING AND RECONSTRUCTION—PART II

4. The Modulation Property

∵ X(f + fa) + X(f − fa) = F{x(t) e−j2πfat}+ F{x(t) ej2πfat} (by frequency shift)

= F{x(t)[e−j2πfat + ej2πfat]} (by linearity)

= 2F{x(t) cos 2πfat}, (by EulerÕs formula)

∴ F{x(t) cos 2πfat} =
1

2

(
X(f + fa) + X(f − fa)

)
.

Similarly,

∵ X(f + fa)−X(f − fa) = F{x(t) e−j2πfat} − F{x(t) ej2πfat} (by frequency shift)

= F{x(t)[e−j2πfat − ej2πfat]} (by linearity)

= −2jF{x(t) sin 2πfat}, (by EulerÕs formula)

∴ F{x(t) sin 2πfat} =
j

2

(
X(f + fa)−X(f − fa)

)
.

5. The Time-Scaling Property

Case (i) When α > 0, we have

F{x(αt)} =

∫ ∞

−∞
x(αt) e−j2πft dt

=

∫ ∞

−∞
x(s) e−j2πfs/α 1

α
ds

(
∵ s = αt, t =

s

α
, dt =

1

α
ds

)
=

1

α

[∫ ∞

−∞
x(s) e−j2π(f

α)s ds

]
=

1

α
X

(
f

α

)
.

Case (ii) When α < 0, the new variable s = αt changes sign. Thus when t → −∞,
s → ∞; when t → ∞, s → −∞. We have taken into account the sign change in
the lower and upper limits of the integral in the derivation below.

F{x(αt)} =

∫ ∞

−∞
x(αt) e−j2πftdt

=

∫ −∞

∞
x(s) e−j2πfs/α 1

α
ds (∵ s = αt changes sign)

=
1

α

[
(−1)

∫ ∞

−∞
x(s) e−j2π(f

α)s ds

]
= − 1

α

[∫ ∞

−∞
x(s) e−j2π(f

α)s ds

]
=

1

|α|X
(

f

α

)
. (∵ −α = |α| when α < 0)

Combining the two cases, we have

F{x(αt)} =
1

|α|X
(

f

α

)
, α 	= 0.

5.6. FOURIER TRANSFORM PROPERTIES 175

6. The Folding Property This is a direct result of the time-scaling property: let α = −1 in
the time scaling formula above, we immediately obtain the folding property.

7. Transform of a Transform

∵ x(t) = F−1{X(f)} =

∫ ∞

−∞
X(f) ej2πftdf

∴ x(−t) =

∫ ∞

−∞
X(f) e−j2πtfdf = F{X(f)} = F{F{x(t)}}.

8. Transform of the Derivative

F{x′(t)} =

∫ ∞

−∞
x′(t) e−j2πft dt (by deÞn ition of Fourier transform)

= x(t) e−j2πft
∣∣∣∞
−∞

−
∫ ∞

−∞
x(t)

{−j2πfe−j2πft
}

dt (via integration by parts)

= j2πf

∫ ∞

−∞
x(t) e−j2πft dt (assume x(t) → 0 as |t| → ∞)

= j2πfX(f).

9. Derivative of the transform

∵ F−1{X ′(f)} =

∫ ∞

−∞
X ′(f) ej2πftdf (inverse Fourier transform)

= X(f) ej2πft
∣∣∣ ∞
−∞

−
∫ ∞

−∞
X(f)

{
j2πt ej2πft

}
df (via integration by parts)

= −j2πt

∫ ∞

−∞
X(f) ej2πft df (assume X(f)→ 0 as |f | → ∞)

= −j2πt x(t).

∴ X ′(f) = F{−j2πt x(t)} = −j2πF{tx(t)}.

5.6.2 Utilities of the properties

We demonstrate how to use these properties to Þ nd Fourier transform pairs by several exam-
ples.

Example 5.5 (Figure 5.7) Given the Fourier transform pair (from Example 5.3)

xrect(t) =


1

2t0
, for t ∈ [−t0, t0];

0, for |t| > t0.
⇐⇒ X(f) = sinc(2ft0) =

sin(2πft0)

2πft0
,

176 CHAPTER 5. SAMPLING AND RECONSTRUCTION—PART II

we apply the time-shift property and obtain the following pair:

xrect(t− α) =


1

2t0
, for t ∈ [−t0 + α, t0 + α];

0, for |t− α| > t0.

⇐⇒ X(f) e−j2πfα = sinc(2ft0) e−j2πfα

= sinc(2ft0) cos 2πfα− jsinc(2ft0) sin 2πfα.

Figure 5.7 Illustrating the time-shift property.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
time t (seconds)

am
pl

itu
de

−8 −6 −4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

frequency f (cycles per second)

am
pl

itu
de

1

0

1

z(t) = x(t−α) = 1/(2t
0
)

for t ∈ (−t
0
+α, t

0
+α).

(t
0
 = 0.5, α = 1)

−t
0
+α t

0
+α

z(t) = x(t−α)

α

Time shift:

Re(Z(f))

Im(Z(f))Z(f) = X(f)e−j2π fα

Fourier transform

Example 5.6 (Figure 5.8) Given the Fourier transform pair (from Example 5.1)

x(t) =

{
e−at, for t ∈ [0,∞) (a > 0);

0, for t ∈ (−∞, 0)
⇐⇒ X(f) =

1

a + j2πf
,

we obtain the pair

y(t) = t x(t) =

{
t e−at, for t ∈ [0,∞) (a > 0);

0, for t ∈ (−∞, 0)
⇐⇒ Y (f) =

1

(a + j2πf)2

by using the Òderi vative of the transformÓ property: −j2πF{tx(t)} = X ′(f), which yields

Y (f) = F{t x(t)} =
−1

j2π
X ′(f) =

−1

j2π

[−j2π

(a + j2πf)2

]
=

1

(a + j2πf)2
.

5.7. ALTERNATE FORM OF THE FOURIER TRANSFORM 177

Figure 5.8 Illustrating the derivative of the transform property.

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

time t (seconds)

am
pl

itu
de

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−4

−2

0

2

4

frequency f (cycles per second)

am
pl

itu
de

Re(Y(f))
Im(Y(f))

y(t) = t x(t) = te−at

(a = 0.5)

Y(f) = (a+j2π f)−2

Fourier transform

Example 5.7 (Figure 5.9) Given the Fourier transform pair x(t) ⇐⇒ X(f), if F{x(n)(t)}
exists, it can be found by applying the Ò transform of the derivativeÓ property n times, and the
following pair is obtained

x(n)(t)⇐⇒ (j2πf)nX(f).

On the other hand, given x(t) ⇐⇒ X(f), we can Þnd F{tnx(t)} by applying the Ò derivative
of the transformÓ property n times:

(−j2π)ntnx(t) ⇐⇒ X(n)(f).

Continuing with the result from the last example, we immediately have the transform pair for
every n ≥ 1:

z(t) =

{
tne−at, for t ∈ [0,∞) (a > 0);

0, for t ∈ (−∞, 0)
⇐⇒ Z(f) =

n!

(a + j2πf)n+1
.

5.7 Alternate Form of the Fourier Transform

The Fourier transform may be expressed as a function of the angular frequency ω instead
of the the rotational frequency f . Noting that because ω = 2πf , we have f = ω/2π, df =

(1/2π) dω, and we modify the two deÞ ning integrals by changing the variable as shown below.

X(f) =

∫ ∞

−∞
x(t) e−j2πft dt =

∫ ∞

−∞
x(t) e−jωt dt = X̃(ω).

178 CHAPTER 5. SAMPLING AND RECONSTRUCTION—PART II

Figure 5.9 Illustrating the derivative of the transform property (n = 2).

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

time t (seconds)

am
pl

itu
de

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−10

−5

0

5

10

15

20

frequency f (cycles per second)

am
pl

itu
de

Re(Z(f))
Im(Z(f))

z(t) = tn x(t) = tn e−at

(n = 2, a = 0.5)

Fourier transform

Z(f) = n! (a+j2π f)−(n+1)

x(t) =

∫ ∞

−∞
X(f) ej2πft df =

1

2π

∫ ∞

−∞
X̃(ω) ejωt dω.

We have thus obtained the mathematically equivalent deÞ nition expressed in the angular fre-
quency ω, namely,

X̃(ω) = F{x(t)} =

∫ ∞

−∞
x(t) e−jωt dt,

x(t) = F−1{X̃(ω)} =
1

2π

∫ ∞

−∞
X̃(ω) ejωt dω.

Observe that the mathematically equivalent counterpart of (5.14) is

(5.15) X̃(0) =

∫ ∞

−∞
x(t) dt; x(0) =

1

2π

∫ ∞

−∞
X̃(ω) dω.

Using this modiÞ ed deÞ nition, all properties given previously in Table 5.3 can now be re-
derived in exactly the same manner. We give the results in Table 5.4.

5.8 Computing the Fourier Transform from Discrete-Time
Samples

In this section we return to address several issues raised earlier concerning the sampling theo-
rem, and we show how the theorem can help with the task of constructing and computing the
Fourier transform from the discrete-time samples.

5.8. COMPUTING THE FOURIER TRANSFORM 179

Table 5.4 Fourier transform properties (expressed in ω = 2πf).

1. Linearity F{αx(t) + βy(t)} = αX̃(ω) + βỸ (ω)

2. Time shift F{x(t− ta)} = X̃(ω) e−jωta

3. Frequency shift F{x(t) ej2πfat} = X̃(ω − 2πfa)

4. Modulation F{x(t) cos 2πfat} =
1

2

(
X̃(ω + 2πfa) + X̃(ω − 2πfa)

)
F{x(t) sin 2πfat} =

j

2

(
X̃(ω + 2πfa)− X̃(ω − 2πfa)

)
5. Time scaling F{x(αt)} =

1

|α|X̃
(ω

α

)
, α 	= 0.

6. Folding F{x(−t)} = X̃(−ω)

7. Transform of a transform F{F{x(t)}} = F{X̃(ω)} = 2πx(−t)

8. Transform of the derivative F{x′(t)} = jωX̃(ω)

9. Derivative of the transform X̃ ′(ω) = −jF{tx(t)}

5.8.1 Almost time-limited and band-limited functions

Recall that the sampling theorem is only valid for band-limited signals, and we have expressed
the following concerns:

1. To use the interpolating formula given in the theorem, we need an inÞ nite number of
samples extended from −∞ to∞.

2. Many signals in the real world are not band limited.

Fortunately, many signals we encounter in the real world are decaying signalsÑthe y decay to
zero in the long run in both time domain and frequency domain, and they are described to be
both almost time limited and almost band limited. The almost band-limited property allows
us to apply the sampling theorem (with acceptable accuracy) when the bandwidth is properly
chosen; the almost time-limited property allows us to use a Þ nite interpolating formula (with
acceptable accuracy) when the number of terms is properly chosen. The Gaussian function (see
Example 5.2) is an obvious example, because its Fourier transform is also a Gaussian function.

In this section we consider a function x(t) which is almost time limited to [−T/2, T/2]

and almost band limited to [−F/2, F/2], where T and F are chosen to be sufÞ ciently large
so that both x(t) and its Fourier transform X(f) can be deemed essentially zero outside the
respective range. Observe that because F{X(f)} = x(−t), so X(f) is also both almost time
limited and almost band limited. Therefore, if we can apply the sampling theorem to construct
x(t) using a Þ nite number of samples, we can also apply the sampling theorem to construct
X(f) using a Þ nite number of samples, and we will see how this plays out below.

It is common in practice to use a sampling rate Þ ve to ten times the minimum Nyquist rate,
and we will follow this practice by using the sampling rate 1/�t = 5F = F̂ . Applying the

180 CHAPTER 5. SAMPLING AND RECONSTRUCTION—PART II

Sampling Theorem 5.1, we obtain

x(t) =

∞∑
�=−∞

x(��t) sinc
(
F̂ (t− ��t)

)
.

Since x(t) is a decaying function and almost zero outside [−T/2, T/2], if we choose a sufÞ -
ciently large (but Þ nite) number of samples so that N�t = 5T = T̂ and assume x(t) = 0

outside [−T̂ /2, T̂ /2], then we can safely truncate the interpolating formula to N terms:

x(t) =

N/2∑
�=−N/2+1

x(��t) sinc
(
F̂ (t− ��t)

)
.

To obtain the Fourier transform of x(t), recall that we have obtained the following Fourier
transform pair (from Example 5.3)

p(t) = sinc(F̂ t)⇐⇒ P (f) =

{
1/F̂ , for f ∈ [−F̂ /2, F̂ /2];

0, for |f | > F̂/2.

Since p(t− ��t)⇐⇒ P (f) e−j2πf��t by the time-shift property, we have

X(f) = F{x(t)} =

N/2∑
�=−N/2+1

x(��t) F{sinc
(
F̂ (t− ��t)

)} (by linearity)

=

N/2∑
�=−N/2+1

x(��t) F{sinc(F̂ t)}e−j2πf��t (by time shift)

=

N/2∑
�=−N/2+1

x(��t)P (f) e−j2πf��t.

We may now compute N equally spaced samples of X(f) over the interval [−F̂ /2, F̂ /2]. The
sampling interval is thus�f = F̂ /N , and we compute X(fr) at fr = r�f for −N/2 + 1 ≤
r ≤ N/2 using the formula derived above, i.e.,

X(fr) =

N/2∑
�=−N/2+1

x(��t)P (fr) e−j2πfr��t

= (1/F̂)

N/2∑
�=−N/2+1

x(��t) e−j2π(r�f)��t (∵ P (fr) = 1/F̂ , fr = r�f)

= �t

N/2∑
�=−N/2+1

x(��t) e−j2πr�/N . (∵ �t = 1/F̂ , �f�t = 1/N)

By letting t� = ��t, x� = x(t�), and Xr = X(fr), we rewrite the equation above as

Xr = N�t

 1

N

N/2∑
�=−N/2+1

x�e
−j2πr�/N

 .

5.9. COMPUTING THE FOURIER COEFFICIENTS 181

Letting X̂r = Xr/(N�t), we obtain the discrete Fourier transform (DFT) of the discrete-time
sequence {x�}:

X̂r =
1

N

N/2∑
�=−N/2+1

x�e
−j2πr�/N , for −N/2 + 1 ≤ r ≤ N/2.

Since the sequence {X̂r} can be computed using the FFT, and it differs from {Xr} only by
a constant factor N�t, an efÞ cient method is available to compute the sequence of Fourier
transform values {Xr} from a sequence of discrete-time samples {x�}. A graph of X(f) can
then be obtained by plotting Xr values versus fr or index r.

We show next how to construct X(f) (analytically) from its N samples. By the Ò trans-
form of the transformÓ property, F{(X(f)} = x(−t), so X(f) is almost band-limited to
[−T/2, T/2]; with the sampling rate 1/�f = N/F̂ = N�t = T̂ = 5T (Þ ve times the
minimum Nyquist rate), we can apply the sampling theorem and obtain

X(f) =

∞∑
r=−∞

X(r�f) sinc
(
T̂ (f − r�f)

)
.

Since X(f) is almost time-limited to [−F/2, F/2], assuming X(f) = 0 outside [−F̂ /2, F̂ /2]

(recall F̂ = 5F), we may safely truncate the interpolating formula to N terms:

X(f) =

N/2∑
r=−N/2+1

X(r�f) sinc
(
T̂ (f − r�f)

)
.

5.9 Computing the Fourier Series Coefficients from Discrete-
Time Samples

Let us Þ rst recall that if x(t) is a signal time-limited to [−T/2, T/2], we may obtain its periodic
extension xp(t) by repeating x(t) over period T indeÞn itely. Conversely, given a periodic
function xp(t), we may obtain the time-limited x(t) by restricting xp(t) to a single period.
In either case, x(t) = xp(t) for t ∈ [−T/2, T/2], and x(t) = 0 otherwise. Assuming that
xp(t) satisÞes the Dirichlet conditions and it has a Fourier series, we may use the same Fourier
series to represent the time-limited x(t) over [−T/2, T/2]. This result allows us to relate the
Fourier series coefÞ cients for periodic xp(t) (or time-limited x(t)) to the Fourier transform of
time-limited x(t) as shown below (previously shown in the middle of Table 5.2):
We also gave an example to demonstrate this connection (Example 5.3).

In this section we shall combine the sampling theorem with the connection above to com-
pute the Fourier series coefÞ cients for a periodic function xp(t) based on its discrete-time
samples. We will only need equally spaced samples from a single period of xp(t), which may
be interpreted as samples from a time-limited function x(t), and we assume further that x(t) is
almost band-limited (for the sampling theorem to apply.) The latter condition also implies that
xp(t) is almost band-limited, because it is represented by the same Fourier series.

182 CHAPTER 5. SAMPLING AND RECONSTRUCTION—PART II

Table 5.5 Connections with time-limited restriction.

Time-limited pair Fourier transform of x(t) Fourier series connection:

x(t) ⇐⇒ X(f) x(t) =
∫∞
−∞X(f) ej2πftdf, x(t) = xp(t) =

∑∞
k=−∞ Ckej2πkt/T ,

t ∈ [−T/2, T/2] for t ∈ [−T/2, T/2], where

f ∈ (−∞,∞) X(f) =
∫ T/2

−T/2
x(t) e−j2πftdt. coefÞcient Ck = 1

T X
(

k
T

)
,

for k = . . . ,−1, 0, 1, . . .

5.9.1 Periodic and almost band-limited function

Let xp(t) denote a periodic and almost band-limited function. As explained above, we deÞ ne
x(t) = xp(t) over a single period [−T/2, T/2] and x(t) = 0 otherwise, and we further assume
x(t) to be almost band limited to [−F/2, F/2]. Since x(t) is time limited and almost band
limited, we may now apply the sampling theorem to compute the discrete Fourier transform
of x(t) following the same process developed in the last sectionÑ with only one adjustment:
the sampling interval is now T for time-limited x(t); i.e., we choose the number of samples to
satisfy N�t = T (in contrast to choosing N�t = 5T for the almost time-limited function.)

Retracing the steps in the last section, we use the same practical sampling rate 1/�t =

5F = F̂ , apply the sampling theorem, and obtain

x(t) =
∞∑

�=−∞
x(��t) sinc

(
F̂ (t− ��t)

)
.

Since x(t) = 0 outside [−T/2, T/2], if N is the total number of samples within [−T/2, T/2],
we have N�t = T and there are only N terms in the interpolating formula:

x(t) =

N/2∑
�=−N/2+1

x(��t) sinc
(
F̂ (t− ��t)

)
.

Following exactly the same derivation in the last section, we obtain the same expressions for
X(f) = F{x(t)} and its discrete values Xr = X(r�f), where �f = 1/(N�t) = 1/T (in
contrast to�f = 1/(5T) in the last section), namely,

Xr = N�t

 1

N

N/2∑
�=−N/2+1

x�e
−j2πr�/N

 = T

 1

N

N/2∑
�=−N/2+1

x�e
−j2πr�/N

 .

Since the Fourier coefÞ cient

Cr =
1

T
X

(r

T

)
=

1

T
X(r�f) =

1

T
Xr,

the N Fourier series coefÞ cients can be obtained directly from the discrete Fourier transform
(DFTDFTDFT) of the N discrete-time samples, i.e.,

Cr =
1

N

N/2∑
�=−N/2+1

x�e
−j2πr�/N for r = −N/2 + 1, . . . ,−1, 0, 1, . . . , N/2.

From the reciprocity relation�f�t = 1/N , it can be easily veriÞ ed that the N coefÞcients Cr

correspond to discrete frequencies fr ∈ [−F̂ /2, F̂/2] = [−5F/2, 5F/2] as one would have
expected.

5.9. COMPUTING THE FOURIER COEFFICIENTS 183

References

1. A. Ambardar. Analog and Digital Signal Processing. Brooks/Cole Publishing Company,
PaciÞ c Grove, CA, second edition, 1999.

2. W. L. Briggs and V. E. Hensen. The DFT: An Owner’s Manual for the Discrete Fourier
Transform. The Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995.

3. R. W. Hamming. Digital Filters. Prentice-Hall, Inc., Englewood Cliffs, NJ, third edition,
1989.

4. B. Porat. A Course in Digital Signal Processing. John Wiley & Sons, Inc., New York,
1997.

5. H. J. Weaver. Applications of Discrete and Continuous Fourier Analysis. John Wiley &
Sons, Inc., New York, 1983.

Chapter 6

Sampling and Reconstruction of
Functions—Part III

In this chapter we build on the material developed in Chapters 3 and 5 when we study the
impulse functions and the Fourier transform theorems on convolution, and we show how these
mathematical tools interplay in developing the sampling theorem and other digital signal pro-
cessing tools.

6.1 Impulse Functions and Their Properties

We begin with the familiar rectangular pulse function (with area = 1):

dτ (t) =


1

2τ
, for t ∈ [−τ, τ];

0, for |t| > τ > 0.

Since the pulse represented by dτ (t) gets taller and narrower when the interval of length 2τ

gets smaller, it is commonly used to describe a sudden force of large magnitude over very
short time intervals. Recall that we have derived the Fourier transform of a rectangular pulse
function in Example 5.3, so we immediately obtain

F{dτ (t)} = sinc(2fτ) =
sin(2πfτ)

2πfτ
.

In the last chapter, the Fourier transform pair consisting of the rectangular pulse and the sinc

function was shown to play a key role in sampling and recovering a function and its Fourier
transform. In this chapter, we base our development on a generalized function deÞ ned as the
limit of dτ as τ → 0 (see Figure 6.1), i.e.,

δ(t) = lim
τ→0

dτ (t).

The generalized function δ(t) is usually called the Dirac delta function and it has the fol-
lowing properties:

185

186 CHAPTER 6. SAMPLING AND RECONSTRUCTION—PART III

Figure 6.1 DeÞn ing the Dirac delta function.

−2 −1 0 1 2

0

2

4

−5 0 5
−1

0

1

2

−2 −1 0 1 2

0

2

4

−5 0 5
−1

0

1

2

−2 −1 0 1 2

0

2

4

−5 0 5
−1

0

1

2

−2 −1 0 1 2 −2 −1 0 1 2
−1

0

1

2

δ(t)

d
τ
(t) = 1/(2τ)

τ = 1/4

τ = 1/8

τ = 1/2

τ → 0

Fourier transform Rectangular pulse

−τ τ

τ

τ

−τ

−τ

1. When t 	= 0,

δ(t) = lim
τ→0

dτ (t) = 0.

2. The impulse of δ(t) is deÞn ed by
∫∞
−∞ δ(t)dt. Accordingly,∫ ∞

−∞
δ(t) dt =

∫ ∞

−∞
lim
τ→0

dτ (t) dt = lim
τ→0

∫ τ

−τ

1

2τ
dt = lim

τ→0

τ − (−τ)

2τ
= 1.

Since δ(t) = 0 for t 	= 0, it is said to impart a unit impulse at t = 0, and δ(t) is
called the unit impulse function. Graphically, δ(t) is represented by a single spike with
unit strength at t = 0. The unit strength may be explicitly expressed by putting the
label Ò (1)Ó next to the spike. Note that δ(t) is formally continuous in time, but it is not
continuous in amplitude, so it is not an analog signal which refers to signals continuous
in both time and amplitude (see Figure 6.2).

3. From the two properties above, we also have (via change of variables)

δ(t− ta) = 0, t 	= ta;

∫ ∞

−∞
δ(t− ta) dt = 1.

Graphically, δ(t− ta) is represented by a single spike at t = ta (see Figure 6.2).

4. The impulse of the product of a signal x(t) and δ(t− ta) can be obtained by scaling the

6.1. IMPULSE FUNCTIONS AND THEIR PROPERTIES 187

Figure 6.2 Illustrating properties of the unit impulse function.

Spike train P�t(t)

0 0 ta

�t

�t

δ(t− ta)δ(t)

· · ·

· · ·· · ·

· · ·

x(t)P�t(t)

unit impulse imparted at t = ta by x(ta):∫ ∞

−∞
x(t) δ(t− ta) dt =

∫ t+a

t−a

x(t) δ(t − ta) dt

= x(ta)

∫ t+a

t−a

δ(t− ta) dt

= x(ta)

∫ ∞

−∞
δ(t− ta) dt

= x(ta).

The result expressed as ∫ ∞

−∞
x(t) δ(t− ta) dt = x(ta)

is also called the sifting property of the impulse function; in addition, the following
expression of equality

x(t) δ(t − ta) = x(ta) δ(t− ta)

is commonly inferred from the equality of their impulses.

5. An inÞ nite sequence (or train) of equally spaced impulses may now be deÞ ned as

P�t(t) =

∞∑
�=−∞

δ(t− ��t).

Graphically, P�t(t) is represented by a spike train (see Figure 6.2).

From computing the impulse of the product of a signal x(t) and P�t, the expression of
equality

x(t)

∞∑
�=−∞

δ(t− ��t) =

∞∑
�=−∞

x(��t) δ(t− ��t)

188 CHAPTER 6. SAMPLING AND RECONSTRUCTION—PART III

is again inferred from the equality of their impulses.

6.2 Generating the Fourier Transform Pairs

With properties of the Fourier transform and the impulse functions available, we can now
generate the following Fourier transform pairs:

1. x(t) = δ(t) ⇐⇒ X(f) = 1 (Figure 6.3). This pair can be generated in two ways: (a)
We make use of the Fourier transform of the rectangular pulse function, and we obtain

X(f) = F{δ(t)} = F
{

lim
τ→0

dτ (t)
}

= lim
τ→0

F{dτ (t)} = lim
τ→0

sin 2πfτ

2πfτ
= 1.

(b) We interpret the integral F{δ(t)} as the impulse of the product of g(t) = e−j2πft

and δ(t) = δ(t− 0) so that we can apply the sifting property of the impulse function:

X(f) = F{δ(t)} =

∫ ∞

−∞
δ(t) e−j2πft dt

=

∫ ∞

−∞
g(t) δ(t− 0) dt (∵ g(t) = e−j2πft)

= g(0) (by sifting property of δ(t− ta) with ta = 0)

= 1. (∵ g(0) = e0 = 1)

Figure 6.3 Fourier transform pairs involving the impulse function.

−4 −2 0 2 4
−1

0

1

2

−4 −2 0 2 4
−1

0

1

2

cos(πt)

sin(πt)

x(t) = δ(t) X(f) = 1

x(t) = 1 X(f) = δ(f)

f
a
=0.5−0.5

(1)

(1)

(1/2)

f
a
=0.5

−0.5 (−1/2)

(1/2)

(1/2)

0 0

0 0

0

1

0

1

0

0

0

0

0

0

real−valued spectrum

pure imaginary spectrum

6.3. CONVOLUTION AND FOURIER TRANSFORM 189

2. x(t) = 1 ⇐⇒ X(f) = δ(f) (Figure 6.3). We generate this pair by showingF−1{δ(f)} =

1:

x(t) = F−1{δ(f)} =

∫ ∞

−∞
δ(f) ej2πft df

=

∫ ∞

−∞
q(f) δ(f − 0) df (∵ q(f) = ej2πft)

= q(0) (by sifting property of δ(f − fa) with fa = 0)

= 1. (∵ q(0) = e0 = 1)

3. By applying the Fourier transform frequency-shift property

x(t) ej2πfat ⇐⇒ X(f − fa)

to the pair x(t) = 1⇐⇒ X(f) = δ(f), we immediately obtain

ej2πfat ⇐⇒ δ(f − fa).

By linearity, we have

ej2πfat + ej2πfbt ⇐⇒ δ(f − fa) + δ(f − fb).

If we let fb = −fa and apply EulerÕs formula, we can express the Fourier transform
of cos 2πfat and sin 2πfat in terms of the shifted impulse functions. The two Fourier
transform pairs so obtained are

cos 2πfat ⇐⇒ δ(f − fa) + δ(f + fa)

2
,

sin 2πfat⇐⇒ δ(f − fa)− δ(f + fa)

2j
,

and they are shown in Figure 6.3.

6.3 Convolution and Fourier Transform

The convolution of two functions x(t) and h(t) in the time domain is another function of t

deÞ ned as

(6.1) w(t) = x(t) ∗ h(t) =

∫ ∞

−∞
x(λ)h(t − λ) dλ =

∫ ∞

−∞
x(t− λ)h(λ) dλ.

We note that each particular value of t is treated as a constant (with respect to the variable λ) in
the integrand. For every t, w(t) computes the area under the curve of the point-wise product of
x(λ) and h(t−λ). Since the curve of h(t−λ) continues to shift along the λ-axis when t takes
on each different value, the curve of the product changes with t; hence, the area computed by
the convolution integral is a function of t. This process is illustrated graphically in Figure 6.4.
(The convolution steps illustrated in this Þ gure will be re-examined and discussed further when
we study how to obtain numerical approximation to the convolution result in Chapter 9.) For
x(t) and h(t) used in the example given in Figure 6.4, the convolution result w(t) = x(t)∗h(t)

is shown in Figure 6.5.

190 CHAPTER 6. SAMPLING AND RECONSTRUCTION—PART III

Figure 6.4 Illustrating the steps in convolving x(t) with h(t).

Step 1.

Sample values of w(t) at t = −0.5, t = 0.5, and t = 1.5 are equal to

x(λ)

λ
10−1

λ

Choose stationary function x(t), and change t to λ.

w(1.5)w(0.5)

λ λ

w(−0.5)

1

Examples of shifted h(t − λ) for t = −0.5, t = 0.5, and t = 1.5:

Fold h(λ) to obtain the moving function h(−λ).

Step 4.

λ

Step 3.

Step 2.

the three shaded areas:

x(t)

t
10−1

1

h(−λ)

λ

1

−tb = −1 0 = −ta

−0.5 − ta

h(−0.5 − λ)

λ

h(λ)

ta = 0
λ

1

1 = tb

1.5 − ta

h(1.5 − λ)

λ

0.5 − ta

h(0.5 − λ)

Figure 6.5 The result of continuous convolution w(t) = x(t) ∗ h(t).

0 1−1 0 1

h(t)

−1 0

0.5

t

1

x(t)

1

1 2
t

t

*

= w(t)

6.3. CONVOLUTION AND FOURIER TRANSFORM 191

Using this deÞn ition, the convolution of two functions X(f) and H(f) in the frequency
domain is expressed as

Z(f) = X(f) ∗H(f) =

∫ ∞

−∞
X(λ)H(f − λ) dλ =

∫ ∞

−∞
X(f − λ)H(λ) dλ.

The convolution integral together with its Fourier transform plays a crucial role in wide-
ranging applications. Given the two Fourier transform pairs

x(t) ⇐⇒ X(f), h(t)⇐⇒ H(f),

it is not immediately clear how the Fourier transform of either the convolution x(t) ∗ h(t) or
the product x(t)h(t) can be expressed in terms of X(f) and H(f). To answer this question,
we have the following two theorems.

Theorem 6.1 (Convolution theorem) If F{x(t)} = X(f) and F{h(t)} = H(f), then

F{x(t) ∗ h(t)} = X(f)H(f).

Proof: By deÞn ition,

F{x(t) ∗ h(t)} =

∫ ∞

−∞
[x(t) ∗ h(t)] e−j2πft dt

=

∫ ∞

−∞

[∫ ∞

−∞
x(λ)h(t − λ) dλ

]
e−j2πft dt

=

∫ ∞

−∞

∫ ∞

−∞
x(λ)h(t− λ) e−j2πf(t−λ+λ) dλ dt

=

∫ ∞

−∞
x(λ)

[∫ ∞

−∞
h(t− λ) e−j2πf(t−λ) dt

]
e−j2πfλ dλ

=

∫ ∞

−∞
x(λ)

[∫ ∞

−∞
h(s) e−j2πfs ds

]
e−j2πfλ dλ (∵ s = t− λ, ds = dt)

=

∫ ∞

−∞
x(λ)H(f) e−j2πfλ dλ

(
∵ H(f) =

∫ ∞

−∞
h(s) e−j2πfs ds

)
=

[∫ ∞

−∞
x(λ) e−j2πfλ dλ

]
H(f)

= X(f)H(f).

�

The following corollary on the convolution of identical functions is an immediate result of
Theorem 6.1.

Corollary 6.2 If w(t) = x(t) ∗ x(t), then

w(0) =

∫ ∞

−∞
x(λ)x(−λ) dλ =

∫ ∞

−∞
X(f)2 df.

Proof: By deÞn ition,

w(t) = x(t) ∗ x(t) =

∫ ∞

−∞
x(λ)x(t − λ) dλ.

192 CHAPTER 6. SAMPLING AND RECONSTRUCTION—PART III

Applying Theorem 6.1 to w(t), we obtain F{w(t)} = X(f)2 and the Fourier integral repre-
sentation of w(t):

w(t) = F−1{X(f)2} =

∫ ∞

−∞
X(f)2ej2πft df.

At t = 0, we have

w(0) =

∫ ∞

−∞
X(f)2 df.

By evaluating w(t) = x(t) ∗ x(t) at t = 0, we also have

w(0) =

∫ ∞

−∞
x(λ)x(−λ) dλ.

Hence,

w(0) =

∫ ∞

−∞
x(λ)x(−λ) dλ =

∫ ∞

−∞
X(f)2 df.

�

Theorem 6.3 (Product theorem) If F{x(t)} = X(f) and F{h(t)} = H(f), then

F{x(t)h(t)} = X(f) ∗H(f).

Proof: We apply the proof given for Theorem 6.1 to show

F−1{X(f) ∗H(f)} =

∫ ∞

−∞
[X(f) ∗H(f)] ej2πft df = x(t)h(t).

Because the two deÞn ing integrals for direct and inverse Fourier transforms differ only in the
sign of the exponent of the exponential function in the integrandÑ one uses e−j2πft and the
other uses uses e+j2πftÑi t is straightforward to accommodate the difference in the proof given
for Theorem 6.1, and we omit redundant details here. �

.

6.4 Periodic Convolution and Fourier Series

Given the Fourier series of two periodic functions (which can also be the protracted version of
two time-limited functions)

x(t) =

∞∑
k=−∞

Xkej2πkt/T , h(t) =

∞∑
k=−∞

Hkej2πkt/T ,

it will be useful if we can compute the Fourier coefÞ cients of the periodic convolution yp(t) =

x(t)⊗h(t) and the product g(t) = x(t)h(t) from the available XkÕs and HkÕs. For these tasks,
we have the periodic convolution theorem and the discrete convolution theoremÑ the former
involves continuous convolution of two periodic functions over a single period, and the latter
involves the discrete convolution of two sets of Fourier coefÞ cients.

6.4. PERIODIC CONVOLUTION AND FOURIER SERIES 193

Theorem 6.4 (Periodic convolution) The Fourier series coefÞ cients of the periodic convolu-
tion yp(t) = x(t) ⊗ h(t) can be obtained by multiplying the corresponding coefÞcients from
the two individual Fourier series. That is, if

yp(t) = x(t) ⊗ h(t) =
1

T

∫ T/2

−T/2

x(λ)h(t − λ) dλ,

then

yp(t) =

∞∑
k=−∞

Ykej2πkt/T =

∞∑
k=−∞

(XkHk) ej2πkt/T .

Proof: To obtain the Fourier coefÞ cients of yp(t) = x(t) ⊗ h(t), we use the deÞ ning for-
mula (3.12) for coefÞ cient Yk on the convolution integral yp(t):

Yk =
1

T

∫ T/2

−T/2

{
1

T

∫ T/2

−T/2

x(λ)h(t− λ) dλ

}
e−j2πkt/T dt

=
1

T

∫ T/2

−T/2

{
1

T

∫ T/2

−T/2

x(λ)h(t− λ) e−j2πk(t−λ+λ)/T dt

}
dλ

=
1

T

∫ T/2

−T/2

x(λ)

{
1

T

∫ T/2

−T/2

h(t− λ) e−j2πk(t−λ)/T dt

}
e−j2πkλ/T dλ

=

{
1

T

∫ T/2

−T/2

x(λ) e−j2πkλ/T dλ

} {
1

T

∫ T/2−λ

−T/2−λ

h(µ) e−j2πk µ/T dµ

}
= Xk Hk .

Note that after the change of variable from t to µ = t−λ in the second integral, we obtain
the deÞn ing formula for the Fourier coefÞ cients Hk of the periodic function h(t), because the
interval deÞn ed by the limits of integration from µ =−T/2−λ to µ = T/2−λ constitutes a
single period of h(t). �

The next theorem concerns the discrete convolution of two sequences. The convolution of
sequence {Xk} by sequence {Hk} results in another sequence {Gk} deÞ ned as

Gk =

∞∑
�=−∞

X�Hk−�, for all k ∈ (−∞,∞).

The convolution of sequences is commonly denoted by {Gk} = {Xk} ∗ {Hk}.

Theorem 6.5 (Discrete convolution) The Fourier series coefÞ cients of the product g(t) =

x(t)h(t) can be obtained by convolving the two available sets of coefÞ cients, i.e,

g(t) = x(t)h(t) =

∞∑
k=−∞

(∞∑
�=−∞

X�Hk−�

)
ej2πkt/T .

Proof: It is clearer and more convenient in this proof if we use the power series forms of x(t)

and h(t) obtained by changing the variable from t to θ = 2πt/T and letting z = ejθ:

x̃(θ) =

∞∑
k=−∞

Xkzk, h̃(θ) =

∞∑
k=−∞

Hkzk.

194 CHAPTER 6. SAMPLING AND RECONSTRUCTION—PART III

The Fourier series of x̃(θ)h̃(θ) is thus the product of two power series:

g̃(θ) = x̃(θ) h̃(θ) =

(∞∑
�=−∞

X�z
�

)(∞∑
m=−∞

Hmzm

)

=

∞∑
k=−∞

(∑
�+m=k

X�Hm

)
zk

=

∞∑
k=−∞

(∞∑
�=−∞

X�Hk−�

)
zk. (∵ � + m = k ∴ m = k − �)

Since the values of the Fourier coefÞ cients are not affected by the change of variable from t to
θ or vice versa, we have thus proved

g(t) = x(t)h(t) =

∞∑
k=−∞

(∞∑
�=−∞

X�Hk−�

)
ej2πkt/T .

�

6.5 Convolution with the Impulse Function

When we convolve a signal x(t) with the unit impulse function δ(t), we have the following
results.

1. The convolution of a signal x(t) and δ(t) recovers the original signal:

x(t) ∗ δ(t) =

∫ ∞

−∞
x(t− λ) δ(λ) dλ

=

∫ 0+

0−
x(t − λ) δ(λ) dλ (∵ δ(λ) = 0, λ 	= 0)

= x(t)

∫ 0+

0−
δ(λ) dλ

= x(t)

∫ ∞

−∞
δ(λ) dλ

= x(t). (the original signal recoverd)

6.6. IMPULSE TRAIN AS A GENERALIZED FUNCTION 195

2. The convolution of x(t) and δ(t− ta) produces the shifted signal x(t− ta):

x(t) ∗ δ(t− ta) = x(t) ∗ δ̃(t) (deÞ ne δ̃(t) = δ(t− ta).)

=

∫ ∞

−∞
x(t− λ) δ̃(λ) dλ

=

∫ ∞

−∞
x(t− λ) δ(λ− ta) dλ

=

∫ t+a

t−a

x(t− λ) δ(λ − ta) dλ (∵ δ(λ− ta) = 0, λ 	= ta)

= x(t− ta)

∫ t+a

t−a

δ(λ− ta) dλ

= x(t− ta)

∫ ∞

−∞
δ(λ− ta) dλ

= x(t− ta). (the shifted signal obtained)

We note that the Þ rst result is simply the special case with time shift ta = 0.

3. The convolution of x(t) and the impulse train P�t(t) produces a periodic signal:

x(t) ∗ P�t(t) = x(t) ∗
∞∑

�=−∞
δ(t− ��t)

=
∞∑

�=−∞
x(t) ∗ δ(t− ��t)

=

∞∑
�=−∞

x(t− ��t)

= z(t).

The resulting z(t) is a superposition of copies of x(t), each displaced by multiples of
�t. Observe that z(t +�t) = z(t). Examples are shown in Figure 6.6.

6.6 Impulse Train as a Generalized Function

In Section 6.1, we introduced the impulse train as an inÞ nite sequence of equally spaced im-
pulses deÞ ned by

P�t(t) =

∞∑
�=−∞

δ(t− ��t).

Since the impulse train P�t(t) is deÞn ed for all t, it may also be viewed as a function (which
is known as the comb function or shah function in the literature). In fact, it may be interpreted
as a periodic function with period T = �t, and it has a Fourier series representation given
below in Theorem 6.6, which is known as the Poisson sum formula.

196 CHAPTER 6. SAMPLING AND RECONSTRUCTION—PART III

Figure 6.6 The periodic signal resulted from convolving x(t) with an impulse train.

· · ·

�t = A

A 2A

· · · · · ·
0

Impulse train PA(t) with A < T

· · ·

−A

−A−2A

Sum of the overlapped portions

2A

−2A

x(t) ∗ PA(t): periodic replication of x(t) at intervals of length A < T .

0 A

−T

x(t) ∗ PT (t): periodic replication of x(t).

0

0

0 ta

x(t)

− 1
2T

· · ·

x(t) ∗ δ(t) = x(t) x(t) ∗ δ(t− ta) = x(t− ta)

T−2T

1
2T

· · ·

2T0

−2T −T 0 2T

· · ·

Impulse train PT (t)

· · · �t = T

T

6.6. IMPULSE TRAIN AS A GENERALIZED FUNCTION 197

Theorem 6.6 The impulse train in the time domain can be represented by the Poisson sum
formula:

(6.2) P�t(t) =

∞∑
�=−∞

δ(t− ��t) =
1

�t

∞∑
k=−∞

ej2πkt/�t

︸ ︷︷ ︸
Fourier series expansion

.

Since ejθ + e−jθ = 2 cos θ, the Poisson sum formula may also be stated as

(6.3) P�t(t) =

∞∑
�=−∞

δ(t− ��t) =
1

�t

(
1 + 2

∞∑
k=1

cos
2πkt

�t

)
︸ ︷︷ ︸

Fourier series expansion

.

In either form the impulse train is a periodic function representing an inÞ nite sum of sinusoids.
Observe that P�t(t +�t) = P�t(t); hence, the sampling interval�t is termed the period of
the impulse train. The dual form of this formula in the frequency domain is given by

(6.4) P1/�t(f) =

∞∑
�=−∞

δ

(
f − �

�t

)
= �t

∞∑
k=−∞

ej2πkf�t.

Proof: Since P�t is periodic with period T = �t, we express its Fourier series as

P�t(t) =

∞∑
k=−∞

Ckej2πkt/�t,

where the coefÞcients CkÕs are deÞ ned as

Ck =
1

�t

∫ �t/2

−�t/2

P�t(t) e−j2πkt/�t dt

=
1

�t

∫ �t/2

−�t/2

{ ∞∑
�=−∞

δ(t− ��t)

}
e−j2πkt/�t dt

=
1

�t

∫ �t/2

−�t/2

δ(t) e−j2πkt/�t dt (∵ δ(t− ��t) = 0 for � 	= 0 over

the interval [−�t/2,�t/2])

=
1

�t

∫ 0+

0−
δ(t) e−j2πkt/�t dt (∵ δ(t) = 0, t 	= 0)

=
1

�t
e0

∫ 0+

0−
δ(t) dt

=
1

�t

∫ ∞

−∞
δ(t) dt

= 1/�t.

We thus have

P�t(t) =

∞∑
�=−∞

δ(t− ��t) =

∞∑
k=−∞

Ckej2πkt/�t =
1

�t

∞∑
k=−∞

ej2πkt/�t.

198 CHAPTER 6. SAMPLING AND RECONSTRUCTION—PART III

To obtain its dual form in the frequency domain, we substitute�f = 1/T = 1/�t

in the corresponding Poisson sum

P�f (f) =

∞∑
�=−∞

δ(f − ��f) =
1

�f

∞∑
k=−∞

ej2πkf/�f =
1

�f

∞∑
k=−∞

e−j2πkf/�f

to obtain

P1/�t(f) =
∞∑

�=−∞
δ

(
f − �

�t

)
= �t

∞∑
k=−∞

ej2πkf�t = �t
∞∑

k=−∞
e−j2πkf�t.

�

In the next theorem we show that the Fourier transform of an impulse train in t is an impulse
train in f , up to a scale factor.

Theorem 6.7 (Fourier transform of the impulse train)

F{P�t(t)} =
1

�t
P1/�t(f) =

1

�t

∞∑
k=−∞

δ

(
f − k

�t

)
︸ ︷︷ ︸
Fourier transform of {P�t(t)}

.

Proof:

F{P�t(t)} =

∫ ∞

−∞

[∞∑
�=−∞

δ(t− ��t)

]
e−j2πft dt

=

∞∑
�=−∞

[∫ ∞

−∞
δ(t− ��t) e−j2πft dt

]

=
∞∑

�=−∞
e−j2πf��t (by sifting property of δ(t− ta) with ta = ��t)

=

∞∑
�=−∞

ej2πf(−�)�t

=

∞∑
k=−∞

ej2πfk�t (∵ −∞ < k = −� <∞)

=
1

�t

∞∑
k=−∞

δ

(
f − k

�t

)
. (by Theorem 6.6)

�

The relationship between the impulse train P�t(t) and its Fourier transform is demon-
strated for several choices of�t in Figure 6.7.

Mathematically, the Poisson sum formula in Theorem 6.6 is a special case of a more general
result in our next theorem, which relates the periodic replication of x(t) to sampled values of
its transform X(f) via the Fourier series expansion. Recall that the periodic replication of x(t)

with period T =�t is the convolution of x(t) and the shifted impulse train P�t(t), i.e.,

z(t) = x(t) ∗ P�t(t) =

∞∑
�=−∞

x(t) ∗ δ(t− ��t) =

∞∑
�=−∞

x(t − ��t).

6.6. IMPULSE TRAIN AS A GENERALIZED FUNCTION 199

Figure 6.7 The relationship between impulse train and its Fourier transform.

· · ·

· · ·
t

t

f

· · ·
t

· · ·

· · ·

· · ·

Fourier transform 1
�tP1/�t(f)

· · ·

�f = 1
�t = 0.5

�f = 1
�t = 1

�f = 1
�t = 2

· · ·

�t = 2

· · ·

Impulse train P�t(t)

f

f

· · ·
�t = 0.5

�t = 1

· · ·

· · ·

The resulting z(t) is a superposition of copies of x(t), each displaced by multiples of�t, and
we have z(t+�t) = z(t). Examples were given in Figure 6.6, and several more examples are
given in Figure 6.8.

Theorem 6.8 (The generalized Poisson sum) Given the Fourier transform X(f) = F{x(t)},
the Poisson sum is the Fourier series expansion of the periodic Ò x(t) ∗P�t(t),Ó which is given
by

(6.5)
∞∑

�=−∞
x(t− ��t)︸ ︷︷ ︸

periodic x(t)∗P�t(t)

=
1

�t

∞∑
k=−∞

X

(
k

�t

)
ej2πkt/�t

︸ ︷︷ ︸
Fourier Series expansion of x(t)∗P�t(t)

.

Proof: Let z(t) denote the periodic replication of x(t) with period T = �t. If we express z(t)

by its Fourier series expansion

z(t) =

∞∑
�=−∞

x(t− ��t) =

∞∑
k=−∞

Ckej2π(k/�t)t,

200 CHAPTER 6. SAMPLING AND RECONSTRUCTION—PART III

Figure 6.8 Several more examples of z(t) = x(t) ∗ PT (t).

0

0 0 0

0 0

0

· · ·

· · ·

· · · · · ·

· · · · · ·

0

· · · · · ·

x(t)

Impulse train PT (t)

z(t) = x(t) ∗ PT (t): periodic replication of x(t)

−3T 2TT 3T0−T−2T

· · ·
0

0

0

· · ·

· · ·

· · ·

0

· · · · · ·

6.6. IMPULSE TRAIN AS A GENERALIZED FUNCTION 201

then the coefÞ cients Ck Õs are deÞ ned as

Ck =
1

�t

∫ �t

0

z(t) e−j2π(k/�t)t dt

=
1

�t

∫ �t

0

[∞∑
�=−∞

x(t− ��t)

]
e−j2πkt/�t dt

=
1

�t

∞∑
�=−∞

[∫ �t

0

x(t− ��t) e−j2πkt/�t dt

]

=
1

�t

∞∑
�=−∞

[∫ �t−��t

0−��t

x(λ) e−j2πk(λ+��t)/�t dλ

]
(let λ = t− ��t)

=
1

�t

∞∑
�=−∞

[∫ (−�+1)�t

−��t

x(λ) e−j2πkλ/�t dλ

]
(∵ e−j2πk��t/�t = e−j2πk� = 1)

=
1

�t

∫ ∞

−∞
x(λ) e−j2πkλ/�t dλ (assume x(λ) continuous at λ = −��t for every �)

=
1

�t

∫ ∞

−∞
x(t) e−j2π(k/�t)t dt (change variable: let t = λ for clarity)

=
1

�t
X

(
k

�t

)
.

(
∵ X(f) =

∫ ∞

−∞
x(t) e−j2πft dt

)
Using Ck in the Fourier series expansion, we obtain

z(t) =
∞∑

�=−∞
x(t− ��t) =

∞∑
k=−∞

Ckej2π(k/�t)t =
1

�t

∞∑
k=−∞

X

(
k

�t

)
ej2πkt/�t.

�

Corollary 6.9 (SpeciÞ c Poisson sums) The two formulas given in this corollary are special
cases of Theorem 6.8.

(6.6)
∞∑

�=−∞
δ(t− ��t)︸ ︷︷ ︸

impulse train P�t(t)

=
1

�t

∞∑
k=−∞

ej2πkt/�t

︸ ︷︷ ︸
Fourier series expansion

,

(6.7)
∞∑

�=−∞
x(��t)︸ ︷︷ ︸

x(t)∗P�t(t) at t=0

=
1

�t

∞∑
k=−∞

X

(
k

�t

)
︸ ︷︷ ︸

Fourier series at t=0

.

Proof: To obtain Formula (6.6), we apply Theorem 6.8 to x(t) = δ(t). Because X(f) =

F{δ(t)} = 1, we have X
(

k
�t

)
= 1 for all k ∈ (−∞, ∞) in the right side of (6.5), and the

result is the Poisson sum proved directly in Theorem 6.6.

To obtain Formula (6.7), we evaluate both sides of Formula (6.5) at t = 0, and the result
follows. �

202 CHAPTER 6. SAMPLING AND RECONSTRUCTION—PART III

6.7 Impulse Sampling of Continuous-Time Signals

Recall that the product of a signal and the impulse train was introduced in Section 6.1:

x(t)P�t(t) = x(t)

∞∑
�=−∞

δ(t− ��t) =

∞∑
�=−∞

x(��t) δ(t− ��t).

Since the right-hand side is a weighted linear combination of the shifted delta functions, and
the weight (or strength) of δ(t − ��t) is exactly the value of the continuous-time signal x(t)

sampled at t = t� = ��t, we have

∫ α+

α−
x(t)P�t(t) dt =

{
x(t�), if α = t�, where t� = ��t for integer � ∈ (−∞,∞);

0, otherwise.

Therefore, the information conveyed by the weighted impulse train xI(t) = x(t)P�t(t) is
limited to the sequence of sample values {x(��t)}, and the function

(6.8) xI(t) =

∞∑
�=−∞

x(��t) δ(t− ��t)

is said to represent a signal ideally sampled by the impulse train. Since a signal cannot be
physically sampled by an impulse train, the latter is a mathematical tool we use to model the
sampling process, and the function xI(t) is called the ideally sampled signal.

There is also a direct connection between the continuous-time signal x(t) and the ideally
sampled signal xI(t) as shown in the following theorem.

Theorem 6.10 (Approximation via the weighted impulse train)

(6.9) x(t) = lim
�t→0

∞∑
�=−∞

�t x(��t) δ(t− ��t) ≈ �t

∞∑
�=−∞

x(��t) δ(t− ��t)︸ ︷︷ ︸
weighted impulse train xI(t)

.

Proof: Recall from Section 6.5 that the convolution of a signal x(t) and the unit impulse
function δ(t) recovers the original signal. Accordingly

x(t) = x(t) ∗ δ(t) =

∫ ∞

−∞
x(λ) δ(t − λ) dλ

= lim
�λ→0

∞∑
�=−∞

x(��λ) δ(t− ��λ)�λ

= lim
�t→0

∞∑
�=−∞

�t x(��t) δ(t− ��t) (use�t to denote�λ)

≈ �t

∞∑
�=−∞

x(��t) δ(t− ��t).

�

6.8. NYQUIST SAMPLING RATE REDISCOVERED 203

6.8 Nyquist Sampling Rate Rediscovered

Recall that we need to physically point sample a band-limited signal x(t) at a rate greater than
the minimum Nyquist rate in order to recover its frequency content. For impulse-sampled sig-
nal xI(t) = x(t)P�t(t), we now investigate how to set the sampling rate so that we can recover
the Fourier transform of the continuous-time signal x(t). We Þ rst Þ nd out how the Fourier
transform of the impulse-sampled signal xI(t) = x(t)P�t(t) is connected to the Fourier trans-
form of x(t) in the next theorem.

Theorem 6.11 If X(f) = F{x(t)}, then the Fourier transform of the impulse-sampled signal
is given by

(6.10) XI(f) = F{xI(t)} = F{x(t)P�t(t)} =
1

�t

∞∑
k=−∞

X

(
f − k

�t

)
︸ ︷︷ ︸
Fourier transform of x(t)P�t(t)

.

Proof: By Product Theorem 6.3, a product in the time domain corresponds to a convolution in
the frequency domain; we thus have

XI(f) = F{xI(t)} = X(f) ∗ F{P�t(t)}

= X(f) ∗
{

1

�t

∞∑
k=−∞

δ

(
f − k

�t

)}
(by Theorem 6.7)

=
1

�t

∞∑
k=−∞

X(f) ∗ δ

(
f − k

�t

)

=
1

�t

∞∑
k=−∞

X

(
f − k

�t

)
. (convolution result from Section 6.5)

�

According to Theorem 6.11, the Fourier transform of the impulse-sampled signal xI(t) is
a superposition of copies of X(f) = F{x(t)}, each displaced by multiples of 1/�t. (See
Figures 6.9 and 6.10 presented with Example 6.1 later in this section.) Therefore, the shifted
replications of X(f) will not overlap only if the following conditions are met: (1) X(f) is zero
outside a band [−fmax, fmax]; (2) the period of replication 1/�t ≥ F = 2fmax. Combining
these two conditions, we conclude that the Fourier transform X(f) can be recovered in full if
x(t) is band limited to [−fmax, fmax] and the sampling rate 1/�t ≥ F = 2fmax, which is,
of course, the Nyquist sampling rate rediscovered for the impulse sampling of x(t). (In other
words, the frequency contents of band-limited x(t) are preserved by impulse sampling at the
Nyquist rate.) This result is formally given below as an corollary of Theorem 6.11.

Corollary 6.12 If a band-limited signal x(t) with bandwidth F is sampled at
(or greater than) the Nyquist rate, then

(6.11) X(f) = F{x(t)} = �t F{x(t)P�t(t)} = �t XI(f) for f ∈ [−F/2, F/2].

Proof: As discussed above, the shifted replications of X(f) on the right-hand side of Equa-
tion (6.10) will not overlap if x(t) is band limited to [−fmax, fmax] = [−F/2, F/2] and

204 CHAPTER 6. SAMPLING AND RECONSTRUCTION� PART III

the sampling rate 1/�t ≥ F �b oth conditions are met in this corollary. Therefore, by re-
stricting the values of f to the � nite band [−F/2, F/2], we simplify the right-hand side of
Equation (6.10) to obtain

XI(f) = F{x(t)P�t(t)} =
1

�t

∞∑
�=−∞

X

(
f − �

�t

)
=

1

�t
X(f), (∵ f ∈ [−F/2, F/2], 1/�t ≥ F),

which yields

X(f) = �t XI(f) for f ∈ [−F/2, F/2].

�

Two more related formulas are also given as corollaries of Theorem 6.11.

Corollary 6.13 (The generalized inverse Poisson sum) The Fourier transform of an impulse-
sampled signal has two forms, and by equating the two forms one obtains the generalized
inverse Poisson summation formula:

(6.12)
∞∑

�=−∞
x(��t) e−j2πf��t

︸ ︷︷ ︸
Fourier transform of x(t)P�t(t)

=
1

�t

∞∑
k=−∞

X

(
f − k

�t

)
︸ ︷︷ ︸

X(f)∗F{P�t(t)}

.

Proof: We prove this equality by showing that the left side is an alternative formula for the
Fourier transform of the impulse-sampled signal xI(t) = x(t)P�t(t).

F{x(t)P�t(t)} =

∫ ∞

−∞

[∞∑
�=−∞

x(��t) δ(t− ��t)

]
e−j2πft dt

=
∞∑

�=−∞
x(��t)

[∫ ∞

−∞
δ(t− ��t) e−j2πft dt

]

=

∞∑
�=−∞

x(��t) e−j2πf��t.

By Theorem 6.11, we also have

F{x(t)P�t(t)} =
1

�t

∞∑
k=−∞

X

(
f − k

�t

)
.

Because the two formulas represent the same result, we have

∞∑
�=−∞

x(��t) e−j2πf��t =
1

�t

∞∑
k=−∞

X

(
f − k

�t

)
.

�

Observe that Formula (6.12) in Corollary 6.13 is the dual of the generalized Poisson sum
in Theorem 6.8.

6.8. NYQUIST SAMPLING RATE REDISCOVERED 205

Example 6.1 (Figures 6.9 and 6.10) Recall the Fourier transform pair from Example 5.1:

x(t) =

{
e−at, for t ∈ [0,∞) (a > 0);

0, for t ∈ (−∞, 0)
⇐⇒ X(f) =

1

a + j2πf
.

The discrete-time samples of x(t) are de�ned by

x(��t) =

{
e−a��t, for � ≥ 0 (a > 0)

0, otherwise,

and the Fourier transform of the impulse-sampled signal xI(t) can be obtained in two forms
according to Corollary 6.11. Using the summation formula, we obtain

XI(f) =
∞∑

�=−∞
x(��t) e−j2πf��t =

∞∑
�=0

e−(a�t+j2πf�t)� =
1

1− e−(a+j2πf)�t
.

Using the known X(f) = 1/(a + j2πf), we obtain

XI(f) =
1

�t

∞∑
k=−∞

X

(
f − k

�t

)
=

∞∑
k=−∞

1

a�t + j2π(f�t− k)
.

By equating the two forms of XI(f), we obtain

∞∑
k=−∞

1

a�t + j2π(f�t− k)
=

1

1− e−(a+j2πf)�t
,

where the right side provides a closed-form expression for the in� nite sum on the left side.
The graphs of x(t), X(f), {x(��t)}, and XI(f) for �t = 1 and �t = 0.5 are shown in

Figures 6.9 and 6.10. Observe that the central period of XI(f) deviates from X(f) due to the
effect of aliasing. Since x(t) is not band limited, the effect of aliasing cannot be eliminated
although it is reduced when the signal is sampled at a higher rate.

Corollary 6.14 (Speci� c inverse Poisson sums) Two special cases of (6.12) are

(6.13)
∞∑

�=−∞
e−j2πf��t

︸ ︷︷ ︸
(1/�t)P1/�t(f)

=
1

�t

∞∑
k=−∞

δ

(
f − k

�t

)
︸ ︷︷ ︸

Fourier transform of P�t(t)

and

(6.14)
∞∑

�=−∞
x(��t)︸ ︷︷ ︸

F{x(t)P�t(t)} at f=0

=
1

�t

∞∑
k=−∞

X

(
k

�t

)
︸ ︷︷ ︸
X(f)∗F{P�t(t)} at f=0

.

Proof: To obtain Formula (6.13), we apply Corollary 6.13 to x(t) = 1, which results in
x(��t) = 1 for all � ∈ (−∞,∞) on the left side of (6.12); because the Fourier transform
X(f) = F{x(t) = 1} = δ(f), we have X(f − k/�t) = δ(f − k/�t) on the right side
of (6.12), and the result follows. (This result is the dual of (6.6) in Corollary 6.9.)

The result in (6.14) is obtained by setting f = 0 on both sides of (6.12). (This result is
identical to (6.7) in Corollary 6.9, which was obtained by setting t = 0 in the generalized
Poisson sum.) �

206 CHAPTER 6. SAMPLING AND RECONSTRUCTION� PART III

Figure 6.9 Fourier transform of the sequence sampled from x(t) = e−at.

−20 −15 −10 −5 0 5 10 15 20

0

0.5

1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

0

1

2

3

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

x(k∆t) = e−ak∆t (∆t = 1)

∆t Re(X
I
(f))

Re(X(f))

x(t) = e−at (a = 0.5)

Im(X(f))∆t Im(X
I
(f))

The Effect of Aliasing (∆t = 1)

Figure 6.10 Reducing the effect of aliasing by increasing sampling rate.

−10 −7.5 −5 −2.5 0 2.5 5 7.5 10

0

0.5

1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

0

1

2

3

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

x(k∆t) = e−ak∆t (∆t = 0.5)

∆t Re(X
I
(f))

Re(X(f))

x(t) = e−at

Im(X(f))∆t Im(X
I
(f))

The Effect of Aliasing (∆t = 0.5)

6.9. SAMPLING THEOREM FOR BAND-LIMITED SIGNAL 207

6.9 Sampling Theorem for Band-Limited Signal

The results developed in preceding sections have paved the way for the sampling theorem to
re-emerge. We are speci� cally interested in applying those results to band-limited signals,
for which the sampling theorem is to be developed once again. We speci� cally recall for-
mula (6.12) from Corollary 6.13, which is cited below for easy reference.

XI(f) = F{x(t)P�t(t)} =

∞∑
�=−∞

x(��t) e−j2πf��t =
1

�t

∞∑
�=−∞

X

(
f − �

�t

)
.

Observe that this formula is de� ned for all values f ∈ (−∞,∞). Applying this result and the
Nyquist sampling rate to a band-limited signal, we have the following lemma.

Lemma 6.15 If a band-limited signal x(t) with bandwidth F is sampled at the Nyquist rate,
its Fourier transform my be expressed as a Fourier series whose coef� cients are discrete-time
samples of x(t) (multiplied by a scale factor). That is,

(6.15) X(f) = F{x(t)} =
1

F

∞∑
k=−∞

x

(
− k

F

)
ej2πkf/F , f ∈ [−F/2, F/2].

Proof: Since the given signal x(t) is band limited with bandwidth F , we have X(f) = 0

outside the band [−F/2, F/2]. Following Corollary 6.12, we have

X(f) = �t XI(f) for f ∈ [−F/2, F/2].

Following Corollary 6.13, we have

XI(f) =

∞∑
�=−∞

x(��t) e−j2πf��t for f ∈ [−∞,∞].

Combining these two results, we obtain

X(f) = �t
∞∑

�=−∞
x(��t) e−j2πf��t for f ∈ [−F/2, F/2]

= �t

∞∑
k=−∞

x(−k�t) ej2πfk�t (∵ k = −�)

=
1

F

∞∑
k=−∞

x

(
− k

F

)
ej2πkf/F . (∵ �t = 1/F)

�

Since the result we obtain in Lemma 6.15 is identical to an earlier result given by Equa-
tions (5.10), we simply repeat the derivation beginning with Equation (5.11), and Sampling
Theorem 5.1 re-emerges! The derivation serves as a direct proof of the sampling theorem.

Alternatively, we can prove the same theorem based on the properties of the impulse train
and the convolution theorem. To demonstrate this process, we state the sampling theorem again
and provide the second proof below.

208 CHAPTER 6. SAMPLING AND RECONSTRUCTION� PART III

Theorem 6.16 (Sampling theorem) If the signal x(t) is known to be band-limited with band-
width F = 2fmax, then x(t) can be sampled at the Nyquist rate 1/�t = F , and we can
determine a unique x(t) by interpolating the sequence of samples according to the formula

x(t) =
∞∑

�=−∞
x(��t)

sin(πF
(
t− ��t)

)
πF (t− ��t)

.

Proof: Recall from Corollary 6.12 that

F{x(t)} = X(f) =

{
�t XI(f) = 1

F XI(f), f ∈ [−F/2, F/2] ;

0, otherwise.

To facilitate further mathematical manipulations, an equivalent de�n ition for X(f) is given by
a single formula

(6.16) X(f) = XI(f)Y rect
F/2(f), f ∈ (−∞,∞),

where Y rect
F/2(f) is the familiar rectangular pulse function (with area = 1) de�ned as

(6.17) Y rect
F/2(f) =

{
1/F, for f ∈ [−F/2, F/2] ;

0, otherwise.

Since X(f) is the product of two functions in the frequency domain according to Equa-
tion (6.16), we apply Convolution Theorem 6.1, and we obtain

x(t) = F−1{X(f)} = F−1{XI(f)Y rect
F/2(f)}

= F−1{XI(f)} ∗ F−1{Y rect
F/2(f)}

= xI(t) ∗ y(t).

(6.18)

To evaluate the convolution on the right-hand side, we substitute

xI(t) = x(t)P�t(t) =

∞∑
�=−∞

x(��t) δ(t− ��t),(6.19)

y(t) = F−1{Y rect
F/2(f)} = sinc(Ft), (a result from Example 5.4),(6.20)

and we obtain

x(t) = xI(t) ∗ y(t) =

∫ ∞

−∞
xI(t− λ) y(λ) dλ

=

∫ ∞

−∞

[∞∑
�=−∞

x(��t) δ(t− λ− ��t)

]
sinc(Fλ) dλ

=

∞∑
�=−∞

x(��t)

[∫ ∞

−∞
sinc(Fλ) δ(−λ + t− ��t) dλ

]

=

∞∑
�=−∞

x(��t)

[∫ ∞

−∞
sinc(Fλ) δ

(
λ− (t− ��t)

)
dλ

]

=
∞∑

�=−∞
x(��t) sinc

(
F (t− ��t)

)
(by sifting property)

=

∞∑
�=−∞

x(��t)
sin

(
πF (t− ��t)

)
πF (t− ��t)

.

(6.21)

�

6.10. SAMPLING OF BAND-PASS SIGNALS 209

6.10 Sampling of Band-Pass Signals

A signal x(t) is called a band-pass signal if X(f) 	= 0 for f ∈ [f1, f2] ∪ [−f2,−f1], where
0 < f1 < f2. (Examples of band-pass signals include radar signals and AM and FM radio
signals.) On the one hand, we note that because X(f) = 0 outside the band [−f2, f2], the
signal x(t) is band limited to fmax = f2, and we can simply treat the band-pass signal as a
band-limited signal and sample it at the Nyquist rate 1/�t = 2f2.

On the other hand, we have X(f) = 0 for f ∈ [−f1, f1] ⊂ [−f2, f2], so the bandwidth of
a band-pass signal can be de� ned as 2(f2 − f1) (for the two nonzero bands). If the bandwidth
2(f2 − f1) is a small fraction of 2f2, we would like to know whether a lower sampling rate
determined by the bandwidth 2(f2 − f1) can allow full recovery of X(f) from XI(f) in
Theorem 6.11.

To avoid complication, we consider � rst the case when f2 = m(f2 − f1), where m is a
positive integer. If we lower the sampling rate to

(6.22)
1

�t
= 2(f2 − f1) =

2f2

m
,

the Fourier transform of the impulse-sampled signal is given by Theorem 6.11 as

(6.23) XI(f) = 2(f2 − f1)

∞∑
k=−∞

X
(
f − 2k(f2 − f1)

)
.

The right-hand side is again a superposition of copies of X(f) = F{x(t)}, each displaced
by multiples of 2(f2 − f1). To show that the nonzero portions of the shifted replications
of X(f) will not overlap, we need to determine, for every k, the ranges of f over which
X

(
f − 2k(f2 − f1)

) 	= 0. To simplify the notation, we let β = f2 − f1, f2 = mβ, and note
that f1 = f2 − β = (m− 1)β.

1. For the right band, X(f − 2kβ) 	= 0 if f − 2kβ ∈ [f1, f2]; we thus require

(m− 1)β ≤ f − 2kβ ≤ mβ.

Solving for f , we obtain

(2k + m− 1)β ≤ f ≤ (2k + m)β.

Therefore, the kth nonzero right band of width β begins at (2k + m− 1)β.

2. For the left band, X(f − 2kβ) 	= 0 if f − 2kβ ∈ [−f2,−f1], we thus require

−mβ ≤ f − 2kβ ≤ −(m− 1)β.

Solving for f , we obtain

(2k −m)β ≤ f ≤ (2k −m + 1)β.

Therefore, the kth nonzero left band of width β begins at (2k −m)β.

If m is even, then (2k + m− 1) is an odd number for all k, and (2k −m) is an even number
for all k, so the nonzero bands cannot overlap; if m is odd, we have even (2k + m − 1) and
odd (2k −m) for all k, so the nonzero bands cannot overlap, either.

210 CHAPTER 6. SAMPLING AND RECONSTRUCTION� PART III

For the general case, instead of assuming f2 = m(f2 − f1), we can always � nd f0 ≤ f1

so that f2 = m(f2 − f0), and m ≥ 1 is an integer. Our derivation above shows that if
we set the sampling rate 1/�t = 2(f2 − f0), then the portions of X(f) over [f0, f2] and
[−f2,−f0] will not overlap the corresponding portions of the shifted replications of X(f).
Since [f1, f2] ⊂ [f0, f2], the nonzero bands will not overlap each other. As a result, the nonzero
frequency content of a band-pass signal is preserved by the sampling process as desired.

References

1. A. Ambardar. Analog and Digital Signal Processing. Brooks/Cole Publishing Company,
Paci� c Grove, CA, second edition, 1999.

2. W. L. Briggs and V. E. Hensen. The DFT: An Owner’s Manual for the Discrete Fourier
Transform. The Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995.

3. E. O. Brigham. The Fast Fourier Transform and Its Applications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1988.

4. B. Porat. A Course in Digital Signal Processing. John Wiley & Sons, Inc., New York,
1997.

5. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in C++: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK,
second edition, 2001.

6. H. J. Weaver. Applications of Discrete and Continuous Fourier Analysis. John Wiley &
Sons, Inc., New York, 1983.

Chapter 7

The Fourier Transform of a
Sequence

In Chapter 6 we were able to treat a discrete-time signal as a formally continuous function by
representing the sampled signal as a weighted impulse train

(7.1) xI(t) = x(t)P�t(t) =

∞∑
�=−∞

x(t) δ(t − ��t) =

∞∑
�=−∞

x(��t) δ(t− ��t),

and we derived its Fourier transform in two forms (recall Theorem 6.11 and Corollary 6.13):

(7.2) XI(f) = F{xI(t)} =
∞∑

�=−∞
x(��t) e−j2πf��t

︸ ︷︷ ︸
Fourier series of XI (f)

=
1

�t

∞∑
k=−∞

X

(
f − k

�t

)
︸ ︷︷ ︸

F{x(t)}∗F{P�t(t)}

,

where X(f) = F{x(t)}. Note that XI(f + 1/�t) = XI(f), so XI(f) is a periodic function
with period equal to the sampling rate R = 1/�t. Recall that if x(t) is band-limited with
bandwidth F ≤ R , then we may extract X(f) = F{x(t)} from the central period of XI(f);
otherwise the shifted replicas of X(f) will overlap, and XI(f) 	= X(f) for f ∈ [−R/2, R/2].

As we indicated in Chapter 6, we used the impulse train P�t(t) (also known as the comb
function) as a mathematical tool to model the sampling process, but we cannot physically
sample a signal by the impulse train. In order to process the point-sampled signal data in the
digital world, we need to formally de� ne the Fourier transform on a sequence of discrete-time
samples without explicitly involving the sampling interval�t. Such a de�n ition can be derived
from relating x(��t) in (7.2) to the Fourier series coef� cient of the periodic XI(f) as shown
in the next section.

7.1 Deriving the Fourier Transform of a Sequence

To derive the Fourier transform of a sequence {. . . , x−1, x0, x1, . . . }, we denote x(��t) in
Formula (7.2) by x� and we express XI(f) as a function of the digital frequency F = f�t

(cycles per sample) by a simple change of variable in Formula (7.2):

(7.3) X̂I(F) =

∞∑
�=−∞

x� e−j2π�F.

211

212 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

Since the period of XI(f) is equal to the sampling rate R = 1/�t, the period of X̂I(F) is
expected to be R�t = 1 after the change of variable. We can easily verify the period of X̂I(F)

by showing that

X̂I(F± 1) =
∞∑

�=−∞
x� e−j2π�(F±1) =

∞∑
�=−∞

x� e−j2π�F = X̂I(F).

Hence the central period of X̂I(F) is [−1/2, 1/2]. Because X̂I(F) is a periodic function (with
period Ω = 1), we can also interpret the right-hand side of Equation (7.3) as its Fourier series
expansion, namely,

(7.4)

X̂I(F) =
∞∑

�=−∞
x� e−j2π�F

=

∞∑
�=−∞

x−� e−j2π(−�)F

=

∞∑
�=−∞

ĉ� ej2π�F/Ω, (rename x−� as ĉ�, recall Ω = 1)

where the Fourier series coef� cients {ĉ�} are de�n ed in Dirichlet�s theorem 3.1 by

(7.5) ĉ� =
1

Ω

∫ Ω/2

−Ω/2

X̂I(F) e−j2π�F/ΩdF, Ω = 1, � ∈ (−∞, ∞).

Because x� = ĉ−�, we obtain

(7.6) x� =
1

Ω

∫ Ω/2

−Ω/2

X̂I(F) e−j2π(−�)F/ΩdF =

∫ 1/2

−1/2

X̂I(F) ej2π�FdF.

We can now extract the following Fourier transform pair from Formulas (7.3) and (7.6):

(7.7) X̂I(F) =

∞∑
�=−∞

x� e−j2π�F

︸ ︷︷ ︸
Fourier series expansion

⇐⇒ x� =

∫ 1/2

−1/2

X̂I(F) ej2π�FdF︸ ︷︷ ︸
Fourier series coef� cient ĉ−�

.

Because the continuous X̂I(F) is periodic and it is formally the Fourier transform of equis-
paced discrete-time samples {. . . , x−1, x0, x1, . . . }, it is said that sampling in the time do-
main leads to periodicity in the frequency domain.

It is also common to express the Fourier transform pair in the angular digital frequency
θ = 2πF (radians per sample), which is obtained by changing the variable in Formula (7.7):

(7.8) X̃I(θ) =

∞∑
�=−∞

x� e−j�θ ⇐⇒ x� =
1

2π

∫ π

−π

X̃I(θ) ej�θdθ.

Note that we have used θ instead of the previously proposed W to denote the angular digital
frequency in (7.8), and that we have X̃(θ + 2π) = X̃(θ).

7.1. DERIVING THE FOURIER TRANSFORM OF A SEQUENCE 213

Remark 1: By changing the physical frequency variable f to the digital frequency F = f�t,
we were able to focus on transforming the data sequence {x�} itself and present a deriva-
tion which is more direct and clear than using XI(f). Nevertheless, the mathemati-
cally equivalent pair derived from XI(f) can now be obtained directly from the pair
X̂I(F) ⇐⇒ {x�} in (7.7) by changing variable F back to f �th e following result is
immediately obtained:

(7.9) XI(f) =

∞∑
�=−∞

x(��t)e−j2π�f�t⇐⇒x(��t)=�t

∫ 1/(2�t)

−1/(2�t)

XI(f)ej2π�f�tdf.

Recall that the second form of XI(f) in (7.2) was obtained in Theorem 6.11. With
the relationship (7.9) now established between XI(f) and {x(��t)}, we can verify the
second form directly from evaluating x(t) = F−1{X(f)} at t = ��t: we � rst express
x(t) in the integral form

x(t) =

∫ ∞

−∞
X(f) ej2πftdf,

then we evaluate the integral at t = ��t for all � ∈ (−∞, ∞):

x(��t) =

∫ ∞

−∞
X(f) ej2πf��t df

=

∞∑
k=−∞

∫ (−k+ 1
2)R

(−k− 1
2)R

X(f) ej2πf��t df

=

∞∑
k=−∞

∫ 1
2 R

− 1
2 R

X(λ− kR) ej2π(λ−kR)��t dλ (let λ = f + kR)

=
∞∑

k=−∞

∫ 1/(2�t)

−1/(2�t)

X

(
λ− k

�t

)
ej2πλ��t e−j2πk� dλ (let R = 1/�t)

=

∞∑
k=−∞

∫ (1/(2�t)

−1/(2�t)

X

(
f − k

�t

)
ej2πf��t df (∵ e−j2πk� =1; let f =λ)

= �t

∫ 1/(2�t)

−1/(2�t)

[
1

�t

∞∑
k=−∞

X

(
f − k

�t

)]
ej2π�f�t

︸ ︷︷ ︸
extract the integrand

df.

∵ x(��t) = �t

∫ 1/(2�t)

−1/(2�t)

extract the integrand︷ ︸︸ ︷[
XI(f)

]
ej2π�f�t df from (7.9) for all � ∈ (−∞, ∞),

∴ XI(f) =
1

�t

∞∑
k=−∞

X

(
f − k

�t

)
.

We have thus derived the same result previously given in Theorem 6.11 by taking an
entirely different path.

Remark 2: We have used different function names XI , X̂I , and X̃I to denote the three forms
of the same function�this is necessary, because if we don�t change the function name,

214 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

we can only explicitly substitute the variable of XI(f) by expressing

XI(f) = XI

(
F

�t

)
= XI

(
θ

2π�t

)
, θ = 2πF.

Therefore, to be mathematically correct, we must refer to the result expressed in each
new variable by a different name; i.e., we de�ne

X̂I(F) = XI

(
F

�t

)
,

and

X̃I(θ) = XI

(
θ

2π�t

)
.

Of course, the fact that they represent the same function does not change, and we have

XI(f) = X̂I(F) = X̃I(θ).

Remark 3: We emphasize the mathematical equivalence of the following formulas:

XI(f ± 1/�t) = X̂I(F± 1) = X̃I(θ ± 2π),

where θ = 2πF = 2πf�t; and

x(��t) = �t

∫ 1/(2�t)

−1/(2�t)

XI(f) ej2π�f�tdf

=

∫ 1/2

−1/2

X̂I(F) ej2π�FdF

=
1

2π

∫ π

−π

X̃I(θ) ej�θdθ = x�, � ∈ (−∞,∞).

Remark 4: We have shown that sampling x(t) in the time domain leads to periodic replication
of its Fourier transform X(f)=F{x(t)} in the frequency domain, which was described
by the second form of XI(f) in (7.2):

XI(f) =
1

�t

∞∑
k=−∞

X

(
f − k

�t

)
︸ ︷︷ ︸

shifted (scaled) replicas of X(f)

.

Hence discrete-time signals have continuous periodic spectra XI(f), and the sampling
space �t in the time domain is the reciprocal of the period of XI(f) in the frequency
domain.

Remark 5: We emphasize that the central period of XI(f), which covers frequencies
f ∈ [−R/2, R/2], is not required to be equal to X(f)=F{x(t)}�r ecall that the shifted
replicas of X(f) in the periodic replication described by (7.2) overlap each other if the
the sampling rate R=1/�t does not exceed the bandwidth of x(t). (Recall Figures 6.9
and 6.10 as well as our discussion on the Nyquist rate in Section 6.8, Chapter 6.)

7.2. PROPERTIES OF THE FOURIER TRANSFORM OF A SEQUENCE 215

Table 7.1 Properties of the Fourier transform X̂I(F) of a sequence.

1. Linearity F{
α{x�}+ β{y�}

}
= αX̂I(F) + βŶI(F)

2. Time shift F{{x�−m}
}

= X̂I(F) e−j2πFm

3. Frequency shift F{{x� ej2πFα�}} = X̂I(F− Fα)

Special case Fα = 1
2 F{{x� (−1)�}} = X̂I

(
F− 1

2

)
4. Modulation F{{x� cos 2πFα�}} = 1

2X̂I(F + Fα) + 1
2X̂I(F− Fα)

F{{x� sin 2πFα�}} = j
2X̂I(F + Fα)− j

2X̂I(F− Fα)

5. Folding F{{x−�}
}

= X̂I(−F)

6. Derivative of the transform X̂ ′
I(F) = −j2πF{{� x�}

}

7.2 Properties of the Fourier Transform of a Sequence

A subset of the Fourier transform properties (for continuous-time signals) in Table 5.3 is di-
rectly adapted for discrete-time signals in Table 7.1, and their derivation from the de�n ing
formula for X̂I(F) follows.

1. Linearity

F{
α{x�}+ β{y�}

}
= F{{αx� + β y�}

}
=

∞∑
�=−∞

(
α x� + β y�

)
e−j2πF� by Formula (7.3)

= α

∞∑
�=−∞

x� e−j2πF� + β

∞∑
�=−∞

y� e−j2πF�

= α X̂I(F) + β ŶI(F). by Formula (7.3)

2. The Time-Shift Property

F{{x�−m}
}

=

∞∑
�=−∞

x�−m e−j2πF� by Formula (7.3)

=

∞∑
k=−∞

xk e−j2πF(k+m) (let k = �−m)

=

[∞∑
k=−∞

xk e−j2πFk

]
e−j2πFm

= X̂I(F) e−j2πFm. by Formula (7.3)

216 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

3. The Frequency-Shift Property

F{{x� ej2πFα�}} =
∞∑

�=−∞
x� ej2πFα� e−j2πF� by Formula (7.3)

=

∞∑
�=−∞

x� e−j2π(F−Fα)�

= X̂I

(
F− Fα

)
. by Formula (7.3)

Observe that when Fα = 1
2 , the frequency shift ej2πFα� = ejπ� = (−1)�, and we have

F{{x� (−1)�}} on the left-hand side and X̂I

(
F − 1

2

)
on the right-hand side for this

special case.

4. The Modulation Property

F{{x� cos 2πFα�}} =

∞∑
�=−∞

(
x� cos 2πFα�

)
e−j2πF� by Formula (7.3)

=
1

2

∞∑
�=−∞

x�

[
e−j2πFα� + ej2πFα�

]
e−j2πF� (by Euler�s formula)

=
1

2

∞∑
�=−∞

x�

[
e−j2π(F+Fα)� + e−j2π(F−Fα)�

]
=

1

2

∞∑
�=−∞

x� e−j2π(F+Fα)� +
1

2

∞∑
�=−∞

x� e−j2π(F−Fα)�

=
1

2
X̂I

(
F + Fα

)
+

1

2
X̂I

(
F− Fα

)
.

Similarly,

F{{x� sin 2πFα�}} =
j

2
X̂I

(
F + Fα

)− j

2
X̂I

(
F− Fα

)
.

5. The Folding Property

F{{x−�}
}

=

∞∑
�=−∞

x−� e−j2πF� by Formula (7.3)

=
∞∑

k=−∞
xk e−j2πF(−k) (let k = −�)

=

∞∑
k=−∞

xk e−j2π(−F)k

= X̂I(−F).

7.3. GENERATING THE FOURIER TRANSFORM PAIRS 217

6. Derivative of the Transform

X̂ ′
I(F) =

d

dF

[∞∑
�=−∞

x� e−j2πF�

]

=

∞∑
�=−∞

x�
d

dF
e−j2πF�

=

∞∑
�=−∞

x� (−j2π�) e−j2πF�

= −j2π

∞∑
�=−∞

(� x�) e−j2πF�

= −j2πF{{� x�}
}
.

In Table 7.2 we list the same properties in terms of the alternate form X̃I(θ) de� ned by (7.8),
where θ = 2πF.

Table 7.2 Properties of the Fourier transform X̃I(θ) of a sequence (θ=2πF).

1. Linearity F{
α{x�}+ β{y�}

}
= αX̃I(θ) + βỸI(θ)

2. Time shift F{{x�−m}
}

= X̃I(θ) e−jmθ

3. Frequency shift F{{x� ej�θα}} = X̃I(θ − θα)

Special case θα =π F{{x� (−1)�}} = X̃I(θ − π)

4. Modulation F{{x� cos �θα}
}

= 1
2X̃I(θ + θα) + 1

2X̃I(θ − θα)

F{{x� sin �θα}
}

= j
2X̃I(θ + θα)− j

2X̃I(θ − θα)

5. Folding F{{x−�}
}

= X̃I(−θ)

6. Derivative of the transform X̃ ′
I(θ) = −jF{{� x�}

}

7.3 Generating the Fourier Transform Pairs

7.3.1 The Kronecker delta sequence

The counterpart of the impulse function for discrete-time signals is the Kronecker delta se-
quence

{
z� =δ(�)

}
, where

δ(�) =

{
1 if � = 0,

0 if � 	= 0.

218 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

To obtain the Fourier transform of the Kronecker delta sequence, we apply the de� ning formula
to obtain

(7.10) ẐI(F) =
∞∑

�=−∞
z� e−j2π�F =

∞∑
�=−∞

δ(�) e−j2π�F = δ(0) = 1.

We denote a shifted Kronecker delta sequence by
{
z�−m =δ(�−m)

}
, where

δ(�−m) =

{
1 if m = �,

0 if m 	= �,

and we obtain its Fourier transform using the time-shift property:{
z�−m =δ(�−m)

}⇐⇒ ẐI(F)e−j2πFm = e−j2πFm.

7.3.2 Representing signals by Kronecker delta

In analogy to the impulse train, we may use the weighted sum of the shifted Kronecker delta
to represent a discrete-time signal:

x� =

∞∑
m=−∞

xm δ(�−m), � ∈ (−∞, ∞).

For each speci�ed value of �, the right-hand side has only one nonzero term x� δ(0) corre-
sponding to m = �.

Example 7.1 We denote the discrete unit step function by
{
z� =u(�)

}
, where

(7.11) u(�) =

{
1 if � ≥ 0,

0 if � < 0.

The de�n ition is satis�ed by the sum of the shifted Kronecker delta

(7.12) z� =
∞∑

m=0

δ(�−m), � ∈ (−∞, ∞);

or the equally valid

(7.13) z� =

�∑
m=−∞

δ(m), � ∈ (−∞, ∞).

Example 7.2 We denote the discrete unit ramp function by
{
z� =r(�)

}
, where

(7.14) r(�) =

{
� if � ≥ 0,

0 if � < 0.

The de�n ition is satis�ed by the weighted sum of Kronecker delta expression

(7.15) z� =

∞∑
m=0

� δ(�−m), � ∈ (−∞, ∞),

7.3. GENERATING THE FOURIER TRANSFORM PAIRS 219

or the equally valid

(7.16) z� =

�∑
m=−∞

� δ(m), � ∈ (−∞, ∞).

The discrete unit ramp can also be expressed as a sum of the discrete unit step as

(7.17) z� =

�∑
m=−∞

u(m), � ∈ (−∞, ∞).

7.3.3 Fourier transform pairs

Example 7.3 (a) (Figure 7.1) We denote the discrete exponential function by
{
z� =α�u(�)

}
,

where |α| < 1, and we obtain its Fourier transform by the de� ning formula

(7.18)

ẐI(F) =

∞∑
�=−∞

z� e−j2π�F =

∞∑
�=−∞

α�u(�) e−j2π�F

=

∞∑
�=0

α� e−j2π�F
(
∵ u(�) = 0, � < 0

)
=

∞∑
�=0

[
α e−j2πF

]� (
note

∣∣α e−j2πF
∣∣ < 1

)
=

1

1− α e−j2πF
.

(
sum of geometric series

)
(b) (Figure 7.2) We obtain the Fourier transform of

{
y� = � α�u(�)

}
, where |α| < 1, by

relating it to the result from part (a) through the derivative of transform property

d

dF
ẐI(F) = −j2πF{{� z�}

}
or F{{� z�}

}
=

j

2π

d

dF
ẐI(F).

Letting z� = α�u(�), we have y� = � z�; hence,

ŶI(F) = F{{y�}
}

= F{{� z�}
}

=
j

2π

d

dF
ẐI(F)

=
j

2π

d

dF

[
1

1− α e−j2πF

] (
result from part (a)

)
=

j

2π

−j2πα e−j2πF[
1− α e−j2πF

]2

=
α e−j2πF[

1− α e−j2πF
]2 .

(c) (Figure 7.3) We next make use of the property of linearity to obtain the Fourier transform

220 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

Figure 7.1 Discrete exponential function and its Fourier transform.

−20 −15 −10 −5 0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

Sequence: z
k
 = ak (a = 0.5)

Re(Z
I
(F))

Im(Z
I
(F))

Period F=1

K

Digital frequency F = f∆t

Figure 7.2 Obtaining Fourier transform pair by derivative of transform property.

−20 −15 −10 −5 0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

1.5

2

Digital frequency F = f∆t

Re(Z
I
(F))

Im(Z
I
(F))

Sequence: z
k
 = k ak (a = 0.5)

Z
I
(F)

Complex

K

7.3. GENERATING THE FOURIER TRANSFORM PAIRS 221

of sequence {(� + 1)α�u(�)} by adding the results from (a) and (b):

F{{(� + 1)α�u(�)}} = F{{� α�u(�)}} + F{{α�u(�)}} (
by linearity

)
=

α e−j2πF[
1− α e−j2πF

]2 +
1

1− α e−j2πF

(
results form (a), (b)

)
=

1[
1− α e−j2πF

]2 .

Figure 7.3 Obtaining Fourier transform pair by the property of linearity.

−20 −15 −10 −5 0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

3

4

Digital frequency F = f∆t

Re(Z
I
(F))

Im(Z
I
(F))

Complex

Z
I
 (F)

Sequence: z
k
 = (k+1)ak

(k = 0.5)

K

Example 7.4 (Figure 7.4) In this example we evaluate the Fourier transform of a sequence
{x�} de� ned by discrete exponential for � ∈ (−∞, ∞):

x� =

{
α� � ≥ 0

α−� � < 0
, where |α| < 1.

222 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

Using the technique from Example 7.3(a), we obtain

F{{x�}
}

=

∞∑
�=0

α� e−j2π�F +

−1∑
�=−∞

α−� e−j2π�F

=

∞∑
�=0

[
α e−j2πF

]�
+

∞∑
k=0

[
α ej2πF

]k − 1 (let k=−�)

=
1

1− α e−j2πF
+

1

1− α ej2πF
− 1 (sum the two geometric series)

=
1− α2(

1− α e−j2πF
)(

1− α ej2πF
)

=
1− α2

1− 2α cos(2πF) + α2
.

Figure 7.4 The Fourier transform of a bilateral exponential function.

−20 −15 −10 −5 0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

0

1

2

3

4

Digital frequency F = f∆t

Sequence: z
k
 = ak (a = 0.5)

Real−valued Z
I
(F)

K

central

period

Example 7.5 Recall that given a Fourier transform pair � x(t) ⇐⇒ X(f)�, we may obtain
XI(f), the periodic Fourier transform of the sample sequence {x�}, in two forms: (i) XI(f)

may be expressed as a Fourier series with its coef�cien ts appropriately de�n ed by the data
sample; (ii) XI(f) may be expressed as the sum of the shifted replicas of the known X(f).
Therefore, if we can obtain a closed-form expression for XI(f) in one of the two forms, we
would have also found the closed-form expression for the in� nite sum in the other form�
a result which may not be obtained by working with the in� nite sum directly. For the pair
x(t) = e−at ⇐⇒ X(f) = 1/(a + j2πf), we have shown such results in Example 6.1
(Figures 6.9 and 6.10).

7.3. GENERATING THE FOURIER TRANSFORM PAIRS 223

In this example we combine this approach with the use of the derivative of transform prop-
erty: we will show that for x(t) = e−atu(t), the two forms of ỸI(θ) for y(t) = t x(t) can be
obtained from the known X(f) and XI(f). In order to make full use of previously obtained
results, we connect relevant examples in a diagram shown in Figure 7.5. The results obtained
in those examples are labeled as such and they are displayed in the shaded boxes; the new tasks
are those leading to the results displayed in the unshaded boxes.

Figure 7.5 Connecting previously obtained results to new tasks.

y(t) = t x(t)x(t) = e−atu(t)

ỸI(θ)

X̃I(θ)
ỸI(θ) = j�tX̂ ′

I(θ)

(In� nite sum)

Sequence {y�}

the closed form

Sequence {y�}
YI(f) (In� nite sum)

Change variable

Sample x(t)

derivative of

property

derivative of

property

Apply the

Change variable in

Two forms of ŶI(θ) are

known X(f) and XI(f).
now obtained from the

Apply the

(closed form)

Transform

XI(f) (two forms)

Sequence {x�}

(closed form) Transform

Sequence {x�}

Example 6.1

Example 5.1

X(f) = 1
a+j2πf

Example 5.6

Y (f) = −1
j2π X ′(f)

Sample y(t)

Following the action plan in Figure 7.5, we use the closed-form XI(f) from Example 6.1
to obtain the closed-form X̂I(θ) by changing the variable f to the angular digital frequency θ:

{x� = e−a��tu(�)} ⇐⇒ X̃I(θ) =
1

1− e−(a�t+jθ)
, θ = 2πf�t.

Because y(t) = t x(t), we have y� = (��t)x� = �t (� x�), and we can use the � derivative of
the transform� property to obtain the closed-form ỸI(θ):

ỸI(θ) = �tF{{� x�}
}

= j�t X̃ ′
I(θ) = j�t

d

dθ

[
1

1− e−(a�t+jθ)

]
=

�t e−(a�t+jθ)[
1− e−(a�t+jθ)

]2 .

To obtain the other form, we use Y (f)=
1

(a + j2πf)2
from Example 5.6 to express YI(f) as

224 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

an in�n ite sum:

YI(f) =
1

�t

∞∑
k=−∞

Y

(
f − k

�t

)
=

∞∑
k=−∞

�t[
a�t + j2π(f�t− k)

]2 .

Letting f =
θ

2π�t
in YI(f), we obtain

ỸI(θ) =

∞∑
k=−∞

�t[
a�t + j(θ − 2πk)

]2 .

By equating the two forms of ỸI(θ), we obtain the closed-form expression for the in� nite sum:

∞∑
k=−∞

1[
a�t + j(θ − 2πk)

]2 =
e−(a�t+jθ)[

1− e−(a�t+jθ)
]2 .

Example 7.6 In this example we shall derive the Fourier transform of the sequence of constant
1, denoted by {x� =1}.

Method 1. We apply the de� ning formula (7.2) to x� = x(��t) = 1, and we obtain

XI(f) =

∞∑
�=−∞

x(��t) e−j2πf��t

=

∞∑
�=−∞

e−j2πf��t (∵ x(��t) = 1)

=

∞∑
k=−∞

ej2πk��t (let k = −�)

=
1

�t

∞∑
k=−∞

δ

(
f − k

�t

)
(by Poisson sum from Theorem 6.6)

=

∞∑
k=−∞

[
1

�t
δ

(
F− k

�t

)]
(∵ f = F/�t)

=

∞∑
k=−∞

δ(F− k).

(
∵

∫ ∞

−∞

[
1
αδ

(
λ
α

)]
dλ =

∫ ∞

−∞
δ(λ) dλ

)

Accordingly,

(7.19) X̂I(F) = F{{x� = 1}} =

∞∑
k=−∞

δ(F− k),

and X̂I(F) = δ(F) over the principal period [− 1
2 , 1

2]. Note that X̂I(F) is always periodic
with unit period.

Method 2. We may use our knowledge about the Dirac delta function to obtain x� = 1 by

7.3. GENERATING THE FOURIER TRANSFORM PAIRS 225

integrating δ(F)ej2π�F over the principal period:

x� =

∫ 1
2

− 1
2

δ(F) ej2π�FdF

=

∫ ∞

−∞
g(F) δ(F−0) dF, where g(F) = ej2π�F (recall δ(F) = 0, F 	= 0)

= g(0) (by sifting property of δ(F− Fa) with Fa =0)

= 1. (∵ g(0) = e0 = 1)

Hence δ(F) plays the role of X̂I(F) for F ∈ [− 1
2 , 1

2] in Formula (7.7). The periodic
extension of δ(F) yields X̂I(F) with unit period:

X̂I(F) =

∞∑
k=−∞

δ(F− k).

To obtain the alternative form X̃I(θ), observe that we must obtain x� = 1 from X̃I(θ)

using Formula (7.8), namely,

x� =
1

2π

∫ π

−π

X̃I(θ) ej�θdθ = 1.

By recognizing that

1

2π

∫ π

−π

[
2π δ(θ)

]
ej�θdθ =

∫ π

−π

δ(θ) ej�θdθ = 1,

we determine that
X̃I(θ) = 2π δ(θ), θ ∈ [−π, π].

Since X̃I(θ) is always periodic with period 2π, we have

(7.20) X̃I(θ) = F{{x� = 1}} = 2π

∞∑
k=−∞

δ(θ − 2kπ).

Method 3. Since we derived previously the continuous Fourier transform pair x(t) = 1 ⇐⇒
X(f) = δ(f), we can obtain the second form of XI(f) directly from the given X(f)

according to Formula (7.2):

XI(f) =
1

�t

∞∑
k=−∞

X

(
f − k

�t

)

=
1

�t

∞∑
k=−∞

δ

(
f − k

�t

) (
∵ X(f) = δ(f)

)
=

∞∑
k=−∞

δ(F− k). (by steps identical to Method 1)

Remarks: Comparing the results from this example with those of the last three examples, we
see that when X̂I(F) involves an impulse train, the inÞ nite sum is reduced to a single impulse

226 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

within the principal period [− 1
2 , 1

2]. In such case, it is common practice to express X̂I(F) for
the principal period only. Therefore, when the following expression is used,

{x� = 1} ⇐⇒ X̂I(F) = δ(F),

it is understood that the values of F are restricted to the range [− 1
2 , 1

2]. Confusion occurs
when this practice is adopted without qualiÞ cation, because this simpliÞ ed expression is neither
periodic nor valid for F outside the principal period, while X̂I(F) was supposed to represent a
periodic function valid for all F ∈ (−∞,∞). Such discrepancy in the deÞn ition of X̂I(F) is
often tolerated, probably because we usually only need to study or plot one period of a periodic
function.

Example 7.7 Using the modulation properties on the pair {y� = 1} ⇐⇒ δ(F), F ∈ [− 1
2 , 1

2],
from last example, we obtain

(7.21) F{{y� cos 2πFa�}
}

= F{{cos 2πFa�}} =
1

2
δ
(
F + Fa

)
+

1

2
δ
(
F− Fa

)
,

(7.22) F{{y� sin 2πFb�}
}

= F{{sin 2πFb�}
}

=
j

2
δ
(
F + Fb

)− j

2
δ
(
F− Fb

)
.

Recall from Section 1.9.1 that a discrete-time sinusoid has the general form

x� = Dα cos(2πFα�− φα), � = 0, 1, 2, . . .

To obtain its formal Fourier transform, we apply trigonometric identity to express

x� = Dα cosφα cos(2πFα�) + Dα sin φα sin(2πFα�),

and, by linearity, we superpose the transform results from (7.21) and (7.22) to obtain

X̂I(F) =
1

2
Dα cosφα

[
δ
(
F + Fα

)
+ δ

(
F− Fα

)]
+

j

2
Dα sin φα

[
δ
(
F + Fα

)− δ
(
F− Fα

)]
=

1

2
Dαejφαδ

(
F + Fα

)
+

1

2
Dαe−jφαδ

(
F− Fα

)
(∵ cos θ ± j sin θ = e±jθ)

= π Dαejφαδ(θ + θα) + π Dαe−jφαδ(θ − θα).
(
∵ δ(F)=2πδ(θ) from (7.20)

)
7.4 Duality in Connection with the Fourier Series

Observe that the relationship between the pair X̂I(F) ⇐⇒ {x�} mirrors that of a periodic
function yp(t) with period T and its Fourier series coefÞ cients {Ck}:

(7.23) yp(t) =

∞∑
k=−∞

Ck ej2πkt/T ⇐⇒ Ck =
1

T

∫ T/2

−T/2

yp(t) e−j2πkt/T dt.

Recall that if we extract one period of yp(t) to deÞn e the time-limited function

y1(t) =

{
yp(t), t ∈ [−T/2, T/2]

0, otherwise
,

7.4. DUALITY IN CONNECTION WITH THE FOURIER SERIES 227

then yp(t) is formally the periodic extension of y1(t), and it can be expressed as the convolution
of y1(t) and the impulse train PT (t) (for examples, see Figures 6.6 and 6.8 in Chapter 6):

(7.24) yp(t) =

convolution︷ ︸︸ ︷
y1(t) ∗ PT (T) = y1(t) ∗

∞∑
�=−∞

δ
(
t− �T

)
︸ ︷︷ ︸

periodic extension of y1(t)

=

∞∑
�=−∞

y1

(
t− �T

)
.︸ ︷︷ ︸

shifted replicas of y1(t)

Assuming that the time-limited y1(t) has Fourier transform

(7.25) Y1(f) =

∫ ∞

−∞
y1(t) e−j2πft dt =

∫ T/2

−T/2

yp(t) e−j2πft dt,

the Fourier series coefÞ cients Ck of yp(t) = y1(t)∗PT (t) are equally spaced samples of Y1(f)

scaled by the factor 1/T , i.e.,

Ck =
1

T
Y1

(k

T

)
, k ∈ (−∞, ∞).

Hence the sequence {Ck} represents the impulse sampled Y1(f) scaled by the factor 1/T :

1

T
Y1(f)P1/T (f) =

∞∑
k=−∞

1

T
Y1

(k

T

)
δ
(
f − k

T

)
=

∞∑
k=−∞

Ck δ
(
f − k

T

)
,

and we see that sampling Y1(f) = F{y1(t)} in the frequency domain results in the periodic
extension of y1(t) to yp(t) in the time domain.

Since the sampling space �f = fk+1 − fk = 1
T is the reciprocal of the period of yp(t),

the Fourier series pair yp(t) ⇐⇒ {Ck} is said to be the Ò dualÓ of the Fourier transform pair
X̂I(F) ⇐⇒ {x�}. In both cases, periodic extension in one domain is the consequence of
sampling in the other domain. Observe that the Fourier series pair yp(t)⇐⇒ {Ck} represents
the result expected from Convolution Theorem 6.1:

(7.26) y1(t) ∗ PT (t)︸ ︷︷ ︸
periodic yp(t)

⇐⇒ F{y1(t)} · F{PT (t)}︸ ︷︷ ︸
impulse sampled Y1(f)

,

where the Fourier transform of the impulse train is given by Theorem 6.7:

(7.27) F{PT (t)} =
1

T
P1/T (f) =

1

T

∞∑
k=−∞

δ

(
f − k

T

)
.

7.4.1 Periodic convolution and discrete convolution

In this section we obtain the duals of Theorem 6.4 (Periodic Convolution) and Theorem 6.5
(Discrete Convolution) for discrete-time signals.

Theorem 7.1 (Frequency-domain periodic convolution) The convolution of periodic X̂I(F)

and ĤI(F) in the frequency domain corresponds to the multiplication of sequences {x�} and
{h�} in the time domain. That is,

ĜI(F) = F{{x� h�}
}

= X̂I(F)⊗ ĤI(F),

where

X̂I(F)⊗ ĤI(F) =

∫ 1/2

−1/2

X̂I(λ) ĤI(F− λ) dλ.

228 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

Proof: Recall from Equation (7.4) we may express X̂I(F) and ĤI(F) by their Fourier series
expansions, namely,

X̂I(F) =

∞∑
�=−∞

ĉ� ej2π�F/Ω, where ĉ� = x−�, Ω = 1;

ĤI(F) =

∞∑
�=−∞

d̂� ej2π�F/Ω, where d̂� = h−�, Ω = 1.

By the Periodic Convolution Theorem 6.4 for the Fourier series, we immediately have the
Fourier series expansion of X̂I(F)⊗ ĤI(F):

X̂I(F)⊗ ĤI(F) =
∞∑

�=−∞

(
ĉ� d̂�

)
ej2π�F/Ω, where Ω = 1 (by Theorem 6.4)

=

∞∑
�=−∞

(
x−� h−�

)
ej2π�F

=

∞∑
k=−∞

(
xk hk

)
e−j2πkF (let k = −�)

= F{{xk hk}
}

by Formula (7.3)

= ĜI(F). �

We show next that the multiplication of the continuous Fourier transforms in the frequency
domain corresponds to the convolution of the discrete-time signals in the time domain. Recall
that the discrete linear convolution of two sequences was deÞn ed in Section 6.4 as

gk =

∞∑
�=−∞

x� hk−�, for all k ∈ (−∞, ∞).

We also express the discrete convolution as {gk} = {xk} ∗ {hk}.

Theorem 7.2 (Time-Domain Discrete Convolution) The Fourier transform of the discrete con-
volution of the two sequences {x�} and {h�} is the product of X̂I(F) and ĤI(F). That is,

X̂I(F) ĤI(F) =

∞∑
k=−∞

(∞∑
�=−∞

x� hk−�

)
e−j2πkF.

Proof: We again use Equation (7.4) to express X̂I(F) and ĤI(F) by their Fourier series ex-
pansions,

X̂I(F) =

∞∑
�=−∞

ĉ� ej2π�F/Ω, where ĉ� = x−�, and Ω = 1;

ĤI(F) =

∞∑
�=−∞

d̂� ej2π�F/Ω, where d̂� = h−�, and Ω = 1.

7.5. THE FOURIER TRANSFORM OF A PERIODIC SEQUENCE 229

By Theorem 6.5, we immediately obtain the Fourier series expansion for the product of two
Fourier series as

X̂I(F) ĤI(F) =

∞∑
k=−∞

(∞∑
�=−∞

ĉ� d̂k−�

)
ej2πkF/Ω, where Ω = 1 (by Theorem 6.5)

=

∞∑
k=−∞

(∞∑
�=−∞

x−� h−k+�

)
ej2πkF

=

∞∑
k=−∞

(∞∑
m=−∞

xm h−k−m

)
ej2πkF (let m = −�)

=

∞∑
r=−∞

(∞∑
m=−∞

xm hr−m

)
e−j2πrF (let r = −k)

=

∞∑
k=−∞

(∞∑
�=−∞

x� hk−�

)
e−j2πkF. (relabel r = k, m = �)

�

7.5 The Fourier Transform of a Periodic Sequence

In Section 7.4 we have derived the Fourier transform of the envelope signal yp(t) of the peri-
odic sequence {y�}, namely,

(7.28) Periodic yp(t) = y1(t) ∗ PT (t) ⇐⇒ F{y1(t)} · F{PT (t)} = Y1(f) · 1

T
P1/T (f),

where

(7.29) Y1(f) · 1

T
P1/T (f) =

∞∑
k=−∞

Ck︷ ︸︸ ︷
1

T
Y1

(k

T

)
δ

(
f − k

T

)
︸ ︷︷ ︸

Fourier transform of yp(t)

.

Hence an impulse train weighted by the Fourier series coefÞ cients shall be adopted as the
formal Fourier transform of a periodic signal, which is simply another useful mathematical ex-
pression for the same frequency contents represented by the Fourier series coefÞ cients. Recall
that Ck→0 as k →±∞, so the impulse train weighted by decaying Ck Õs will not be periodic.
(If the periodic signal is band limited, we shall have only a Þ nite number of nonzero CkÕs.)

We show next that it is indeed justiÞab le to treat ÒF{periodic yp(t)}Ó g iven by (7.29) as
the formal Fourier transform of yp(t), because we get back the original signal by invoking the

230 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

inverse Fourier transform as usual:

F−1{F{periodic yp(t)}} =

∫ ∞

−∞
F{periodic yp(t)} ej2πftdf

=

∫ ∞

−∞

[∞∑
k=−∞

Ckδ
(
f − k

T

)]
ej2πftdf

=
∞∑

k=−∞

∫ ∞

−∞
Ckδ

(
f − k

T

)
ej2πftdf

=

∞∑
k=−∞

Ck

∫ ∞

−∞
δ
(
f − k

T

)
ej2πftdf

=

∞∑
k=−∞

Ck ej2πkt/T

= yp(t). (∵ Fourier series of yp(t) has been obtained)

Assuming that N equally spaced samples are taken from each period of yp(t), we can now
express the periodic sequence {y�} as the shifted replicas of the impulse sampled y1(t), which
is time limited to a single period of yp(t). That is,

(7.30)

yp(t)P�t(t): N samples/period︷ ︸︸ ︷
Periodic Sequence yp

I (t) =

shifted replicas of N samples︷ ︸︸ ︷(
y1(t)P�t(t)

)
︸ ︷︷ ︸

N samples

∗PN�t(t) ,

where N�t = T , which is the time duration of y1(t) as well as the period of the extended
yp(t) = y1(t) ∗PN�t(t). For the corresponding sequence {y�}, we have y�+N = y� due to the
shifted replicas of the N samples (or weighted impulses.) Using Convolution Theorem 6.1 on
Equation (7.30), we obtain

(7.31)

F{periodic sequence yp
I (t)}

= F{(y1(t) · P�t(t)
) ∗ {PT (t)}, where T = N�t,

= F{y1(t) · P�t(t)} · F{PT (t)} by Convolution Theorem 6.1

=
1

T

[
1

�t

∞∑
k=−∞

Y1

(
f − k

�t

)]
︸ ︷︷ ︸

periodic YI (f): periodR = 1/�t

∞∑
k=−∞

δ

(
f − k

T

)
︸ ︷︷ ︸

P1/T (f)

=
1

T

∞∑
k=−∞

[
1

�t

∞∑
k=−∞

Y1

(
f − k

�t

)]
︸ ︷︷ ︸

periodic YI (f)

δ

(
f − k

T

)

=
1

T

∞∑
k=−∞

YI

(
k

T

)
δ

(
f − k

T

)

=
1

�t

∞∑
k=−∞

1

N
YI

(
k

T

)
δ

(
f − k

T

)
︸ ︷︷ ︸

periodic sequence: N samples per period R

,
1

T
=

1

N�t
=

R

N
.

7.5. THE FOURIER TRANSFORM OF A PERIODIC SEQUENCE 231

Observe that the continuous periodic functionYI(f) is impulse sampled at intervals of R/N =

1/T . Since the sampling rate R = 1/�t is the period of YI(f), there are exactly N equally
spaced samples over each period of YI(f). If the periodic signal yp(t) is not band limited,
the N samples taken over one period of 1

NYI(f) will not be identical to the corresponding N

samples of 1
N�tY1(f)= 1

T Y1(f) due to the effect of aliasing.

On the other hand, if the periodic signal yp(t) = yp(t + T) is band limited, then there are
only a Þ nite number of nonzero Fourier series coefÞ cients:

(7.32) band-limited periodic yp(t) =

n∑
k=−n

Ck ej2πkt/T .

Using the Fourier transform pair ej2πfat ⇐⇒ δ(f − fa) from Chapter 6, we obtain

(7.33) F{band-limited periodic yp(t)} =
n∑

k=−n

Ck F{ej2πkt/T } =
n∑

k=−n

Ck δ
(
f − k

T

)
.

The Fourier transform of the impulse-sampled band-limited periodic function yp
I (t) can now

be expressed as

(7.34)

F{band-limited periodic sequence yp
I (t)}

= F{yp(t) · P�t(t)}}, where sampling interval�t =
T

N

= F{yp(t)} ∗ F{P�t(t)} by Convolution Theorem

=

[
n∑

k=−n

Ck δ
(
f − k

T

)]
∗ 1

�t
P1/�t(f)

=

[
n∑

k=−n

Ck δ
(
f − k

T

)]
∗

[
1

�t

∞∑
m=−∞

δ

(
f − m

�t

)]

=
1

�t

[
n∑

k=−n

Ck δ
(
f − k

T

)]
∗

∞∑
m=−∞

δ

(
f − m

�t

)

=
1

�t

[
n∑

k=−n

Ck δ
(
f − k�f

)]
∗

∞∑
m=−∞

δ
(
f −mN�f

)
, �f =

1

T
=

1

N�t

=
1

�t

[
n∑

k=−n

Ck δ
(
f − k

R

N

)]
∗

∞∑
m=−∞

δ
(
f −mR

)
︸ ︷︷ ︸

Replicate N weighted impulses spaced by�f =R/N

, R=
1

�t
=N�f.

Note that the N = 2n+1 Fourier coefÞ cients CkÕs become the strengths of the N impulses
spaced by �f = 1/T over the frequency range [−n�f, n�f]. We also identify one period
of the Fourier transform as R = N�f = (2n+1)�f , which begins with (−n + 0.5)�f

and ends with (n + 0.5)�f . Since fmax =n/T , N =2n+1, the choice of sampling interval
�t=T/N < 1/{2fmax}, and the Nyquist condition is satisÞed. Hence the periodic replication
of the N impulses (spaced by �f) over the distance R = N�f does not cause overlap, and
no aliasing effect will result from sampling a band-limited periodic signal at or above Nyquist
rate.

232 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

7.6 The DFT Interpretation

In this section we show that equispaced sample values of the Fourier transform of an inÞnite
sequence {x�} can be interpreted as the Discrete Fourier Transform (DFTDFTDFT) of a formally
Þn ite sequence {uk}. We begin with the deÞn ing formula (7.2):

XI(f) = F{xI(t)} =
∞∑

�=−∞
x(��t) e−j2πf��t.

Suppose that we choose the DFT length to be N =2n+1. Since N samples are taken over each
interval of duration T =N�t, we can express the sample point ��t = (k + mN)�t, where
−n≤k≤n, −∞<m<∞, which allows us to express the summation involving x(��t) as a
double sum:

XI(f) =

∞∑
�=−∞

x(��t) e−j2πf��t

=

∞∑
m=−∞

n∑
k=−n

x
(
(k + mN)�t

)
e−j2πf(k+mN)�t

=
n∑

k=−n

∞∑
m=−∞

x
(
(k + mN)�t

)
e−j2πf(k+mN)�t .

(7.35)

If we now evaluate 1
N XI(f) at f = fr = r/T = r/(N�t), we obtain

1

N
XI

(
r

N�t

)
︸ ︷︷ ︸

Ur in (7.37)

=
1

N

n∑
k=−n

∞∑
m=−∞

x
(
(k + mN)�t

)
e−j2πr(k+mN)/N

=
1

N

n∑
k=−n

∞∑
m=−∞

x
(
(k + mN)�t

)
e−j2πrk/N

=
1

N

n∑
k=−n

[∞∑
m=−∞

x
(
(k + mN)�t

)]
e−j2πrk/N

=
1

N

n∑
k=−n

uk ω−rk
N

,

where uk =
∞∑

m=−∞
x
(
(k + mN)�t

)
, ωN = ej2π/N .

(7.36)

Observe that the familiar DFT formula emerges from the right side of (7.36).
Since XI(f) deÞ ned by (7.2) is periodic with period determined by the sampling rate

R = 1/�t, we obtain N equally spaced samples of XI(f) over one period R when they are
spaced by

�f =
R

N
=

1

N�t
=

1

T
.

If we let

Ur =
1

N
XI

(
r�f

)
=

1

N
XI

(
r

N�t

)
, where N = 2n + 1, −n ≤ r ≤ n,

7.6. THE DFT INTERPRETATION 233

then Ur+N = Ur; that is, the sequence {Ur} is periodic with period N , and we can obtain Ur

by evaluating the DFT deÞ ned by (7.36); i.e., we compute

(7.37) Ur =
1

N

n∑
k=−n

uk ω−rk
N , where N = 2n + 1, −n ≤ r ≤ n.

Remark 1: Observe that because

uk =

∞∑
m=−∞

x
(
(k + mN)�t

) ≈ n∑
m=−n

x
(
(k + mN)�t

)
,

in practice the values of Ur can be approximated using the DFT formula (7.37) on {uk}
computed from finite sample sequence {x�}.

Remark 2: The DFT relationship

Ur =
1

N
XI

(
r

N�t

)
=

1

N

N−1∑
k=0

ukω−rk
N , 0 ≤ r ≤ N − 1,

holds with the N -sample sequence {uk} deÞ ned by

uk =
∞∑

m=−∞
x
(
(k + mN)�t

)
, 0 ≤ k ≤ N − 1.

Example 7.8 Recall the following result from Example 7.3(a) and Figure 7.1:{
z� =α�u(�)

}⇐⇒ ẐI(F) =
1

1− α e−j2πF
, where |α| < 1.

Letting Fr = fr�t =
r

N
, we obtain

Ur =
1

N
ẐI

(r

N

)
=

1

N(1− α e−j2πr/N)
=

1

N
(
1− α ω−r

N

) , 0 ≤ r ≤ N − 1.

We show next that if we deÞn e

uk =

∞∑
m=−∞

zk+mN =

∞∑
m=0

αk+mN = αk
∞∑

m=0

(
αN

)m
=

αk

1− αN
,

then we obtain the same value of Ur by performing DFT on {uk}. That is, we compute

Ur =
1

N

N−1∑
k=0

uk ω−rk
N =

1

N

N−1∑
k=0

[
αk

1− αN

]
ω−rk

N , 0 ≤ r ≤ N − 1

=
1

N
(
1− αN

) N−1∑
k=0

(
α ω−r

N

)k

=
1

N
(
1− αN

) [
1− αNω−rN

N

1− α ω−r
N

]
=

1

N
(
1− α ω−r

N

) . (∵ ω−rN
N = 1)

234 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

We have thus veriÞ ed that

ZI

(
r

N�t

)
= ẐI

(r

N

)
=

N−1∑
k=0

[∞∑
−∞

zk+mN

]
ω−rk

N
.

Note that if we apply the DFT directly to the truncated N -sample sequence {zk = αk}, 0 ≤
k ≤ N − 1, then

Zr =
1

N

N−1∑
k=0

zk ω−rk
N

=
1

N

N−1∑
k=0

αk ω−rk
N

, 0 ≤ r ≤ N − 1

=
1

N

[
1− αNω−rN

N

1− α ω−r
N

]
=

1− αN

N
(
1− α ω−r

N

)
	= 1

N
(
1− α ω−r

N

) =
1

N
ZI

(
r

N�t

)
.

Therefore, using Þ nite N samples we can only expect Zr ≈ 1
N ZI

(
r/T

)
for −n ≤ r ≤ n,

n = (N − 1)/2, T = N�t.

7.6.1 The interpreted DFT and the Fourier transform

We can also relate the DFT of formally Þn ite sequence {uk} to the Fourier transform of the
continuous-time signal x(t) through the second form of XI(f) given by (7.2), namely,

XI(f) = F{xI(t)} =
1

�t

∞∑
k=−∞

X

(
f − k

�t

)
,

where X(f) = F{x(t)}. Accordingly, we can express Ur by values of X(f):

Ur =
1

N
XI

(
r

N�t

)
=

1

N�t

∞∑
k=−∞

X

(
r

N�t
− k

�t

)

=
1

T

∞∑
k=−∞

X

(
(r − kN)

1

T

)
(∵ T = N�t)

= �f

∞∑
k=−∞

X
(
(r − kN)�f

) (
∵ �f =

1

T
=

R

N

)

= �f
∞∑

m=−∞
X

(
(r + mN)�f

)
. (let m = −k)

(7.38)

Hence the equality of the two forms of XI(f) given by (7.2) allows us to relate the sampled
x(t) to the samples of its transform X(f) = F{x(t)} through the DFT:

(7.39) Ur =
1

N

n∑
k=−n

uk ω−rk
N , for N = 2n + 1, −n ≤ r ≤ n,

where

uk =
∞∑

m=−∞

samples of x(t)︷ ︸︸ ︷
x
(
(k + mN)�t

)
; Ur = �f

∞∑
m=−∞

samples of X(f)︷ ︸︸ ︷
X

(
(r + mN)�f

)
, �f =

1

N�t
.

7.6. THE DFT INTERPRETATION 235

Note that uk+N = uk and Ur+N = Ur.

Example 7.9 The following Fourier transform pair was obtained in Example 6.1 (see Fig-
ures 6.9 and 6.10):

{x� = e−a��tu(�)} ⇐⇒ XI(f) =

∞∑
k=−∞

1

a�t + j2π(f�t− k)
.

Recall that the sequence {x�} was sampled from x(t) = e−atu(t), and we show the complex-

valued X(f)=
1

a + j2πf
in Example 5.1 (see Figure 5.2). In this example we verify that

Ur =
1

N
XI

(
r

N�t

)
= �f

∞∑
m=−∞

X
(
(r + mN)�f

)
.

The DFT Ur was deÞ ned by

Ur =
1

N
XI

(
r

N�t

)
=

1

N

∞∑
k=−∞

1

a�t + j2π(r − kN)/N

=
1

N�t

∞∑
k=−∞

�t

a�t + j2π(r − kN)/N

= �f

∞∑
k=−∞

1

a + j2π(r − kN)�f

(
∵ �f =

1

T
=

1

N�t

)

= �f
∞∑

m=−∞

1

a + j2π(r + mN)�f
.

The same result can also be obtained from summing the values of X(f)=
1

a + j2πf
:

Ur = �f

∞∑
m=−∞

X
(
(r + mN)�f

)
= �f

∞∑
m=−∞

1

a + j2π(r + mN)�f
.

7.6.2 Time-limited case

If x(t)=0 for t<−T/2 or t>T/2, then for�t=T/N =T/(2n+1), we have x(��t)=0 for
�<−n or �>n, and the inner sum deÞ ning the DFT input uk is reduced to one single term:

uk =

∞∑
m=−∞

x
(
(k + mN)�t

)
= xk, −n ≤ k ≤ n, n = (N − 1)/2.

We can thus reinterpret (7.39) as the DFT of the N -sample sequence {xk}:

(7.40) Ur =
1

N

n∑
k=−n

xk ω−rk
N

, −n ≤ r ≤ n, N = 2n + 1,

where

(7.41) Ur =
1

N
XI

(
r

N�t

)
= �f

∞∑
m=−∞

X
(
(r + mN)�f

)
, �f =

1

N�t
=

1

T
.

236 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

When a time-limited function x(t) is not band limited, the Nyquist condition will not be sat-
isÞed by any choice of �t, and we must account for the aliased frequencies in this case. We
show next how the Fourier series coefÞ cients of xp(t)Ñth e periodic extension of x(t)Ñare
aliased into the DFT of the sampled sequence {x�}.

Recall that if we interpret the time-limited x(t) as one period of its periodic extension
function xp(t) (with period T = N�t), then for t ∈ [−T/2, T/2] we can express x(t) by the
Fourier series expansion of xp(t):

x(t) = xp(t) =
∞∑

k=−∞
Ckej2πkt/T, Ck =

1

T
X

(
k

T

)
,

where X(f) = F{x(t)}. We can now rewrite Ur in (7.41) as

Ur =
1

N
XI

(
r

N�t

)
=

1

T

∞∑
m=−∞

X

(
r + mN

T

)
=

∞∑
m=−∞

Cr+mN ,

and we have once again proved the relationship between the DFT {Ur} and the Fourier series
coefÞcients {Ck}:

(7.42) Ur =

∞∑
m=−∞

Cr+mN .

Recall that we proved the same result from a different perspective in Section 3.11. The Fourier
transform and the Fourier series expansion of a time-limited rectangular pulse function were
given in Example 5.3 (Figures 5.4 and 5.5).

7.6.3 Band-limited case

If x(t) is band-limited with bandwidth F = 2fmax and we have chosen the sampling rate R =

1/�t>F , then the Nyquist condition is satisÞed, and from Corollary 6.12, we have

XI(f) =
1

�t

∞∑
k=−∞

X

(
f − k

�t

)
=

1

�t
X(f), for f ∈ [−R/2, R/2].

Note that [−F/2, F/2] ⊂ [−R/2, R/2]. Because fr =
r

N�t
∈ [−R/2, R/2] for

|r| ≤ N−1
2 , we can express Ur by a single sample value of X(f) in the right side:

Ur =
1

N
XI

(
r

N�t

)
=

1

N�t
X

(
r

N�t

)
, −n ≤ r ≤ n, N = 2n + 1.

Letting T = N�t, we can now obtain the sample values of X(f) = F{x(t)} through the
DFT on {uk}:

(7.43)
1

T
X

(r

T

)
= Ur =

1

N

n∑
k=−n

uk ω−rk
N , −n ≤ r ≤ n, N = 2n + 1,

where, as before,

uk =

∞∑
m=−∞

x
(
(k + mN)�t

)
.

A band-limited example was given in Example 5.4 (Figure 5.6).

7.6. THE DFT INTERPRETATION 237

7.6.4 Periodic and band-limited case

If the periodic signal xp(t) = xp(t + T) is band-limited, then it has a Þn ite Fourier series
expansion:

xp(t) =

n∑
r=−n

Cre
j2πrt/T .

When N =2n + 1 samples of xp(t) are taken over one period T =N�t, we obtain

x� = xp(��t) =

n∑
r=−n

Crω
r�
N

, where ωN ≡ ej2π/N , � = 0, 1, . . . , N−1,

which is identical to the system of equations (in complex exponential modes) described by
Equation (2.5) in Chapter 2, and the latter leads to the DFT formula given by Equation (2.7),
by its alternate form (2.8) we obtain the N Fourier series coefÞ cients, i.e.,

(7.44) Cr = Xr =
1

N

n∑
�=−n

x�ω
−r�
N

, for − n ≤ r ≤ n, N = 2n + 1.

Recall also that in Example 4.5 (Table 4.1, Figure 4.2) in Chapter 4, we computed DFT
coefÞ cients from samples taken from one period (and three periods) of a band-limited periodic
function

y(t) = 4.5 cos (1.2πt) + 7.2 cos (1.8πt),

and we show how to identify the Fourier series coefÞ cients (expressed as complex-valued Yr

or real-valued Ar and Br) from the computed DFT coefÞ cients displayed in Table 4.1.
According to Formulas (7.33) and (7.34), the CrÕs are the strengths of the N = 2n +

1 impulses which deÞ ne F{xp(t)}, and the periodic replicas (with no overlap) of these N

impulses (scaled by 1/�t) deÞ ne F{xp
I(t)}, the Fourier transform of the periodic sequence

formed by taking N samples over one period (or multiple full periods) of duration T . Hence
this is the case (and the only case) in which we can use DFT formulas on N samples to recover
a signalÕs true frequency content. The DFT formulas for computing the N Fourier series
coefÞcients were given in Chapter 2 and Chapter 4; there we also addressed the related issues
including the sampling rate, sampling period, sample size, and alternate forms of the DFT.
After we derived the DFT and IDFT formulas in Chapter 4, we further explained the possible
frequency distortion by leakage and the effects of zero padding in Sections 4.5 and 4.6. We
shall revisit some of these issues from a different perspective after we discuss the windowing
of a sequence for DFT computation in the next chapter.

References

1. A. Ambardar. Analog and Digital Signal Processing. Brooks/Cole Publishing Company,
PaciÞ c Grove, CA, second edition, 1999.

2. W. L. Briggs and V. E. Hensen. The DFT: An Owner’s Manual for the Discrete Fourier
Transform. The Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995.

3. E. O. Brigham. The Fast Fourier Transform and Its Applications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1988.

238 CHAPTER 7. FOURIER TRANSFORM OF A SEQUENCE

4. B. Porat. A Course in Digital Signal Processing. John Wiley & Sons, Inc., New York,
1997.

5. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in C++: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK,
second edition, 2001.

6. H. J. Weaver. Applications of Discrete and Continuous Fourier Analysis. John Wiley &
Sons, Inc., New York, 1983.

Chapter 8

The Discrete Fourier Transform of
a Windowed Sequence

In Chapter 7 we established that after a signal x(t) is sampled, we can only hope to compute the
values of XI(f) = F{x(t)P�t(t)}, which is the Fourier transform of the sampled sequence.
As discussed initially in Chapter 6 and more than once in Chapter 7, whether the central period
of XI(f) agrees with or closely approximates X(f) = F{x(t)} is determined by the chosen
sampling rate R = 1/�t, which cannot be changed after the signal has been sampled. When
they donÕt agree with each other, the Fourier transform of the sequence XI(f) is said to contain
aliased frequencies. While we were concerned with the mathematical relationship between the
sample values of XI(f) and the sample values of the signal x(t) in Chapter 7, in this chapter
we are concerned with computing the numerical values of XI(f) from a Þ nite sequence of
N samples, assuming that we have some knowledge about the duration or periodicity of the
signal x(t) so that we can decide on the sample size N .

8.1 A Rectangular Window of Infinite Width

To set the stage, we begin with the simplest case involving time-limited signals, because the
optimal sample size N can be determined by the chosen sampling rate R = 1/�t and the Þn ite
duration T of the signal x(t), i.e., N = T/�t. If N is odd, the DFT of the N -sample sequence
{xk} was given by Equation (7.40), which computes

(8.1) Ur =
1

N
XI

(
r

N�t

)
=

1

N

n∑
k=−n

xk ω−rk
N , −n ≤ r ≤ n, N = 2n + 1.

If N is even, the corresponding DFT computes

(8.2) Ur =
1

N
XI

(
r

N�t

)
=

1

N

n+1∑
k=−n

xk ω−rk
N

, −n ≤ r ≤ n + 1, N = 2n + 2.

Recall that when N is odd, the N samples do not reach either end of the interval [−T/2, T/2]

(see Figure 2.9), whereas when N is even, we must include a sample at one end of the inter-
val [−T/2, T/2] (see Figure 2.11). Because a window function for either case can be easily

239

240 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

modiÞ ed to take care of the other case, we shall assume N = 2n+1 in the remainder of this
chapter.

To unify our treatment of all windows, let us represent the sampled time-limited signal by
the impulse train xI(t) = x(t)P�t(t). Here we interpret xI(t) as containing N impulses with
potentially nonzero strengths as well as an inÞ nite number of impulses with zero strengths. To
artiÞcially perform a null windowing operation, we multiply xI(t) by a rectangular window of
infinite width, which is simply the constant function w∞(t) = 1 for all t∈ (−∞,∞). Recall
that W∞(f) = F{w∞(t)} = δ(f); hence, by invoking Product Theorem 6.3 we may express
the Fourier transform of the windowed sequence F{xI(t) · w∞(t)} by

(8.3) F{xI(t) · w∞(t)} = XI(f) ∗W∞(f) = XI(f) ∗ δ(f) = XI(f).

As expected, the null windowing operation does not alter XI(f), which is a periodic function
with period R = 1/�t. The N equally spaced samples taken from one period of XI(f)

span one period of the sampled sequence [XI(f)∗W∞(f)] ·PR/N (f), and their values are
obtained by DFT formula (8.1). Note that the samples of XI(f) are spaced by�f = R/N =

1/(N�t) = 1/T.
Observe that the periodic sequence 1

T
[XI(f) ∗W∞(t)] · P1/T(f) is the Fourier transform

of [xI(t) · w∞(t)] ∗ PT(t), and the latter is a periodic sequence resulting from replicating the
N samples of x(t) over intervals equal to its duration T = N�t. Accordingly, the periodic
sequence in the time domain repeats the original N samples with no overlap, the periodic
sequence in the frequency domain takes N samples from each period of XI(f), and the two
sequences form a Fourier transform pair:

(8.4)

identical to xI(t)︷ ︸︸ ︷
[xI(t) · w∞(t)] ∗PT(t)︸ ︷︷ ︸
periodic sequence in time domain

⇐⇒ 1

T

identical to XI (f)︷ ︸︸ ︷
[XI(f) ∗W∞(f)] ·P1/T(f)︸ ︷︷ ︸

periodic sequence in frequency domain

.

Note that in obtaining the transform pair we invoke Convolution Theorem 6.1, and we make
use of the Fourier transform of the impulse train given by Theorem 6.7:

(8.5) PT(t) ⇐⇒ 1

T
P1/T(f), where T = N�t.

We conclude this section with the following remarks:

Remark 1. Sampling XI(f)∗W∞(f) in the frequency domain results in periodic extension
of the windowed sequence xI(t)·w∞(t) in the time domain.

Remark 2. The DFT and the IDFT directly relate the two periodic sequences. Using the DFT
we obtain

(8.6) Ur = �t

[
1

T
XI

(r

T

)]
=

1

N
XI

(r

T

)
=

1

N

n∑
k=−n

xk ω−rk
N

, −n ≤ r ≤ n;

using the IDFT we obtain

(8.7) xk =

n∑
r=−n

Ur ωrk
N , −n ≤ k ≤ n, N = 2n + 1.

8.2. A RECTANGULAR WINDOW OF APPROPRIATE FINITE WIDTH 241

8.2 A Rectangular Window of Appropriate Finite Width

In this section we consider windowing a periodic sequence obtained by sampling a periodic
signal yp(t) = x(t) ∗ PT (t), where x(t) is time limited and has Þ nite duration T . We assume
that a sampling rate R = 1/�t has been chosen, and that with N =T/�t we are able to obtain
N samples over each period T . As before, we assume N =2n+1. The periodic sequence yp

I (t)

may be viewed as the periodic extension of the N -sample sequence deÞ ned by the impulse
train xI(t) = x(t)P�t(t); i.e., yp

I (t) = xI(t) ∗ PT (t), where T =N�t. To extract N samples
over a Þn ite duration T from the inÞn ite impulse train yp

I (t) = xI(t) ∗ PT (t), we multiply
yp

I (t) by a rectangular window function of width T , which is deÞ ned by

(8.8) wrect(t) =

{
1, for t ∈ (−T/2, T/2);

0, for | t | ≥ T/2.

We recall from Equations (7.30) and (7.31) in Section 7.5 that the Fourier transform of an
inÞn ite periodic sequence is given by

(8.9)

F{yp
I (t)} = F{xI(t) ∗ PT (t)}

= F{x(t)P�t(t)}·F{PT (t)}

=
1

T

[
1

�t

∞∑
k=−∞

X

(
f − k

�t

)]
︸ ︷︷ ︸

periodic XI (f), period R=1/�t

·P1/T (f)

=
1

T

∞∑
r=−∞

XI

(r

T

)
δ
(
f − r

T

)
.︸ ︷︷ ︸

Fourier transform of yp
I (t)

We may now determine the Fourier transform of the truncated N -sample sequenceF{yp
I (t)·

wrect(t)} by invoking Product Theorem 6.3:

(8.10)

F{yp
I (t)·wrect(t)︸ ︷︷ ︸

one period

} = F{yp
I (t)} ∗ F{wrect(t)}

=

[
1

T

∞∑
r=−∞

XI

(r

T

)
δ
(
f − r

T

)]
︸ ︷︷ ︸

transform of periodic sequence yp
I (t)

∗ T

[
sin(πTf)

πTf

]

=

∞∑
r=−∞

XI

(r

T

) sin πT
(
f − r

T

)
πT

(
f − r

T

)︸ ︷︷ ︸
transform of truncated N samples

.

Once again, sampling the periodic transform F{yp
I (t)·wrect(t)} results in the periodic exten-

sion of the truncated sequence yp(t)·wrect(t), and we obtain the transform pair

(8.11) [yp
I (t) · wrect(t)] ∗ PT (t)︸ ︷︷ ︸

periodic sequence in time domain

⇐⇒ 1

T

[∞∑
r=−∞

XI

(r

T

) sin πT
(
f − r

T

)
πT

(
f − r

T

)]
· P1/T (f)︸ ︷︷ ︸

periodic sequence in frequency domain

242 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

We show next that the sampled transform returns the values of XI(f) at f = r
T for all r ∈

(−∞,∞):

(8.12)

1

T

F{yp
I (t)·wrect(t)}︷ ︸︸ ︷[∞∑

r=−∞
XI

(r

T

) sinπT
(
f − r

T

)
πT

(
f − r

T

)]
·P1/T (f)

=
1

T

∞∑
m=−∞

[∞∑
r=−∞

XI

(r

T

) sinπT
(
f − r

T

)
πT

(
f − r

T

)]
δ
(
f − m

T

)
=

1

T

∞∑
r=−∞

XI

(r

T

)[∞∑
m=−∞

sinπT
(
f − r

T

)
πT

(
f − r

T

) δ
(
f − m

T

)]

=
1

T

∞∑
r=−∞

XI

(r

T

)[∞∑
m=−∞

sinπT
(

m
T − r

T

)
πT

(
m
T − r

T

) δ
(
f − m

T

)]

=
1

T

∞∑
r=−∞

XI

(r

T

)
δ
(
f − r

T

)
︸ ︷︷ ︸

same as Fourier transform of yp
I (t)

, T = N�t,

=
1

�t

∞∑
r=−∞

1

N
XI

(r

T

)
δ
(
f − r

T

)
.

In deriving the result above, we have made use of the fact that

(8.13)
sin πT

(
m
T − r

T

)
πT

(
m
T − r

T

) =

{
0, if m 	= r;

1, if m = r. (deÞ ned by the limit of sin 0/0)

Note that these are the same results obtained when evaluating sinc(x) = sinπx/(πx) at zero
or nonzero integers.

When DFT is applied to the truncated one period (N -sample) sequence
yp

I (t) ·wrect(t) = x(t)P�t(t), we know from Equation (8.6) that the DFT produces the pe-
riodic sequence

(8.14) Ur =
1

N
XI

(r

T

)
=

1

N

n∑
k=−n

xk ω−rk
N

, −n ≤ r ≤ n, N = 2n + 1.

As before, the IDFT transforms the UrÕs back to the xkÕs. Therefore, the DFT and the IDFT
directly relate the sampled periodic sequence to its transform provided that the width of the
truncating window wrect(t) is appropriately chosen to be the period T of the envelope signal.

The DFT results are equally valid if they are applied to M > N samples over multiple full
periods T = κT , where κ is an integer. (This case was studied in detail in Section 4.3; see also
Example 4.5, Table 4.1, and Figure 4.2 in Chapter 4.) This means that the width of the window
function may be chosen so that M samples span the duration M�t = κT = T.

To incorporate this case in our derivation above, we can simply allow the time-limited
x(t) (which we use to generate the envelope periodic function yp(t)) to represents κ periods of
zp(t) of period To = T/κ, where κ is an integer. Clearly, the envelope functions yp(t) = zp(t);
hence, the sampled sequence yp

I (t) = zp
I (t). Because we are talking about two identical peri-

odic sequences, the Fourier transform results we derived in terms of XI(f) in Equation (8.9)
remain valid for the sequence {zp

I}.

8.3. FREQUENCY DISTORTION BY IMPROPER TRUNCATION 243

8.3 Frequency Distortion by Improper Truncation

While we assume, as before, that the signal yp(t) is periodic with period T , and that it has
been sampled at intervals of �t with T =N�t, we now consider modifying the width of the
rectangular window: we shall assume that the periodic sequence yp

I (t)=[x(t)P�t(t)]∗PT (t)=

xI(t)∗PT (t) is truncated by a rectangular window of width αT , where α is not an integer.
Hence we have either αT < T or αT > T , and the window function is deÞ ned by

(8.15) wrect(t) =

{
1, for t ∈ (−αT/2, αT/2);

0, for | t | ≥ αT/2,
where α is not an integer.

Without loss of generality we assume that α < 1, and that there are L samples in the windowed
sequence; i.e., the truncated sequence spans the duration L�t=αT . Consequently, when the
DFT is applied to the truncated L samples deÞ ned by the product yp

I (t)·wrect(t), the results are
samples of the transform given by

(8.16)

F {yp
I (t)·wrect(t)} = F {yp

I (t)} ∗ F {wrect(t)}
= F {xI(t)∗PT (t)} ∗ F {wrect(t)}

=

[
1

T
XI(f)·P1/T (f)

]
∗ αT

[
sin(παTf)

παTf

]
=

[
1

T

∞∑
r=−∞

XI

(r

T

)
δ
(
f − r

T

)]
︸ ︷︷ ︸

transform of periodic sequence yp
I (t)

∗ αT

[
sin(παTf)

παTf

]

=

∞∑
r=−∞

αXI

(r

T

) sin παT
(
f − r

T

)
παT

(
f − r

T

)︸ ︷︷ ︸
transform of truncated L samples

, α < 1.

244 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

If we sample the Fourier transform by the impulse train P1/αT (t), we obtain the transform
pair:

(8.17)

periodic extension of zI(t)︷ ︸︸ ︷
[yp

I (t) · wrect(t)]︸ ︷︷ ︸
zI(t): L samples

∗PαT (t)

⇐⇒

sampling ZI (f) at intervals of�f = 1/(αT)︷ ︸︸ ︷
1

αT

[∞∑
r=−∞

αXI

(r

T

) sinπαT
(
f − r

T

)
παT

(
f − r

T

)]
︸ ︷︷ ︸

ZI (f): transform of zI(t)

·P1/αT (f)

=
1

αT

∞∑
m=−∞

[∞∑
r=−∞

αXI

(r

T

) sin παT
(
f − r

T

)
παT

(
f − r

T

)]
︸ ︷︷ ︸

ZI(f)

δ
(
f − m

αT

)

=
1

αT

∞∑
m=−∞

[∞∑
r=−∞

αXI

(r

T

) sin παT
(

m
αT − r

T

)
παT

(
m
αT − r

T

)]
︸ ︷︷ ︸

value of ZI(f) at f = m/(αT)

δ
(
f − m

αT

)

=
1

�t

∞∑
m=−∞

1

L
ZI

(
m

L�t

)
δ

(
f − m

L�t

)
, ∵ αT = L�t.

What we have obtained above is the Fourier transform of the periodic sequence deÞ ned by the
convolution product zI(t) ∗PαT (t). Because zI(t) ∗PαT (t) does not represent the original pe-
riodic sequence yp

I (t), we expect discrepancies in the frequency domain as well. In particular,
we note the following:

• sinπαT
(

m
αT − r

T

)
= sinπ(m− α·r) 	= 0 for all integer r 	= 0. (∵ 0 < α < 1)

• the frequency content has been distorted:

(8.18) ZI

(
m

L�t

)
=

∞∑
r=−∞

αXI

(
r

N�t

)
sin π(m− α·r)

π(m− α·r) 	= XI

(
m

L�t

)

• using the DFT on L samples we can only obtain the distorted transform values:

(8.19) Ur =
1

L
ZI

(
m

L�t

)
=

1

L

τ∑
k=−τ

xk ω−rk
N

, −τ ≤ r ≤ τ, L = 2τ + 1

• the periodic extension of the L signal samples in the time domain does not represent the
original periodic sequence because

(8.20) yp
I = xI(t) ∗ PT (t) 	= zI(t) ∗ PαT (t).

8.4 Windowing a General Nonperiodic Sequence

Recall that in Section 8.1 we performed the windowing of a Þ nite sequence xI(t) by w∞(t) for
DFT computation. To perform the task on an inÞ nite sequence xI(t), we only need to replace

8.5. FREQUENCY-DOMAIN PROPERTIES OF WINDOWS 245

the transform pair Ò w∞(t) ⇐⇒ δ(f)Ó u sed in Section 8.1 with a rectangular window of Þ nite
width T:

(8.21) wrect(t) =

{
1, for t ∈ (−T/2, T/2);

0, for | t | ≥ T/2,

and its transform:

(8.22) W (f) = F{
wrect(t)

}
= T

[
sin πTf

πTf

]
.

Assuming that T = N�t, where�t denotes the predetermined sampling interval, the Fourier
transform of the truncated N -sample sequence becomes

(8.23) UI(f) = F{
xI(t) · wrect(t)︸ ︷︷ ︸

N samples

}
= XI(f) ∗W (f) = XI(f) ∗ T

[
sin πTf

πTf

]
︸ ︷︷ ︸

ripples are added to XI (f)

.

Therefore, the DFT of the N samples computes the values of UI(f), and Equation (8.1) may
be used on UI(f) in exactly the same manner:

(8.24) Ur =
1

N
UI

(r

T

)
=

1

N

n∑
k=−n

xk ω−rk
N

, −n ≤ r ≤ n, N = 2n + 1.

As has been done in every case, using the IDFT we obtain

(8.25) xk =

n∑
r=−n

Ur ωrk
N , −n ≤ k ≤ n, N = 2n + 1.

As always, we have Ur+N = Ur and xk+N = xk; hence, the DFT and IDFT results represent
two periodic sequences which form a Fourier transform pair (regardless of the fact that the N

samples were truncated from a nonperiodic signal):

(8.26)

periodic extension of N samples︷ ︸︸ ︷
[xI(t) · wrect(t)] ∗ PT(t) ⇐⇒

sampling UI (f)︷ ︸︸ ︷
1

T
UI(f) · P1/T(f), where T = N�t,

=
1

�t

∞∑
r=−∞

1

N
UI

(r

T

)
δ
(
f − r

T

)
.

Since a nonperiodic signal of inÞ nite duration must be truncated before we can apply the
DFT, the resulting frequency distortion cannot be completely eliminated. To improve the ac-
curacy and resolving power of the DFT, we need to study further the roles played by various
window functions in a quantitative manner. It turns out that a tapered window can truncate
and modify the sampled signal values at the same time; the latter role is particularly important
when jump discontinuities are caused by abrupt truncation. We shall examine the properties of
windows in the next section.

8.5 Frequency-Domain Properties of Windows

In order to compare different windows without bias, they are assumed to have the same length
T = N�t, where �t denotes the sampling interval, and N = 2n+1 represents the number

246 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

of samples in the windowed signal sequence. The actual length of each window can be set
according to the application and the resolution required. In this section we shall characterize
each window based on the properties of its Fourier transform W (f), because the severity of
frequency distortion, i.e., the extent of smearing and leakage, caused by the convolution of
W (f) and the signalÕs Fourier transform can be alleviated if W (f) has good properties.

8.5.1 The rectangular window

Recall the Fourier transform of a rectangular window given by

(8.27) Wrect(f) = F{wrect(t)} = T

[
sin(πTf)

πTf

]
= T

[
sin(πλ)

πλ

]
= T sinc

(
λ
)
,

where λ = Tf = (N�t)f . Since the length T is Þx ed for all windows in this section (and it
is canceled out when convolving with the transform of the signal sequence), it is sufÞ cient to
consider the normalized transform

W̃rect(λ) = sinc
(
λ
)

=
sin(πλ)

πλ
,

whose magnitude is plotted in Figure 8.1, where we identify the mainlobe as the central peak
between λ = −1 and λ = 1Ñth e nearest two zeros of W̃rect(λ) surrounding the origin. The
cooresponding two zeros of Wrect(f) are f−1 =−1/T and f1 =1/T. Note that the maximum
height of the mainlobe in the normalized transform W̃rect(λ) is now one. In Figure 8.1 we also
identify the sidelobes to be those between two adjacent zeros of W̃rect(λ), namely the peaks and
valleys between λ=k and λ=k+1, and they correspond to fk = k/T and fk+1 =(k+1)/TÑ
the neighboring zeros of Wrect(f).

To illustrate the disproportionally small sidelobes at high frequencies, we plot the magni-
tude of W̃rect(λ) using logarithm representations in Figure 8.1. Customarily, the logarithm of
the normalized magnitude spectrum

log10|W̃rect(λ)|

is further scaled by 20 and expressed as

(8.28) 20·log10|W̃rect(λ)| Òd ecibel unitsÓ or dB.

Since the maximum height has been normalized to one, we have 0 ≤ |W̃rect(λ)| ≤ 1, which
leads to zero or negative decibel values. For example, we obtain

0 dB = 20·log10 1 at λ = 0;

−20 dB = 20·log10 0.1 for a 10-fold reduction in magnitude;

−40 dB = 20·log10 0.01 for a 100-fold reduction in magnitude;

and so on.
To measure how W̃rect(λ) deviates from the ideal unit impulse δ(λ), we need to quantify

the width of the mainlobe as well as the relative magnitudes of the sidelobes. The narrower the
mainlobe and the lower the sidelobes (compared with the mainlobe), the closer the transform
W̃rect(λ) approximates δ(λ). The following quantities are commonly used to describe the
spectral characteristics of a rectangular window:

8.5. FREQUENCY-DOMAIN PROPERTIES OF WINDOWS 247

Figure 8.1 The rectangular window and its magnitude spectrum.

am
pl

itu
de

 Rectangular window

−8 −6 −4 −2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

1.2

m
ag

ni
tu

de

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−100

−80

−60

−40

−20

0

dB

1

−T/2 0 T/2

window
 length T

T = N∆t

λ = T × f

Normalized spectrum W(λ)

mainlobe
width

−13 dB sidelobe level

mainlobe

sidelobes

0

Normalized W(λ) in dB units
λ = T × f

1. The 3-dB bandwidth of the mainlobe in the graph of 20 ·log10|W̃rect(λ)|: This quantity
measures the width of the mainlobe on either side of the origin when its height is reduced
to 1√

2
≈ 0.707, because

−3 dB ≈ 20·log10 0.707.

By solving W̃rect(λ) = sin(πλ)/(πλ) = 0.707 for unknown λ, one obtains the 3 dB
bandwidth λ3db ≈ 0.443 or f3db = λ/T ≈ 0.443/T, where T = N�t.

2. The highest sidelobe level in the graph of 20·log10|W̃rect(λ)|: For the rectangular window,
its spectrum in Figure 8.1 shows that the sidelobe level reaches as high as −13 dB at
λ = 1.5 (or f = 1.5/T):

(8.29) 20·log10|W̃rect(1.5)| ≈ −13 dB.

8.5.2 The triangular window

The triangular window is also known as the Bartlett window. A triangular window of length T

and unit height is deÞ ned by

(8.30) wtri(t) =

{
1− 2|t|/T, for t ∈ (−T/2, T/2);

0, for | t | ≥ T/2.

Note that a triangular window can be obtained by convolving two identical rectangular win-
dows of half length. If we require the triangular window to have certain height, the convolution

248 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

product can be scaled accordingly. We can thus express a triangular window of length T and
unit height as

(8.31) wtri(t) =
2

T

[
ŵrect(t) ∗ ŵrect(t)

]
,

where the rectangular window ŵrect(t) and its Fourier transform Ŵrect(f) are obtained by using
Ò T/2Ó t o replace every occurrence of length T in Equations (8.8) and (8.27), i.e.,

(8.32) ŵrect(t) =

{
1, for t ∈ (−T/4, T/4);

0, for | t | ≥ T/4.
⇐⇒ Ŵrect(f) =

T

2

[
sin(1

2πTf)
1
2πTf

]
.

By invoking Convolution Theorem 6.1, we obtain the Fourier transform of the triangular win-
dow as the square of Ŵrect(f):

(8.33) Wtri(f) = F{wtri(t)} =
2

T

[
Ŵrect(f)·Ŵrect(f)

]
=

T

2

[
sin

(
1
2πTf

)
1
2πTf

]2

.

Before we quantify the properties of Wtri(f), we normalize it so its mainlobe has unit height,
and we obtain

(8.34) W̃tri(λ) =

[
sin

(
1
2πλ

)
1
2πλ

]2

= sinc2
(

1
2λ

)
, where λ=Tf =(N�t)f.

In Figure 8.2 we compare the magnitude spectrum |W̃tri(λ)| of the triangular window with
that of the rectangular window. While the triangular window shows lower sidelobe levels, its
mainlobe is wider than that of the rectangular window. Quantitatively, we obtain

(8.35) 20·log10|W̃tri(0.64)| ≈ −3 dB; 20·log10|W̃tri(3.0)| ≈ −27 dB.

Hence, the triangular window is characterized by the 3-dB bandwidth λ3db ≈ 0.64 (or f3db ≈
0.64/T) and the highest sidelobe level of −27 dB. Observe further that |W̃tri(λ)| has zeros at
λ=±2,±4, · · · , and that the peak of its Þr st sidelobe reaches−27 dB at λ=3.0.

8.5.3 The von Hann window

A von Hann window of length T and unit height is deÞ ned by

(8.36) whann(t) =

{
0.5 + 0.5 cos 2πt

T
, for t ∈ (−T/2, T/2);

0, for | t | ≥ T/2.

8.5. FREQUENCY-DOMAIN PROPERTIES OF WINDOWS 249

Figure 8.2 The triangular window and its magnitude spectrum.

 The triangular window

am
pl

itu
de

−8 −6 −4 −2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

1.2

m
ag

ni
tu

de

−8 −6 −4 −2 0 2 4 6 8
−100

−80

−60

−40

−20

0

dB

1

window
length T

0 T/2 −T/2

(T = N∆t)

Normalized spectrum W(λ)

mainlobe

sidelobes

mainlobe
width

λ = T × f

λ = T × f

−27 dB sidelobe level

Normalized W(λ) in dB units

w(t)

0

Its Fourier transform is given by

(8.37)

Whann(f) = F{whann(t)}

=

∫ ∞

−∞

[
0.5 + 0.5 cos

2πt

T

]
e−j2πft dt

= 0.25

∫
T/2

−T/2

[
2e−j2πft + e−j2π(f−1/T)t + e−j2π(f+1/T)t

]
dt

= 0.5T· sinπTf

πTf
+ 0.25T· sin(πTf − π)

πTf − π
+ 0.25T· sin(πTf + π)

πTf + π

= T· sin(πTf)

π

[
0.5

Tf
+

0.25

1− Tf
− 0.25

1 + Tf

]
= T

sin (πTf)

πTf

[
0.5

1− T2f2

]
.

We denote the normalized 2
T
Whann(f) by

(8.38) W̃hann(λ) =
sin (πλ)

πλ (1− λ2)
=

sinc(λ)

1 − λ2
, where λ=Tf =(N�t)f.

Quantitatively, we obtain

(8.39) 20·log10|W̃hann(0.721)| ≈ −3 dB; 20·log10|W̃hann(2.5)| ≈ −32 dB.

Therefore, the von Hann windowÕs 3-dB bandwidth is λ3db ≈ 0.721 (or f3db ≈ 0.721/T), and
its highest sidelobe level is −32 dB reached at λ = 2.5 or f = 2.5/T as shown in Figure 8.3.

250 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

Observe further that the zeros of W̃hann(λ) occur at λ = ±k for integer k ≥ 2. For λ =±1,
because W̃hann(±1) = 0/0 is in an indeterminate form, we establish W̃hann(λ) = 1/2 in the
limit as λ→ ±1 by applying LÕHöospitalÕs rule:

lim
λ→±1

W̃hann(λ) = lim
λ→±1

sin (πλ)

πλ (1− λ2)
= lim

λ→±1

cos (πλ)

1− 3λ2
=

1

2
.

Hence the height of the mainlobe has dropped 50% at λ=1. Because 20 log10
1
2 =−6 dB, we

have obtained the 6-dB bandwidth λ6db =1 for the von Hann window.

Figure 8.3 The von Hann window and its magnitude spectrum.

The von Hann window

am
pl

itu
de

−8 −6 −4 −2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

1.2
Normalized spectrum W(λ)

m
ag

ni
tu

de

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−100

−80

−60

−40

−20

0
Normalized W(λ) in dB units

dB

window
length T

0 T/2−T/2

−32 dB sidelobe level

mainlobe
width

sidelobes

1

w(t)

(T = N∆t) λ = T × f

λ = T × f

mainlobe

0

8.5.4 The Hamming window

A Hamming window of length T and unit height is deÞ ned by

(8.40) wham(t) =

{
0.575 + 0.425 cos 2πt

T
, for t ∈ (−T/2, T/2);

0, for | t | ≥ T/2.

8.5. FREQUENCY-DOMAIN PROPERTIES OF WINDOWS 251

Its Fourier transform follows directly from our derivation of W (f) for the closely related von
Hann window:

(8.41)

Wham(f) = F{wham(t)}

=

∫ ∞

−∞

[
0.575 + 0.425 cos

2πt

T

]
e−j2πft dt

= 0.575T· sin πTf

πTf
+ 0.2125T· sin(πTf−π)

πTf−π
+ 0.2125T· sin(πTf +π)

πTf +π

= T· sin(πTf)

π

[
0.575

Tf
+

0.2125

1− Tf
− 0.2125

1 + Tf

]
= T· sin (πTf)

πTf

[
0.575− 0.15T2f2

1− T2f2

]
.

Again we normalize Wham(f) so that its height is reduced to unity, and the result is denoted by

(8.42) W̃ham(λ) =
1

0.575

sin (πλ)

πλ

[
0.575− 0.15λ2

1− λ2

]
, where λ = Tf = (N�t)f.

Quantitatively, we obtain

(8.43) 20·log10|W̃ham(0.608)| ≈ −3 dB; 20·log10|W̃ham(3.5)| ≈ −35 dB.

Therefore, as shown in Figure 8.4, the Hamming windowÕs 3-dB bandwidth is λ3db ≈ 0.608

or f3db ≈ 0.608/T, and its highest sidelobe level is −35 dB, which is the peak of the second
sidelobe reached at λ = 3.5 or f = 3.5/T.

8.5.5 The Blackman window

A Blackman window of length T and unit height is deÞ ned by

(8.44) wbkm(t) =

{
0.42 + 0.5 cos 2πt

T
+ 0.08 cos 4πt

T
, for t ∈ (−T/2, T/2);

0, for | t | ≥ T/2.

Its Fourier transform follows directly from our derivation of Wham(f) for the Hamming win-
dow in the last section:

(8.45)

Wbkm(f) = F{wbkm(t)}

=

∫ ∞

−∞

[
0.42 + 0.5 cos

2πt

T
+ 0.08 cos

4πt

T

]
e−j2πft dt

= T· sin(πTf)

π

[
0.42

Tf
+

0.25

1− Tf
− 0.25

1 + Tf
− 0.04

2− Tf
+

0.04

2 + Tf

]
= T· sin (πTf)

πTf

[
1.68− 0.18 T2f2(

1− T2f2
)(

4− T2f2
)]

.

The function Wbkm(f) is then normalized to have unit height at the origin. We denote the result
by

(8.46) W̃bkm(λ) =
1

0.42

sin (πλ)

πλ

[
1.68− 0.18λ2(
1− λ2

)(
4− λ2

)]
, where λ = Tf = (N�t)f.

252 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

Figure 8.4 The Hamming window and its magnitude spectrum.

The Hamming window

am
pl

itu
de

−8 −6 −4 −2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

1.2
Normalized spectrum W(λ)

m
ag

ni
tu

de

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−100

−80

−60

−40

−20

0

dB

w(t)

0 T/2 −T/2

(T=N∆t)

window
length T

1

mainlobe

sidelobes

Normalized W(λ) in dB units

−35 dB sidelobe level

λ = T × f

λ = T × f

0

mainlobe
width

We now have

(8.47) 20·log10|W̃bkm(0.82)| ≈ −3 dB; 20·log10|W̃bkm(3.5)| ≈ −58 dB.

Accordingly, as shown in Figure 8.5, the Blackman windowÕs 3-dB bandwidth is λ3db ≈ 0.82

or f3db ≈ 0.82/T, and its highest sidelobe level is −58 dB, which is the peak of the Þ rst
sidelobe reached at λ = 3.5 or f = 3.5/T.

8.6 Applications of the Windowed DFT

For easy reference in this section, we summarize the performance characteristics of the Þ ve
windows discussed in the last section in Table 8.1.

To illustrate how windows can impact various DFT-based applications, we shall use differ-
ent windows in the task of determining the sinusoidal components of an unknown signal x(t)

from a sequence of its samples. Since the signal underlying the given samples is unknown, we
may encounter one of the scenarios discussed below.

8.6.1 Several scenarios

The signal x(t) is periodic and band-limited, but we do not know its period. Let T denote the
signalÕs unknown period, and let x(t) be represented by a Þ nite Fourier series:

(8.48) x(t) =

n∑
k=−n

Ckej2πkt/T .

8.6. APPLICATIONS OF THE WINDOWED DFT 253

Figure 8.5 The Blackman window and its magnitude spectrum.

The Blackman window

am
pl

itu
de

−8 −6 −4 −2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

1.2
Normalized spectrum W(λ)

m
ag

ni
tu

de

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−100

−80

−60

−40

−20

0

λ = T × f

dB

Normalized W(λ) in dB units

1

w(t)

window
length T

0 T/2 −T/2

mainlobe
width

−58 dB sidelobe level

mainlobe

sidelobes

λ = T × f (T = N∆t)

0

Table 8.1 Spectral characteristics of Þ ve windows (λ = Tf = (N�t)f).

Window of Fourier transform Mainlobe Sidelobe Zeros of Fourier

length T: w(t) W (f) = F{w(t)} 3-dB width peak level transform W̃ (λ)

Rectangular T·W̃rect(λ) λ3db =0.443 −13 dB λ=±1,±2,±3, · · ·
Triangular 0.5T·W̃tri(λ) λ3db =0.640 −27 dB λ=±2,±4,±6, · · ·
von Hann 0.5T·W̃hann(λ) λ3db =0.721 −32 dB λ=±2,±3,±4, · · ·
Hamming 0.575T·W̃ham(λ) λ3db =0.608 −35 dB λ=±2,±3,±4, · · ·
Blackman 0.42T·W̃bkm(λ) λ3db =0.820 −58 dB λ=±3,±4,±5, · · ·

254 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

Our objective is to determine the numerical value of fk = k/T for each sinusoidal component
with Ck 	= 0.

Because we do not know the period T , we cannot choose the length T of the rectangular
window to be one or multiple full periods; we must assume that the sampled interval T =

N�t 	=mT for any integer m≥ 1. Since the effect of aliasing is caused by the sampling rate
R=1/�t alone, we may assume, without loss of generality, that the signal has been sampled
above the Nyquist rate in this study, which means that we have

(8.49) 2fmax = 2fn =
2n

T
<

1

�t
.

Recall that

(8.50) X(f) = F{x(t)} =

n∑
k=−n

Ck ·δ
(

f − k

T

)
, where |f | ≤ n

T
<

1

2�t
.

and it follows that

(8.51) XI(f) = F{x(t)·P�t(t)} =
1

�t
·
∞∑

r−∞
X

(
f − r

�t

)
,

which represents the shifted replications of the entire X(f) over intervals of length 1/�t.
Because X(f) consists of 2n+1 impulses weighted by Ck for −n≤ k≤ n, and they spread
over the distance of 2fmax <1/�t, there is no overlap when the entire group of 2n+1 impulses
are replicated over intervals of length 1/�t to form the periodic XI(f). Hence XI(f) is a
periodic sequence, with 2n+1 weighted impulses per period. Again, the period of XI(f) is
the sampling rate R=1/�t, and we have XI(f)= 1

�t ·X(f) in the central period, i.e.,

(8.52)

XI(f) =
1

�t
·X(f) =

1

�t

n∑
k=−n

Ck ·δ
(

f − k

T

)
for |f | ≤ 1

2�t
,

=
1

�t

n∑
k=−n

Ck ·δ
(

f − α·k
T

)
if T = α·T.

Observe that when T=α·T and α is not an integer, α·k is not an integer, either.
Now, suppose all CkÕs are equal to zero except for C±3 	=0, C±4 	=0, and C±n 	= 0. How

could we detect them and obtain the numerical values of f3 =3/T , f4 =4/T , and fn =n/T ?
Remember that we know neither the value of k nor the value of T , so what we shall try to
obtain are the numerical values of

f3α =
3α

T
, f4α =

4α

T
, and fnα =

n·α
T

,

where T = αT , with both α and T representing values unknown to us. For example, if it
happens that T=2.2 T , then our task is to detect the presence of

f3α =
6.6

T
, f4α =

8.8

T
, and fnα =

2.2n

T

from processing the N samples collected over the duration T=N�t.
To proceed with such a task of frequency detection, we assume, at Þ rst, that N samples have

been truncated from the sampled signal by a rectangular window of length T = N�t = αT ,

8.6. APPLICATIONS OF THE WINDOWED DFT 255

and that T > T . Recall that

(8.53)

F{
truncated sequence︷ ︸︸ ︷
xI(t) · wrect(t) } = XI(f) ∗Wrect(f)

=

[
1

�t

n∑
k=−n

Ck ·δ
(

f − α·k
T

)]
∗Wrect(f)

=
1

�t

n∑
k=−n

Ck ·Wrect

(
f − α·k

T

)

=
T

�t

n∑
k=−n

Ck ·
[

sin πT
(
f − α·k

T

)
πT

(
f − α·k

T

)]

= N

n∑
k=−n

Ck ·sinc (Tf − α·k). (∵ T=N∆t)

For convenience we associate the factor 1/N with the left-hand side, i.e., we deÞne

(8.54) UI(f) =
1

N
F{xI(t) · wrect(t)} =

n∑
k=−n

Ck ·sinc (Tf − α·k).

Because XI(f) repeats the 2n+1 weighted impulses in each period, we obtain UI(f) =
1
N XI(f) ∗ Wrect(f) by replicating and summing up sinc (Tf − α ·k), multiplied by Ck , at
locations f =α·k/T. Since all CkÕs are zero except for C±3, C±4 and C±n, we obtain the one-
sided spectrum of UI(f), as shown in Figure 8.6, for α= 2.2 and n=11. Observe that UI(f)

has local maxima at f = 6.6/T, 8.8/T, and 2.2 n/T. Hence, by detecting the local maxima
of UI(f) we also determine the numerical values of f (at which each local maximum occurs),
and they represent the frequencies of the sinusoidal components present in the sampled signal.

Observe also that UI(f) is nonzero within all mainlobes and sidelobes present over the
entire spectrum. Since the mainlobe of the Fourier transform of a rectangular window of
length T covers a subinterval of 2/T centered at the location of each impulse in XI(f), we
see that it is desirable to choose T long enough so that any neighboring impulses in XI(f)

are separated by more than 2/T, otherwise the two adjacent mainlobes overlap and will smear
out (and merge) the closely spaced local maxima. Using our example, when T = 2.2 ·T ,
the distance between 3/T = 6.6/T and 4/T = 8.8/T is 2.2/T, and there is no overlap of
mainlobes as shown in Figure 8.7; if T = 1.5·T , then the distance between 3/T = 4.5/T and
4/T = 6/T is 1.5/T, and the two adjacent mainlobes will overlap as shown in Figures 8.8
and 8.9. It is clear that when a signiÞ cant portion of the two mainlobes overlap, we wonÕt be
able to distinguish two closely spaced local maxima if they are of similar strengths. Recall
that the mainlobe width varies with both the length and type of the window. Therefore, if
we replace the rectangular window (which has the narrowest mainlobe) with a data-weighting
window (with increased mainlobe width), the reduction of frequency resolution is expected
unless we increase the length of the data-weighting window to compensate for that.

Assuming that the local maxima are distinguishable in UI(f), we still have to address how
to obtain them. Recall that the DFT computes the sample values of UI(f) at fk = k/T for
integer −n ≤ k ≤ n: for example, as shown in Figure 8.10, the local maximum at f =

6.6/T falls between f6 and f7; the local maximum at f = 8.8/T falls between f8 and f9.

256 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

Figure 8.6 The one-sided spectrum of UI(f) = 1
NF{xI(t) · wrect(t)}.

0 3 6 9 12 15 18 21 24 27

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f
6.6

f
8.8

f
24.2

U
I
(f

6.6
)

U
I
(f

8.8
)

U
I
(f

24.2
)

Consequently, if we do not proceed with further search of local maximum between f6 and f7

(by chirp Fourier transform to be introduced in Chapter 9), either f6 or f7 would be our best
estimate of f = 6.6/T, and in either case the error is bounded by �f = 1/T. It is clear that
the longer the sampled duration T or the larger the number of samples N (because T = N�t),
the smaller the error in the estimated frequency detected by the DFT.

A data-weighting window can play an important role in frequency detection when we need
to resolve large differences in signal amplitudes. Since the rectangular window has high side-
lobe levels, a weak local maxima of UI(f) may not rise above the frequency leakage from
the sidelobes of a strong component. For example, the peak sidelobe level of the rectangular
window is Ò−13 dB,Ó which represents the reduction in magnitude from 100% to 22%; there-
fore, a weak local maxima with magnitude being lower than 22% of the strong component
is not distinguishable within the sidelobes of the latter. Note that when XI(f) is a weighted
impulse train, the sidelobes represent additional frequency contents (which were not present in
the original signal), and the higher the sidelobe levels the more likely a weak local maximum
is masked. The sidelobe leakage can be reduced if a suitable data-weighting window presented
in last section is used, and the Fourier transform of the Ò weightedÓ or so-called Ò windowedÓ
sequence is given by

(8.55)
UI(f) =

1

N
F{

windowed sequence︷ ︸︸ ︷
xI(t) · wname(t)} =

1

N
XI(f) ∗Wname(f)

=

n∑
k=−n

Ck · 1
T

Wname

(
f − α·k

T

)
.

In Figure 8.10 we show the sidelobe leakage caused by a rectangular window. In Figures 8.11
we show the Fourier transform UI(f) = 1

NF{zI(t)·wname(t) using four different windows of

8.6. APPLICATIONS OF THE WINDOWED DFT 257

Figure 8.7 Non-overlapped mainlobes and separate local maxima.

0 3 6 9 12 15 18 21 24 27

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f
6.6 f

8.8

The two mainlobes do not overlap if
 rectangular window length L = 2.2T:

f
6.6

 = 6.6/L = 3/T, f
8.8

 = 8.8/L = 4/T,

f
8.8

 − f
6.6

 = 2.2/L > 2/L.

0 3 6 9 12 15 18 21 24 27
−0.3

−0.15

0

0.15

0.3

0.45

0.6

0.75

0.9

U
I
(f) has two distinguishable

local maxima at f
6.6

 and f
8.8

.

f
6.6

 f
8.8

U
I
(f)

258 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

Figure 8.8 The merging of local maxima due to overlapped mainlobes.

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 16.5 18 19.5
−0.3

−0.15

0

0.15

0.3

0.45

0.6

0.75

0.9

f
4.5

f
6

The two mainlobes overlap because
rectangular window length L = 1.5T:

f
4.5

 = 4.5/L = 3/T, f
6
 = 6/L = 4/T,

f
6
 − f

4.5
 = 1.5/L < 2/L.

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 16.5 18 19.5
−0.3

−0.15

0

0.15

0.3

0.45

0.6

0.75

0.9

The smearing effect caused by
the overlapping of two mainlobes
located at f

4.5
 and f

6
.

U
I
(f)

f
4.5

f
6

8.6. APPLICATIONS OF THE WINDOWED DFT 259

Figure 8.9 A local maximum is smeared out by overlapped mainlobes.

0 2 4 6 8 10 12 14 16
−0.3

−0.15

0

0.15

0.3

0.45

0.6

0.75

0.9

f
3.9

f
5.2

The two mainlobes overlap because
rectangular window length L = 1.3T:

f
3.9

 = 3.9/L = 3/T, f
5.2

 = 5.2/L = 4/T,

f
5.2

 − f
3.9

 = 1.3/L < 2/L.

0 2 4 6 8 10 12 14 16
−0.3

−0.15

0

0.15

0.3

0.45

0.6

0.75

0.9

The two local maxima at f
3.9

 and
f
5.2

 are no longer distinguishable.
U

I
(f)

260 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

Figure 8.10 Values of UI(fk) obtainable by the DFT, where fk = k/T (T = 2.2T).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

o

o

o

o

o

o

o

o
o

o
o

o

oo
o

o

o

o
oo

o

o

o

o
oo

o

o f
6

f
7 f

24
f
9

o: U
I
(f

k
)

A local maximum of U
I
(f) exists

between f
6
 and f

7

A local maximum of U
I
(f)

exists between f
8
 and f

9

o

U
I
(f

6
)

U
I
(f

7
)

A local maximum of U
I
(f)

exists between f
24

 and f
25

Sidelobe leakage occurs everywhere

length T, where zI(t) are sampled from z(t) given by

z(t) = 1.2 cos
6πt

T
+ 1.8 cos

8πt

T
+ 0.2 cos

22πt

T
,

and the window length T = 2.2T . In Figure 8.11 we illustrate that a weak local maximum
masked by the high sidelobes of a rectangular window can be Òunmas kedÓ when the rectangular
window is replaced by a triangular window, a von Hann window, or a Blackman window (of
the same length). Observe that while the Blackman window has the lowest sidelobe level, it
has the widest mainlobe and the smearing effect caused by that is also evident in Figure 8.11.

In Figures 8.12, 8.13, 8.14, and 8.15, we plot the one-sided discrete spectrum of zI(t) ·
wname(t). In each case the spectrum we show consists of the computed DFT coefÞ cients
{Z0, Z1, . . . , Z29}, which come from a set of N = 58 DFT coefÞ cients {Z−28 . . . , Z0, . . . , Z29}
we have obtained by performing the DFT on 58 samples of the windowed sequence zI(t) ·
wname(t). The samples of z(t) are truncated and weighted by each window deÞ ned on the inter-
val (−T/2, T/2] = (−1/2, 1/2]. The graphs of the one-sided Fourier transform UI(f) are also
drawn in dotted lines in Figures 8.12, 8.13, 8.14, and 8.15. We demonstrate that in each case
the numerical values of the DFT coefÞcients are samples of UI(f) = 1

NF{zI(t) · wname(t)}
taken at f = k/T for integer k. Recall that the window length T = 2.2T ; hence, the sampled
sequence does not span an integer number of periods of z(t), and the local maxima may occur
between the computed DFT coefÞ cients as shown in these Þ gures.

8.6. APPLICATIONS OF THE WINDOWED DFT 261

Figure 8.11 Fourier transforms of zI(t) weighted by four different windows.

0 3 6 9 12 15 18 21 24 27

−0.2

0

0.2

0.4

0.6

0.8

1

Fourier transform
of ‘‘z

I
(t) ⋅ w

rect
(t)’’

U
I
(f)

0 3 6 9 12 15 18 21 24 27
−0.2

0

0.2

0.4

0.6

0.8

1

U
I
(f) Fourier transform

of ‘‘z
I
(t) ⋅ w

tri
(t)’’

0 3 6 9 12 15 18 21 24 27
−0.2

0

0.2

0.4

0.6

0.8

1

U
I
(f) Fourier transform

of ‘‘z
I
(t) ⋅ w

hann
(t)’’

0 3 6 9 12 15 18 21 24 27
−0.2

0

0.2

0.4

0.6

0.8

1

U
I
(f) Fourier transform

of ‘‘z
I
(t) ⋅ w

bkm
(t)’’

Figure 8.12 The computed DFT of zI(t) truncated by a rectangular window.

0 3 6 9 12 15 18 21 24 27

−0.2

0

0.2

0.4

0.6

0.8

1

Computed DFT coefficients
form the discrete one−sided
spectrum of the truncated
sequence z

I
(t) ⋅ w

rect
(t).

262 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

Figure 8.13 The computed DFT of zI(t) weighted by a triangular window.

0 3 6 9 12 15 18 21 24 27

−0.2

0

0.2

0.4

0.6

0.8

1

Computed DFT coefficients
form the discrete one−sided
spectrum of the windowed
sequence z

I
(t) ⋅ w

tri
(t).

Note: The computed DFT coefficients are scaled by the same factor that
normalizes the Fourier transform of the triangular window to unit height.

Figure 8.14 The computed DFT of zI(t) weighted by a von Hann window.

0 3 6 9 12 15 18 21 24 27

−0.2

0

0.2

0.4

0.6

0.8

1

Computed DFT coefficients
form the discrete one−sided
spectrum of the windowed
sequence z

I
(t) ⋅ w

hann
(t).

Note: The computed DFT coefficients are scaled by the same factor that
normalizes the Fourier transform of the von Hann window to unit height.

8.6. APPLICATIONS OF THE WINDOWED DFT 263

Figure 8.15 The computed DFT of zI(t) weighted by a Blackman window.

0 3 6 9 12 15 18 21 24 27

−0.2

0

0.2

0.4

0.6

0.8

1

Note: The computed DFT coefficients are scaled by the same factor that
normalizes the Fourier transform of the Blackman window to unit height.

Computed DFT coefficients
form the discrete one−sided
spectrum of the windowed
sequence z

I
(t) ⋅ w

bkm
(t).

8.6.2 Selecting the length of DFT in practice

From our discussion above, the length of the window T=N�t also deÞ nes the DFT of length
N . This would be the case if computing the N samples of UI(f) spaced by 1/T serves our
purpose. However, in practice, this may not be the Þ nal step, and we may want to change
the length of DFT for a number of reasons. However, let us Þ rst say that changing the DFT
length to suit a particular FFT implementation is not our major concern here, because, as will
be shown in Part II of this book, FFT algorithms for arbitrary composite N or prime N are all
available, so the use of FFT imposes no restriction on the length of DFT. The need to change
the DFT length may arise under the following circumstances:

1. We recall the usage of zero padding from Section 4.6 in Chapter 4: when the DFT N -
sample spectrum is too sparse for us to visualize a continuous analog spectrum UI(f),
one may wish to decrease the spectral spacing �f on the frequency grid. Recall that
�f = 1/(N�t); hence, �f can be reduced if we enlarge N by adding zeros to the
signal samples.

The method and effects of zero padding the truncated signal (before the DFT) were
studied in detail in Section 4.6.1 in Chapter 4 (with examples illustrated in Figures 4.7,
4.8, and 4.9 and Table 4.3), and we show the same effects of zero padding the win-
dowed (truncated and modiÞ ed) signal sequence in Figure 8.16, where the plot on the
left shows the 29 DFT coefÞ cients of the 58-sample sequence zI(t)·wtr(t) before zero
padding, and the plot on the right shows the effect after the sequence is doubled by zero
padding. Observe that by zero padding we do not change UI(f); what we obtain are
additional sample values of the same UI(f), and the additional data points are obtained

264 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

by interpolating between the original N sample values.

Figure 8.16 The effects of zero padding a windowed sequence.

0 3 6 9 12 15 18 21 24 27

−0.2

0

0.2

0.4

0.6

0.8

1

The DFT of z
I
(t) ⋅ w

tri
(t)

 without padding zeros.
 (Window length = 2.2T)

0 3 6 9 12 15 18 21 24 27

−0.2

0

0.2

0.4

0.6

0.8

1

By zero−padding we
obtain more sample
values of the same U

I
(f).

2. In case we can re-sample the signal, we may want to experiment the DFT on longer
sample sequences for better frequency resolution, because the mainlobe width of any
chosen window is inversely proportional to the duration of the signal.

In Figure 8.17 we compare the two different UI(f) = 1
N XI(f) ∗Wtri(f) obtained from

using triangular windows of lengths T = 2.2T and T = 4.4T for the same example in
Figures 8.13. Recall that we compute the DFT coefÞ cients of zI(t)·wtri(t) using window
length T=2.2T , and they are shown to be the sample values of the corresponding UI(f)

at f = k/T in Figure 8.13. Consequently, when we double the length of the triangular
window, we not only halve the spacing ∆f on the frequency grid, the computed DFT
coefÞcients are actually samples of a different UI(f), and we illustrate the improved
DFT results in Figure 8.18.

3. In case we can re-sample the signal at different sampling rates, we may want to exper-
iment DFT on longer sample sequence obtained over the same duration T at increased
sampling rate (or decreased sampling interval �t) until there is no change in the spec-
trum. This is one experimental way to make certain that the sampling rate is high enough
to eliminate the aliasing effect. In Figure 8.19 we compare the DFT results of zI(t)

weighted by a triangular window of length T=4.4T before and after the sampling rate
is increased to satisfy the Nyquist condition. Observe that because the sampling duration
T=4.4T does not change, we have doubled the number of samples by doubling the sam-
pling rate; while the spacing �f = 1/T on the frequency grid remains unchanged, the
range of frequencies we can detect is extended because fmax = 1/(2�t) doubles when
the sampling interval�t is halved.

4. Recall that the error associated with the frequency measurement using the N -sample
sequence is bounded by the spacing �f = 1/(N�t). While this error bound may be
reduced to �f/N = 1/(N2�t) using a N2-sample sequence, it may not be efÞ cient
(and it is not necessary) to compute the DFT of the whole N2 sample sequence. It turns
out that by using the chirp Fourier transform (to be covered in Chapter 9, Section 9.3),
instead of computing N2 samples, we can compute only N samples of UI(f) over a
chosen segment of length 1/(N�t), assuming that the particular segment is known to
contain the local maximum of interest to us. By searching the N samples over 1/(N�t),

8.6. APPLICATIONS OF THE WINDOWED DFT 265

Figure 8.17 Improving UI(f) = 1
NF{zI(t)·wtri(t)} by changing window length.

0 3 6 9 12 15 18 21 24 27
−0.2

0

0.2

0.4

0.6

0.8

1

Fourier transform of windowed
sequence z

I
(t) ⋅ w

tri
(t):

U
I
(f) obtained using triangular window

of length = 2.2T:

U
I
(f) obtained using triangular window

of length = 4.4T:

Figure 8.18 The computed DFT of zI(t)·wtri(f) after doubling the window length.

0 3 6 9 12 15 18 21 24 27

−0.2

0

0.2

0.4

0.6

0.8

1

Improving frequency detection
by doubling the length of the
triangular window

Note: The computed DFT coefficients are scaled by the same factor that
normalizes the Fourier transform of the triangular window to unit height.

266 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

Figure 8.19 Improving frequency detection by doubling the sampling rate.

0 3 6 9 12 15 18 21 24 27

−0.2

0

0.2

0.4

0.6

0.8

1

The effect of sampling
below the Nyquist rate:
a high frequency has
been aliased into lower
frequencies.

0 3 6 9 12 15 18 21 24 27

−0.2

0

0.2

0.4

0.6

0.8

1

Improving frequency
detection by doubling
sampling rate to satisfy
the Nyquist condition.
(Window length = 4.4T)

Note: There is no change in the DFT spectrum
 if the sampling rate is doubled again.

we obtain a more accurate local maximum, with error bound reduced to 1/(N2�t) as
desired.

References

1. A. Ambardar. Analog and Digital Signal Processing. Brooks/Cole Publishing Company,
PaciÞ c Grove, CA, second edition, 1999.

2. E. O. Brigham. The Fast Fourier Transform and Its Applications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1988.

3. T. Butz. Fourier Transformation for Pedestrians. Springer-Verlag, Berlin, 2006.

4. R. W. Hamming. Digital Filters. Prentice-Hall, Inc., Englewood Cliffs, NJ, third edition,
1989.

5. B. Porat. A Course in Digital Signal Processing. John Wiley & Sons, Inc., New York,
1997.

Chapter 9

Discrete Convolution and the DFT

In this chapter we shall introduce Þ rst the linear convolution of two Þ nite sequences, which, on
the one hand, allows us to approximate continuous convolution using sampled function values,
and on the other hand, is algebraically equivalent to the multiplication of two polynomials.
Because we are familiar with the operations involved in multiplying polynomials of arbitrary
degrees, the algebraic deÞnitio n of linear convolution is easy to understand and verify by con-
structing examples in this context. However, for diverse applications in signal processing and
system analysis, it is essential that we interpret the deÞ nition as the discrete counterpart of the
continuous convolution. For computational efÞ ciency we must also learn how to turn the lin-
ear convolution into a DFT-based periodic convolution, because the discrete cyclic convolution
theorem (to be given in this chapter) tells us that a periodic convolution can be implemented by
the DFT, and we already know that DFT can be efÞ ciently computed by the fast Fourier trans-
form (FFT) algorithms. The periodic convolution is also useful in computing the chirp Fourier
transform, which computes a partial DFT in the neighborhood of a particular frequency in
order to measure it to greater accuracyÑa topic to be covered in Section 9.3 in this chapter.

9.1 Linear Discrete Convolution

Because of its close connection to the continuous convolution, the linear discrete convolution
is also referred to as the regular or conventional discrete convolution in signal processing
literature.

9.1.1 Linear convolution of two finite sequences

We shall begin with a review of the continuous convolution of two Þ nite-duration continuous-
time signals. In Figure 9.1 we illustrate again the convolution of two signals g(t) and h(t) as
deÞ ned by Equation (6.1) in Section 6.3 of Chapter 6, which we restate here for easy reference:

(9.1) u(t) = g(t)∗h(t)
def
=

∫ ∞

−∞
g(λ)·h(t− λ) dλ, t ∈ �.

We indicate in Chapter 6 that we will re-examine and discuss further the convolution steps
illustrated in Figure 9.1 when we study how to obtain numerical approximation to the convo-
lution result in this chapter; we now explain the illustrated process step by step below.

267

268 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

Figure 9.1 The steps in performing continuous convolution u(t) = g(t) ∗ h(t).

λ

u(−0.5)

h(0.5 − λ)

1.5 − ta

h(1.5 − λ)

λ

Step 3.

Step 2.

Step 1.

λ

λ

Choose stationary function g(t), and change t to λ.

Sample values of u(t) at t = −0.5, t = 0.5, and t = 1.5 are equal to
the three shaded areas:

Examples of shifted h(t − λ) for t = −0.5, t = 0.5, and t = 1.5.

Fold h(λ) to obtain the moving function h(−λ).

Step 4.

u(1.5)u(0.5)

λ

0.5 − ta

10−1

g(t)1

t

h(λ)

1

−1
λ

g(λ)

10

h(−λ)

λ

−0.5 − ta

h(−0.5 − λ)

λλ

1

1 = tbta = 0 −tb = −1

1

0 = −ta

9.1. LINEAR DISCRETE CONVOLUTION 269

Step 1. Choose one function to be stationary. In Figure 9.1 we let g(t) be the stationary
function. By renaming the variable t as λ we obtain g(λ) in the integrand.

Step 2. We Þ rst obtain h(λ) by renaming the variable t as λ, then we obtain the moving
function h(−λ) by folding h(λ) with respect to the ordinate. Observe that the folded
function h(−λ) is nonzero for −tb ≤ λ≤−ta = 0 so that 0 = ta ≤−λ≤ tb as per the
original deÞn ition of h(t). (These results remain valid if ta 	=0.)

Step 3. For each value of t, we obtain shifted h(t − λ) by moving h(−λ) so that its origin
λ=0 is positioned at t, which dictates that the right end of h(−λ) is positioned at t− ta.
(There is no restriction on the value of ta.)

Step 4. For each value of t, the convolution result u(t) can be obtained analytically (if possi-
ble) or by numerical integration of (9.1) over the Þ nite interval where g(λ) and h(t− λ)

overlap. In either case, the value of u(t) represents the area under the curve of g(λ) ·
h(t− λ) over the Þn ite interval in which the two overlap.

The continuous convolution result u(t) = g(t) ∗ h(t) is nonzero for −1 ≤ t ≤ 2, which is
shown in Figure 9.2.

Figure 9.2 The result of continuous convolution u(t) = g(t) ∗ h(t).

0 1−1 0 1

h(t)

−1 0

0.5

t

1

g(t)

1

1 2
t

t

*

= u(t)

With the steps of continuous convolution laid out above, we can now introduce the linear
convolution of two sampled signals {g0, g1, · · · , gN−1} and {h0, h1, · · ·hN−1} in a straightfor-
ward manner. The following steps are illustrated in Figure 9.3 for N = 5:

Step 1. Choose one sequence to be stationary. In Figure 9.3 we choose {g0, g1, · · · , gN−1} to
be the stationary sequence.

Step 2. We obtain the moving sequence {hN−1, hN−2, · · · , h0} by reversing the elements in
the given sequence.

Step 3. Beginning with � = 0, we obtain the linear convolution result u0 = g0 ·h0 by overlap-
ping the right-most element h0 of the reversed sequence with the Þ rst element g0 of the
stationary sequence.

For each value 0 < �≤N−1, we move h0 to overlap with g�, then compute the con-
volution result u� by summing the pairwise products of all overlapped elements. Note

270 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

Figure 9.3 The steps in performing linear discrete convolution {u�} = {g�} ∗ {h�}.

h2

t

h4

h3

1

0

h0

h1

−1

u7 = g3h4 + g4 h3 = 1.6

�

...

u1 = g0h1 + g1h0 = 0.4

u0 = g0h0 = 0.1

...

u8 = g4h4 = 0.9

Choose {g�} = {g0, g1, g2, g3, g4} as the stationary sequence.

u4 = g0h4 + g1h3 + g2h2 + g3h1 + g4h0 = 2.5

�

�

�

�

Reverse {h0, h1, h2, h3, h4} to obtain {h4, h3, h2, h1, h0} = {0.9, 0.7, 0.5, 0.3, 0.1}.

Computing u1, u2, . . . , u8:

Computing u0:Step 3.

Step 2.

Step 4.

Step 1.

−0.5

0 1 t0.5

1

t

h2

1

0 0.5

h4

1

h1

h0

h3

h0h1h3 h2h4

h2 h0h1h3h4

g0

h2

g0 g1 g2 g3

g2g1g0

g4

h4 h3 h0h1

g1

g0 g4g3g2g1

g4

g2

g4g3g2

h4 h0h1h2h3

g1

h1h2

g4

g3

h0

g0

g3

h3h4

9.1. LINEAR DISCRETE CONVOLUTION 271

that the product u��t, where �t denotes the spacing between samples, approximates
the area under the curve of g(λ) ·h(t−λ) over the same interval by composite midpoint
rule. Hence, by linear discrete convolution, we compute one value of the corresponding
continuous convolution each time.

Step 4. For each value N−1 < � ≤ 2N−2, we continue to move the reversed sequence one
position to the right, and compute u� by summing the pairwise products of all overlapped
elements. (As explained in Step 3, each product u��t approximates one value of the
continuous convolution.)

The discrete convolution result {u�} = {g�} ∗ {h�} is a sequence of length 2N−1, which is
shown in Figure 9.4. In the same Þ gure we also compare the sequence {uk�t} directly with
the continuous convolution u(t) = g(t)∗h(t) when �t = 0.2, and we show in Figure 9.5 the
improvement in the discrete approximation when�t is reduced to 0.1 and 0.05.

Figure 9.4 The result of discrete convolution {uk} = {gk} ∗ {hk}.

1

0 1

g
k

N = 5 (∆t = 0.2)

1 h
k

0 1

N = 5 (∆t = 0.2)

0.5

0 1 2

∆t

2N−1 = 9 (∆t = 0.2)

Continuous convolution

Approximation by

discrete convolution
u

k
∆t

We comment further on the nature of linear discrete convolution below.

• The algebraic equivalence of linear discrete convolution and the multiplication of two
polynomials can be easily veriÞ ed. If we let

G4(x) = g0 + g1x + g2x
2 + g3x

3 + g4x
4 = 1 + x + x2 + x3 + x4,

H4(x) = h0 + h1x + h2x
2 + h3x

3 + h4x
4 = 1 + 2x + 3x2 + 4x3 + 5x4,

then we obtain their product as

U8(x) = (1 + x + x2 + x3 + x4)× (1 + 2x + 3x2 + 4x3 + 5x4)

= 1 + 3x + 6x2 + 10x3 + 15x4 + 14x5 + 12x6 + 9x7 + 5x8

= u0 + u1x + u2x
2 + u3x

3 + u4x
4 + u5x

5 + u6x
6 + u7x

7 + u8x
8,

272 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

Figure 9.5 The results of discrete convolution {uk} = {gk} ∗ {hk}.

0 1 2

0.5

Continuous convolution

∆t = 0.05

0.5

Continuous convolution

Approximated by u
k
∆t

∆t = 0.1 0 1 2

(N = 10, 2N − 1 = 19)

(N = 20, 2N − 1 = 39)

Approximated by u
k
∆t

u
k
∆t

u
k
∆t

which is a polynomial of degree eight with its coefÞ cients

{u0, u1, u2, u3, u4, u5, u6, u7 u8} = {1, 3, 6, 10, 15, 14, 12, 9, 5}.

By following the steps illustrated in Figure 9.3, we obtain the same result by per-
forming linear convolution on the two coefÞ cient sequences {g0, g1, g2, g3, g4} and
{h0, h1, h2, h3, h4}, i.e,

{u0, u1, . . . u8} = {1, 1, 1, 1, 1} ∗ {1, 2, 3, 4, 5} = {1, 3, 6, 10, 15, 14, 12, 9, 5}.

• Although we illustrate the linear convolution using two sequences of the same length,
the steps for convolving two sequences of different lengths are exactly the same. (In
the latter case, it is common to choose the longer sequence as the stationary sequence,
because in signal processing when a signal is sampled in real-time and processed by
a digital Þ lter, the inÞ nitely long real-time input is convolved with the Þ nite moving
sequence which represents the Þ lter. Obviously we cannot reverse a general sequence of
infinite length.)

• If the two sequences are of lengths L1 and L2, the result of linear convolution is a
sequence of length L1+L2−1, which is simply the result of passing the reversed sequence
through the stationery sequence until the two separate.

As expected, we can verify this result easily from the equivalent polynomial multipli-
cation. Since a polynomial of degree N−1 has N coefÞcien ts, it is represented by a

9.2. PERIODIC DISCRETE CONVOLUTION 273

coefÞ cient sequence of length N . Consequently, if we multiply two polynomials of de-
gree L1−1 and L2−1, the resulting product is a polynomial of degree L1+L2−2, which
has exactly L1+L2−1 coefÞcients .

• For two sequences of lengths L1 and L2, the linear convolution involves L1×L2 multi-
plications. For two sequences of the same length N , the arithmetic cost is proportional
to N2, which can be reduced to αN log2N after we learn in Section 9.2.2 how to convert
the linear convolution to a periodic convolution, and compute the latter by the DFT (via
the FFT.)

For two sequences of different lengths L1 and L2, we will learn in Section 9.2.2 that they
must be both zero-padded to the same length N =L1+L2− 1 before they can be turned
into a periodic convolution and computed via the FFT, which again incurs αN log2N

multiplications.

9.1.2 Sectioning a long sequence for linear convolution

As noted at the end of Section 9.1.1, the linear convolution of two sequences of lengths L1 and
L2 requires αN log2N multiplications (via the FFT), where N =L1+L2 − 1. Consequently,
when L1 is very large, the required computer time and/or storage may still be too costly to
compute all N results in a single convolution. In such case, the long stationary sequence can
be sectioned into segments of length S1 � L1, and each segment of length S1 is convolved
with the moving segment of length L2 ≤ S1 at a cost of αM log2M with M = S1+L2 − 1.
Assuming that L1/S1 = K , there are K linear convolutions to be performed, and the total
cost is given by αKM log2M . To illustrate this process, an example with sequence lengths
L1 = 10, L2 = 5, and segment length S1 = 5 is given in Figure 9.6. By summing the results
from two (short) convolutions we get back the result of the original (long) convolution.

9.2 Periodic Discrete Convolution

The periodic discrete convolution plays a key role in making the FFT (which implements the
DFT) ubiquitous for diverse applications in signal processing and system analysis, because the
conventional or linear convolution used in these applications can be implemented by a properly
formulated periodic convolution, and the latter can be implemented by the DFT (via the FFT)
according to the discrete cyclic convolution theorems to be covered in this section. The periodic
convolution is also useful in the development of the chirp Fourier transform algorithm (to be
covered in Section 9.3) as well as the fast Fourier transform algorithm for arbitrary prime N

(to be covered in Chapter 14.)

9.2.1 Definition based on two periodic sequences

To deÞ ne the periodic convolution, we assume that {P�} and {Q�} are two periodic sequences
and they have the same period N . Note that the convolution is to be performed for one period
only. However, the result is different from the linear convolution of two truncated Þ nite periods,
because the two sequences overlap all the way due to their periodic nature. We illustrate the
convolution process in Figure 9.7, and the steps involved are explained further below.

274 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

Figure 9.6 Performing linear convolution {uk} = {gk} ∗ {hk} in two sections.

−1 0 1 2
0

0.5

1

−1 0 1 2
0

0.5

1

−1 0 1 2
0

0.5

−1 0 1 2
0

0.5

1

−1 0 1 2
0

0.5

1

−1 0 1 2
0

0.5

1

−1 0 1 2
0

0.5

1

−1 0 1 2
0

0.5

−1 0 1 2
0

0.5

−1 0 1 2
0

0.5

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1st section 2nd

section

0.5

g
k

h
k

g
k

g
k

h
k h

k

sum of

two sections

u
k
∆t u

k
∆t u

k
∆t

add two sections

1st
section

2nd
section

9.2. PERIODIC DISCRETE CONVOLUTION 275

Step 1. Choose one periodic sequence to be stationary. In Figure 9.7 we let one period of {P�}
be the stationary sequence of length N .

Step 2. We obtain the moving sequence by reversing the elements within each period of the
other sequence {Q�}.

Step 3. We then align the stationary sequence and the reversed moving sequence so that Q0

overlaps P0 as shown in Figure 9.7, and we compute u0, the Þ rst convolution result, as
the sum of N pairwise products of the overlapped elements identiÞ ed for this step in
Figure 9.7.

Step 4. To continue, we shift the periodic moving sequence one position to the right, and
we compute the second convolution result as the sum of N pairwise products of the
overlapped elements identiÞ ed for this step in Figure 9.7; we do the same to obtain the
remaining N−2 convolution results. At this time, the head of our moving sequence has
passed all N elements within one period of the stationary sequence {P�}, and we have
completed the periodic convolution deÞ ned on these two sequences.

Observe that the periodic convolution of two sequences of period N is, by deÞn ition, a Þ nite
sequence of length N given by the following equation:

(9.2) Uk =

N−1∑
�=0

P� ·Qk−�, for k = 0, 1, · · · , N − 1,

where P� = P�±N and Qk−� = Qk−�±N are satisÞed due to their periodicity, which ensures
that Uk =Uk±N . Hence, continuing the convolution process beyond one period would simply
result in a periodic extension of the Þ rst N results.

9.2.2 Converting linear to periodic convolution

In anticipation of the beneÞ t from using the FFT to compute the discrete convolution, we show
next how to implement a linear convolution by a periodic convolution. This turns out to be a
simple procedure: suppose we are given two sequences {g�} and {h�} of lengths L1 and L2,
the conversion from linear to periodic convolution involves the following steps:

Step 1. Zero-pad both sequences to length L1+L2 − 1.

Step 2. Obtain two periodic sequences by extending the two zero-padded sequences periodi-
cally. Hence they both have period N =L1+L2−1.

Step 3. Perform periodic convolution to obtain N results as explained in Section 9.2.1.

We illustrate these steps in Figure 9.8. Since the N = L1 +L2−1 results in Figure 9.8 are
identical to those obtained from linear convolution of the original two sequences in Figure 9.3,
this process provides an alternative way to compute the same results. It is this alternative
process which would bring us the beneÞ t of FFT.

9.2.3 Defining the equivalent cyclic convolution

When we re-examine the periodic convolution process illustrated in Figure 9.7, it is clear that
all elements involved come from a single period of {P�} and {Q�}. Therefore, it should

276 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

Figure 9.7 The steps in performing periodic discrete convolution.

1

−1

. . .

1

. . .

Q4

Q1

Align Q0 of the moving sequence with P0 and compute U0:

U0 = P0Q0 + P1Q4 + P2Q3 + P3Q2 + P4Q1.

10

Reverse the periodic sequence {Q�}, which is identical to {P�} for this example.

Step 1.

Step 2.

Step 3.

�

U1 = P0Q1 + P1Q0 + P2Q4 + P3Q3 + P4Q2.
�

Step 4. Compute U1, U2, U3, and U4:

Choose onr period of {P�} as the stationary sequence.

�

�

U4 = P0Q4 + P1Q3 + P2Q2 + P3Q1 + P4Q0.

U3 = P0Q3 + P1Q2 + P2Q1 + P3Q0 + P4Q4.
�

U2 = P0Q2 + P1Q1 + P2Q0 + P3Q4 + P4Q3.

Note: {U0, U1, U2, U3.U4} form one period of the output sequence.

0�

Q1

Q3

Q2

Q0

Q4

Q3

Q2

P0

1

. . .
P1

P2

P3

. . .

P4

P2P0 P1

Q2

P3 P4

Q2

· · ·

Q1Q3Q4 . . .

· · · Q4 · · ·

· · · · · ·

P3

Q3 Q3Q4Q0Q1 Q1Q2

Q0

P2P1P0

· · ·· · ·

P3

Q4

P4

P4

P2P1P0

· · ·

P4P3P2P1P0

Q0 Q3Q4Q4 Q3 Q2 Q1

. . .

Q3

P4P3P2P1

Q4 Q2 Q1Q2 Q1 Q4 Q3

P0

Q2Q4Q0Q1Q2Q3 Q3

Q0Q1Q2Q3Q4

· · ·

9.2. PERIODIC DISCRETE CONVOLUTION 277

Figure 9.8 Converting linear to periodic discrete convolution.

h1h2 00

0 00

h4 h3 h0 h1h4

g0 g1

h200 · · ·h3

000 h4 · · ·00 h2h3 00

0

h2 h3h40h0h1

g2 g3 g4

0 000

Align h0 of the moving sequence with g0, and compute u0 = g0h0 + 0 + · · · + 0:

· · ·· · ·· · ·

Step 3.

h1

g1 g2 g3 g4 0

...

g0 0 0 0

· · ·

�
Period N = 9

�

�

�

Note: {u0, u1, u2, u3, u4, u5, u6, u7., u8} forms one period of the output sequence.

Zero-pad {g0, g1, g2, g3, g4} to obtain {g0, g1, g2, g3., g4, 0, 0, 0, 0},

which forms one period of the moving periodic sequence:

which forms one period of the stationary periodic sequence:

Compute u1, u2, · · · , u8:

�

· · ·· · ·

· · ·

· · ·

Zero-pad {h0, h1, h2, h3, h4} to obtain {h0, h1, h2, h3, h4, 0, 0, 0, 0},

u8 = 0 + . . . + 0 + g4h4 + 0 + · · · + 0 = g4h4.

u2 = g0h2 + g1h1 + g2h0 + 0 + · · · + 0 = g0h2 + g1h1 + g2h0.

u1 = g0h1 + g1h0 + 0 + · · · + 0 = g0h1 + g1h0.

u0 = g0h0 + 0 + · · · + 0 = g0h0.

Period N = 9

g0

0 0

00

0

g1 g2 g3 g4

0

0

then reverse the zero-padded sequence to obtain {0, 0, 0, 0, h4, h3, h2, h1, h0},
Step 2.

Step 1.

Step 4.

0 0 0 0 0

h1

h2

h3

h4

1

0000

g0 0g4g3g2g1

g4

00 · · ·h40

g3g2g1g0

0

0

0000h000

00

0 h1h2h3h40

h3

h2

h3

h4

h1

h0

1

0 0h0h1 0h2 h2h3h40 h1

278 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

not be surprising that we can compute the N periodic convolution results without explicitly
constructing the periodic sequences. The so-called cyclic or circular convolution is such a
scheme, which computes identical results using only N elements from each periodic sequence.
So, we can again work with two Þ nite sequences of length N , and the steps are given below.

Step 1. Choose one period of {P�} as the stationary sequence. Arrange the N elements clock-
wise on a ring as shown in Figure 9.9.

Step 2. Arrange the N elements of {Q�} counterclockwise in an inner ring, which forms the
reversed moving sequence. Note that when overlapping the elements on the two rings
initially, the Þr st element in the sequence {Q�}, i.e., Q0, should overlap P0, the Þ rst
element of the stationary sequence {P�}.

Step 3. Compute the Þ rst convolution result by summing the N pairwise products involving all
elements on the two rings conÞ gured in Step 2; compute the second convolution result
in the same manner after turning the inner ring (which houses the moving sequence)
clockwise one position, and so on. After we obtain all N periodic convolution results,
the inner ring has been turned clockwise exactly N−1 times. Since the inner ring returns
to its initial position after it is turned N times, it is explicitly clear that the same N

results are obtained if one repeats the cycle.

The steps of cyclic convolution are illustrated in Figure 9.9 and are equivalent to the steps of
periodic convolution shown in Figure 9.7 in Section 9.2.1.

9.2.4 The cyclic convolution in matrix form

It is also useful to express the cyclic convolution of two length-N sequences {P�} and {Q�} as
the product of an N×N circulant matrix A and an N×1 vector V , which is illustrated below
for N =5:

(9.3) Z = {P�} � {Q�} =


Q0 Q4 Q3 Q2 Q1

Q1 Q0 Q4 Q3 Q2

Q2 Q1 Q0 Q4 Q3

Q3 Q2 Q1 Q0 Q4

Q4 Q3 Q2 Q1 Q0




P0

P1

P2

P3

P4

 .

Observe that the second row of matrix A is obtained by cyclic-shifting its Þr st row one position
to the right, and, in general, we cyclic-right-shift the kth row to obtain the (k+1)st row until we
have the N -by-N circulant matrix. Furthermore, the components of the vector Z = {P�} �
{Q�} = AV can be expressed by the algebraic equation:

(9.4) Zk =

N−1∑
�=0

P� ·Q(k−�) mod N , 0 ≤ k ≤ N − 1,

which denotes the inner product of the kth row of matrix A and the vector V and serves as
another mathematical deÞn ition for the cyclic convolution. Note that the evaluation of the
index Ò (k− �) mod N Ó i s done according to the following rule: for any integer m = k− �, let

(9.5) R = remainder of
|m|
N

,

9.2. PERIODIC DISCRETE CONVOLUTION 279

Figure 9.9 DeÞn ing the equivalent cyclic convolution.

U4 = P0Q4 + P1Q3 + P2Q2 + P3Q1 + P4Q0.

Q0

Align Q0 of the moving sequence with P0 and compute U0:

Q2Q1

completed

P4

P3

P3

P4

P4

P3

P3

P4

U3 = P0Q3 + P1Q2 + P2Q1 + P3Q0 + P4Q4.

U2 = P0Q2 + P1Q1 + P2Q0 + P3Q4 + P4Q3.U1 = P0Q1 + P1Q0 + P2Q4 + P3Q3 + P4Q2.

P3

P4

one cycle

Note: {U0, U1, U2, U3.U4} forms one cycle of the output sequence.

P2

Q0

Q2

Q3

Q4

Q1

Q2

P2

P1

P1

P1

P1

P1

P2

P2

Q3

Q1

Q3

Q4

cyclic shift

The equivalent cyclic convolution:

U0 = P0Q0 + P1Q4 + P2Q3 + P3Q2 + P4Q1.

Recall Step 3 of periodic convolution from Figure 9.7:

P2

Q4

Q3

Q0

Q1
Q2

Q4

Q0

P0

Q2

Q4

P0

Q0

P0P0

Q3

Q1

P0

Q0

P3 P4

Q1

P2P1P0

· · · Q3· · ·· · ·· · · · · ·. . .Q4 Q2

280 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

then the unique value r = m mod N is given by

(9.6) r =


R if m ≥ 0;

N −R if m < 0 and R 	= 0;

0 if m < 0 and R = 0.

This is, of course, the deÞn ition of Ò the residue r of m modulo N Ó i n linear algebra. Since
r takes on integer values from the set {0, 1, · · · , N −1}, it is straightforward to verify that
Equation (9.4) involves exactly the kth row from the circulant matrix A in Equation (9.3). For
the matrix-vector product deÞ ned by (9.3), we have N = 5, 0 ≤ k, � ≤ 4, and −4 ≤ m =

k−� ≤ 4. Hence, the remainder R = |m|/5 in (9.5) takes on integer values from 0 to 4, and
the corresponding residue r = m mod 5 is given by (9.6); with that we can uniquely identify
Qr = Qm mod N . In particular, for m = k−� = −1,−2,−3,−4, we have R = 1, 2, 3, 4

and r = N −R = 4, 3, 2, 1, so we can uniquely identify Q4 = Q−1 mod 5, Q3 = Q−2 mod 5,
Q2 = Q−3 mod 5, and Q1 = Q−4 mod 5, which are all we need when evaluating Zk using the
cyclic convolution formula given by (9.4).

Remark: The cyclic convolution deÞ ned by (9.4) is equivalent to the periodic convolution
deÞ ned by (9.2) if {P�} and {Q�} are interpreted as one period of a periodic sequence.

9.2.5 Converting linear to cyclic convolution

We have illustrated in Figure 9.8 and explained in Section 9.2.2 the steps involved in converting
linear to periodic convolution. Hence all we need to do now is to implement the periodic
convolution by cyclic convolution. Assuming that we are given two sequences {g�} and {h�}
of lengths L1 and L2, the conversion from linear to cyclic convolution involves the following
steps:

Step 1. Zero-pad both sequences to length L1+L2 − 1.

Step 2. Arrange the stationary sequence and the other sequence on the outer and inner rings
as explained in Section 9.2.3.

Step 3. Perform cyclic convolution on the two rings as explained in Section 9.2.3.

Corresponding to the steps of periodic convolution illustrated in Figure 9.8, the steps of cyclic
convolution are shown in Figure 9.10.

9.2.6 Two cyclic convolution theorems

Recall that we have used extensively the continuous convolution theorem and product theorem
which generate the following Fourier transform pairs

x(t)∗g(t)⇐⇒ X(f)·G(f); x(t)·g(t) ⇐⇒ X(f)∗G(f),

where X(f) = F{x(t)} and G(f) = F{g(t)}. Note that the Þ rst pair relates time-domain
convolution to frequency-domain multiplication, and it allows us to express x(t) ∗ g(t) =

F−1{X(f) ·G(f)}. A similar relationship exists between the periodic convolution of two
sequences and the point-wise product of their respective discrete Fourier transforms, which is
proved in the discrete convolution theorem given below.

9.2. PERIODIC DISCRETE CONVOLUTION 281

Figure 9.10 Converting linear to cyclic convolution.

h3

0

0

0

0

Recall Step 3 of converting linear to periodic convolution from Figure 9.8:

h0

h1

h2

0

h0

0

0

h4

h3h2

h1

0
0

0

h4

0

0

0

0

0
0

0

h00
0

0
0

0

0

0

h1

0

g40

0

h2

h3

0

0

0

0
0

0
0

h0

h4

h40

0

0

0

0
0

h4

0

h1

h2

h3

h3

+g4h1

u5 = g1h4 + g2h3 + g3h2

g3

g4

u7 = g3h4 + g4h3

u0 = g0h0

g4

u6 = g2h4 + g3h3 + g4h2

g0

g1

g2

g3

g1

cyclic shift

u8 = g4h4

h0

u2 = g0h2 + g1h1 + g2h0

g0

h3

h2h1

g4

g3

u4 = g0h4 + g1h3 + g2h2

g0

g1

g2

u1 = g0h1 + g1h0

+g3h0

u3 = g0h3 + g1h2 + g2h1

+g3h1 + g4h0

h4

g1
h0

g0 g0 g0

g0

g1

g1

Align h0 of the moving sequence with g0 and compute u0 = g0h0 + 0 + · · · + 0:

h4

g4 g4 g4

h2 g1

g2

g3

g2

g1

g0

g4

g3

g2

�

g3

g4

h1

g0

�

Note: {u0, u1, u2, u3, u4, u5, u6, u7, u8} forms one cycle of output sequence.

g2

g1

g0 g1 g2 g3

h40000 h2h3h0

g4 0 0 0 0

one cycle
completed

h1

h4

g2

g3

0

0

0

0

h3 0

0
00

h0

h1

h2 h1

0

0

h2

h0

00
0

0

h3

h4

0
0

0

0

h0

0

0

The equivalent cyclic convolution:

g2

0

0 g3
h3

h1

g2

g3

0

0

0
h2

0

0

0

0
0

0

· · ·· · ·· · · · · ·

282 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

Theorem 9.1 (Time-Domain Cyclic Convolution Theorem) Let the cyclic convolution of se-
quences {x�} and {g�} of length (or period) N be denoted by {x�} � {g�}. If the discrete
Fourier transforms of the two sequences are given by {Xr} = DFT

[{x�}
]

and {Gr} =

DFT
[{g�}

]
, then

(9.7) {x�} � {g�} = N ·IDFT
[{Xr ·Gr}

]
.

Proof: By Equation (9.2) (which is equivalent to (9.4) for periodic sequences), we obtain
{uk}={x�} � {g�} with its elements given by

(9.8) uk =

N−1∑
�=0

x� ·gk−�, for k = 0, 1, · · · , N − 1,

where gk−� = gk−�+N due to the assumed periodicity. Assuming that the DFT coefÞcien ts
{Xr} and {Gr} are computed by Formula (2.7), we use the corresponding IDFT formula (2.6)
to express

x� =

N−1∑
r=0

Xr ω�r
N , gk−� =

N−1∑
r=0

Gr ω
(k−�)r
N , where ωN = ej2π/N ,

and we rewrite (9.8) as

(9.9)

uk =

N−1∑
�=0

x�︷ ︸︸ ︷[
N−1∑
m=0

Xm ω�m
N

]
×

gk−�︷ ︸︸ ︷[
N−1∑
r=0

Gr ω
(k−�)r
N

]

=

N−1∑
�=0

[
N−1∑
r=0

Gr ωkr
N ω−�r

N

]
×

[
N−1∑
m=0

Xm ω�m
N

]

=

N−1∑
�=0

N−1∑
r=0

[
Gr ωkr

N

N−1∑
m=0

Xm ω
�(m−r)
N

]

=

N−1∑
r=0

Gr ωkr
N

[
N−1∑
m=0

N−1∑
�=0

Xm ω
�(m−r)
N

]

=

N−1∑
r=0

Gr ωkr
N

[
N−1∑
m=0

Xm

N−1∑
�=0

ω
�(m−r)
N

]

= N
N−1∑
r=0

{Xr ·Gr} ωkr
N

.

Note that in the last step we have used the orthogonality property proved in Chapter 4 on
page 112:

N−1∑
�=0

ω�(m−r) =

{
0 if m 	= r,

N if m = r.

�

Corresponding to the other Fourier transform pair X(f) ∗ G(f) = F{x(t) ·g(t)} in the
continuous convolution theorem, we have the discrete Fourier transform pair given by the next
theorem.

9.2. PERIODIC DISCRETE CONVOLUTION 283

Theorem 9.2 (Frequency-domain cyclic convolution theorem) Let {Xr} and {Gr} denote
two DFT sample sequences of length (or period) N . If {x�} = IDFT

[{Xr}
]

and {g�} =

IDFT
[{Gr}

]
, then

(9.10) {Xr} � {Gr} = DFT
[{x� ·g�}

]
.

Proof: By Equation (9.2) we obtain {Uk}={Xr} � {Gr} with its elements given by

(9.11) Uk =

N−1∑
r=0

Xr ·Gk−r, for k = 0, 1, · · · , N − 1,

where Gk−r = Gk−r+N due to the assumed periodicity. Using the DFT formula (2.7), we
express

Xr =
1

N

N−1∑
�=0

x� ω−r�
N

, Gk−r =
1

N

N−1∑
�=0

g� ω
−(k−r)�
N , where ωN = ej2π/N ,

and we rewrite (9.11) as

(9.12)

Uk =
N−1∑
r=0

Xr︷ ︸︸ ︷[
1

N

N−1∑
m=0

xm ω−rm
N

]
×

Gk−r︷ ︸︸ ︷[
1

N

N−1∑
�=0

g� ω
−(k−r)�
N

]

=
1

N2

N−1∑
r=0

[
N−1∑
�=0

g�ω
−k�
N ωr�

N

]
×

[
N−1∑
m=0

xm ω−rm
N

]

=
1

N2

N−1∑
�=0

g� ω−k�
N

[
N−1∑
m=0

xm

N−1∑
r=0

ω
−r(m−�)
N

]

=
1

N

N−1∑
�=0

{x� ·g�} ω−k�
N .

Hence, we have proved

{Uk} = {Xr} � {Gr} = DFT
[{x� ·g�}

]
.

�

These two discrete convolution theorems establish that the cyclic convolution of two se-
quences of length N (in either time or frequency domain) can be computed via a combination
of DFT and IDFT, which incurs arithmetic cost proportional to N log2N when FFT and IFFT
are used to compute the DFT and IDFT. Therefore, all fast convolution algorithms involve
FFT/IFFT, and they make FFT/IFFT ubiquitous in diverse application areas.

9.2.7 Implementing sectioned linear convolution

Recall our discussion on sectioning a long sequence for linear convolution in Section 9.1.2.
As stated there, all we need to do is to convert the linear convolution deÞned on each section
of length S1 to a periodic convolution, and we compute the latter via DFT/IDFT as described
in Theorems 9.1 and 9.2. Observe that the DFT of the moving sequence only needs to be
computed once.

284 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

9.3 The Chirp Fourier Transform

We are now in a position to introduce the chirp Fourier transform and explain why it is needed.
For its efÞcien t computation, we show how to turn the transform into the convolution of two
appropriately deÞ ned sequences. However, let us point out that the equivalent discrete convo-
lution deÞ ned on the original data (without extension and restructuring) is neither linear nor
periodic per seÑ it is, instead, a partial linear convolution, so we must learn another way to
turn it into a cyclic convolution so that we can use the FFT algorithms for its computation.

9.3.1 The scenario

To set the stage, let us assume that we are given a sequence {x̃�} consisting of N =64 samples
taken from a time-limited signal x(t) over its duration T. Assuming that T = N�t, the DFT
of the N -sample sequence {x̃�} computes {Ũr} according to Equation (8.2), namely,

(9.13) Ũr =
1

N
XI

(
r

N�t

)
=

1

N

n+1∑
�=−n

x̃� ω−r�
N , −n ≤ r ≤ n + 1, N = 2n + 2.

Recall that the N samples of XI(f) are spaced by �f = 1/(N�t) = 1/T. If we want more
details of XI(f) between two particular frequencies at fm and fm+1 = fm +�f , we would
need to obtain more sample values of XI(f) between fm and fm+1. Suppose K−1 more
values of XI(f) are needed between fm and fm+1; with the desired spacing now reduced to
�f/K , we can accomplish that by two different approaches:

1. Full range interpolation by zero padding. Recall that we discussed the effects of zero
padding in Section 4.6 in Chapter 4. In particular, we explained that when the N -sample
DFT spectrum is too sparse for us to visualize a continuous spectrum XI(f), we may
decrease the spacing �f = 1/(N�t) on the entire frequency grid if we enlarge N by
adding zeros (see Figures 4.8 and 4.9). That is, for K = N = 64, we extend the 64-
sample sequence {x̃�} to length L = K×N = 4096 by appending 2016 zeros at each
end, and we perform the DFT on the resulting 4096-sample sequence

{x̃�} = {0, 0, . . . , 0, x̃−31 . . . , x̃−1, x̃0, x̃1, . . . , x̃32, 0, 0, . . . , 0}
to obtain

(9.14) Ûr =
1

L

2048∑
�=−2047

x̃�ω
−r�
L , −2047 ≤ r ≤ 2048, L = K×N = 4096.

This approach gives us {Û−2047, · · · , Û−1, Û0, Û1, · · · , Ũ2048}Ña total of L = 4096

samples of 1
LXI(f), while we only need K = 64 samples in a particular subintervalÑ

and for that we pay the high cost of computing the DFT of length L = 4096. This
approach is evidently too costly unless K is very small relative to N .

2. Partial DFT by chirp Fourier transform. Using this approach we will compute K sam-
ples of 1

LXI(f) inside a single subinterval of length�f =1/(N�t). For convenience
in dealing with an arbitrary subinterval in our analysis, recall the alternate form of the
DFT given by (4.9), which is restated below:

(9.15) Ur =
1

N

N−1∑
�=0

x�ω
−r�
N

, 0 ≤ r ≤ N − 1, N = 2n + 2, where

9.3. THE CHIRP FOURIER TRANSFORM 285

the reordered samples in {x�}, 0 ≤ � ≤ N − 1, are deÞn ed by

x� =

{
x̃� for 0 ≤ � ≤ n + 1;

x̃�−N for n + 2 ≤ � ≤ 2n + 1;

and the DFT samples in {Ũr}, −n ≤ r ≤ n + 1, can be recovered from the re-
ordered samples in {Ur} deÞ ned by (9.15) using the relationship (4.14) established in
Section 4.2:

Ur =

{
Ũr for 0 ≤ r ≤ n + 1;

Ũr−N for n + 2 ≤ r ≤ 2n + 1.

Assuming that the arbitrary subinterval is between fm = m�f and fm+1 =

(m+1)�f , we now compute the K samples by performing a partial DFT on the given
N -sample sequence {x�}. That is, we compute Ur according to Equation (9.15) for
r = mK + λ , 0 ≤ λ ≤ K − 1, without zero-padding {x�}:

(9.16) UmK+λ =
1

L

N−1∑
�=0

x�ω
−(mK+λ)�
L , 0≤λ≤K−1=63, L=K×N =4096.

Note that only K = 64 elements {UmK , UmK+1, · · · , UmK+63} are computed by this
formula, and that its right-hand side shows only the N = 64 nonzero terms with ωL =

ej2π/L unchanged.

9.3.2 The equivalent partial linear convolution

Since the chirp Fourier transform is a partial DFT, it cannot be computed by the FFT. For its
efÞ cient computation, we shall Þ rst turn the partial DFT into a partial linear convolution, which
can then be converted to a cyclic convolution, because the latter can be computed via DFT and
IDFT.

We begin by rewriting the partial DFT from (9.16) as

(9.17)

UmK+λ =
1

L

N−1∑
�=0

[
x�ω

−mK�
L

]
ω−λ�

L , for λ = 0, 1, · · · , K − 1,

=
1

L

N−1∑
�=0

[
x�ω

−m�
N

]
ω

0.5[(λ−�)2−λ2−�2]
L

=
ω−0.5λ2

L

L

N−1∑
�=0

[
x�ω

−m�
N ω−0.5�2

L

]
ω

0.5(λ−�)2

L

=
ω−0.5λ2

L

L

N−1∑
�=0

g� ·hλ−�,

where we deÞne

g� = x�ω
−m�
N ω−0.5�2

L and hn = ω0.5n2

L , so that hλ−� = ω
0.5(λ−�)2

L .

Observe that {y0, y1, · · · , yK−1} computed by

(9.18) yλ =

N−1∑
�=0

g� ·hλ−�, for λ = 0, 1, · · · , K − 1,

286 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

are the middle K elements (beginning with the N th) obtained from the linear convolution of
the length-N sequence

{g0, g1, · · · , gN−1}
and the length-(N +K−1) sequence

{f0, f1, · · · , fN , fN+1, · · · , fN+K−2} = {h−N+1, h−N+2, · · · , h0, h1, · · · , hK−1}.

Note that we have explicitly stored the data {h−N+1, · · · , h−1, h0, h1, · · · , hK−1} in the
array f in the speciÞed order, so that f0 refers to the Þ rst element in the sequence, and fk

refers to the (k + 1)st element in the sequence as before.
To be speciÞc, for N = 5 and K = 4, we have the stationary sequence

{g0, g1, g2, g3, g4},

which is of length N =5, and the moving sequence

{f0, f1, f2, f3, f4, f5, f6, f7} = {h−4, h−3, h−2, h−1, h0, h1, h2, h3},

which is of length N+K−1 = 8, and their partial linear convolution is illustrated in Figure 9.11.
Hence, the K = 4 elements in sequence {y0, y1, y2, y3} are only partial results of the linear
convolution, and UmK+λ = yλ ·ω−0.5λ2

L /L for λ = 0, 1, 2, 3.
Remark: Observe that hn = h−n and hn is deÞn ed for all integer n, but hn+N 	= hn.

Therefore, the formula given by (9.18) represents neither a full nor a partial periodic convolu-
tion.

9.3.3 The equivalent partial cyclic convolution

From the partial linear convolution example with N =5 and K =4, it is not difÞ cult to see that
{y0, y1, y2, y3} can be computed by the cyclic convolution of the sequences {g0, g1, g2, g3, g4, 0, 0, 0}
and {h0, h1, h2, h3, h−4, h−3, h−2, h−1} (See Figure 9.12). Both sequences are of length
N +K−1 = 8, and the partial cyclic convolution process can be conveniently displayed in its
matrix form:

(9.19)



y0

y1

y2

y3

×
×
×
×


=



h0 h−1 h−2 h−3 h−4 h3 h2 h1

h1 h0 h−1 h−2 h−3 h−4 h3 h2

h2 h1 h0 h−1 h−2 h−3 h−4 h3

h3 h2 h1 h0 h−1 h−2 h−3 h−4

× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×





g0

g1

g2

g3

g4

0

0

0


.

Since a partial cyclic convolution cannot be implemented by FFT/IFFT, we shall compute a
full cyclic convolution of length M = N +K−1 = 8 via FFT/IFFT at a cost proportional to
M log2M , and take the Þ rst K =4 results from the computed {y0, y1, · · · , yM−1}. After yλÕs
are available, we can compute UmK+λ = yλ ·ω−0.5λ2

L /L for λ = 0, 1, · · · , K − 1.
Remarks: To avoid unnecessary complications, we have assumed that the N signal sam-

ples are taken from a time-limited signal x(t) over its duration T. It is, of course, very likely
that the N samples are truncated from an inÞ nitely long xI(t) = x(t) ·P�t(t) by either a

9.3. THE CHIRP FOURIER TRANSFORM 287

Figure 9.11 Interpreting chirp Fourier transform as a partial linear convolution.

f2f3f4f5 f0f1
�

f7 f3f4f5f6

f6

f2

f7

�
f0f1

= g0h3 + g1h2 + g2h1 + g3h0 + g4h−1 = y3.

= g0h1 + g1h0 + g2h−1 + g3h−2 + g4h−3 = y1.

= g0h2 + g1h1 + g2h0 + g3h−1 + g4h−2 = y2.

u7 = g0f7 + g1f6 + g2f5 + g3f4 + g4f3

u6 = g0f6 + g1f5 + g2f4 + g3f3 + g4f2

�

Stationary sequence: {g0, g1, g2, g3, g4}.

array f :
reversed
Shifted

�

u4 = g0f4 + g1f3 + g2f2 + g3f1 + g4f0

Note: The chirp Fourier transform results {y0, y1, y2, y3} have now been computed

Moving sequence: {f0, f1, · · · · · · , f7} = {h−4, h−3, h−2, h−1, h0, h1, h2, h3}.

convolution computes {u4, u5, u6, u7} = {y0, y1, y2.y3} in this step.

u5 = g0f5 + g1f4 + g2f3 + g3f2 + g4f1

= g0h0 + g1h−1 + g2h−2 + g3h−3 + g4h−4 = y0.

�
array f :

by the equivalent partial linear discrete convolution of {gk} and {fk}.

Recall Step 4 of the linear discrete convolution from Figure 9.3: a Òp artialÓ

f6 f7

f7 f6 f5 f4 f3

f5f0 f1 f2 f4f3

f1 f0

f6 f5 f4 f2f3f7

f2

f1 f0

h1h2

g1

h−3h−2h−1h0

g0

g1g0 g2 g3 g4

h3

h1

h−4h−3h−2h−1h0h1h2h3

g4

h−4

h3 h2 h0 h−4h−3h−2h−1

h−2

g3

h3 h2 h1 h0 h−1 h−2

g2

g0 g1 g2 g3 g4

g0 g1

h−3

g3g2g1g0

g4g3g2

g4

h−4

h3h2h1h−4 h−3 h−1 h0

288 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

Figure 9.12 Interpreting chirp Fourier transform as a partial cyclic convolution.

Cyclic convolution of stationary sequence

{g0, g1, g2, g3, g4, 0, 0, 0}

Þr st four results of a cyclic convolution:

y0 = g0h0 + g1h−1 + g2h−2 + g3h−3 + g4h−4 + 0 + 0 + 0.

y2 = g0h2 + g1h1 + g2h0 + g3h−1 + g4h−2 + 0 + 0 + 0.

y3 = g0h3 + g1h2 + g2h1 + g3h0 + g4h−1 + 0 + 0 + 0.

�

and moving sequence

{h0, h1, h2, h3, h−4, h−3, h−2, h−1}:

The chirp Fourier transform results {y0, y1, y2, y3} are the

cyclic shift

0

0

h1

h2

h3

0

g0

g1

g3

g4

y1 = g0h1 + g1h0 + g2h−1 + g3h−2 + g4h−3 + 0 + 0 + 0.

four times
cyclic shift

h0

h−2

h−3

g2

�

h−4

h−1

h2 h1

g4

h3h−4h−3h0

0g0 g2 g3 0

h−2h−1

g1 0

9.3. THE CHIRP FOURIER TRANSFORM 289

rectangular window or one of the data weighing windows w(t) of length T = N�t. Using
the DFT on the windowed N -sample sequence, we obtain Ur as the samples of 1

N UI(f) =
1
N {XI(f)∗W (f)}, where W (f) = F{w(t)}. Therefore, the use of windows changes only
the function beneath the DFT samples, but it does not change how we obtain more values of
that function, be it UI(f) or XI(f). Therefore, the chirp Fourier transform can be applied in
the same manner regardless how the N samples are obtained or whether they are modiÞ ed by
windows.

References

1. A. Ambardar. Analog and Digital Signal Processing. Brooks/Cole Publishing Company,
PaciÞ c Grove, CA, second edition, 1999.

2. R. N. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill Higher Ed-
ucation, A Division of The McGraw-Hill Companies, San Francisco, CA, third edition,
2000.

3. W. L. Briggs and V. E. Hensen. The DFT: An Owner’s Manual for the Discrete Fourier
Transform. The Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995.

4. E. O. Brigham. The Fast Fourier Transform and Its Applications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1988.

5. B. Porat. A Course in Digital Signal Processing. John Wiley & Sons, Inc., New York,
1997.

6. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in C++: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK,
second edition, 2001.

7. C. F. Van Loan. Computational Frameworks for the Fast Fourier Transform. The Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1992.

Chapter 10

Applications of the DFT in Digital
Filtering and Filters

In this chapter we study the roles the DFT (and IDFT) plays in signal Þ ltering operations
deÞ ned by the linear convolution of two sequences: the sequence {x�} of length L1 represents
the sampled input signal, which can be as long as it needs to be; the sequence {h�} of length
L2 represents the digital Þ lter, and L2 is assumed to be much shorter than L1. Since we
have already covered the various mathematical tools and computational algorithms needed for
digital Þ ltering and Þ lters to be discussed in this chapter, we shall begin by connecting digital
Þ ltering to the various topics we presented in the Þ rst part of this book.

10.1 The Background

From what we have learned in Chapter 9, the linear convolution of the length-L1 sequence
{x�} with the length-L2 Þlter {h�} produces the output sequence {y�} of length L1+L2−1,
which we previously expressed as

(10.1) {y�} = {x�}∗{h�}.

The DFT-based fast algorithm for computing the convolution result {y�} was presented in
Section 9.2.5. For cases when the length of the convolution is too long for a single DFT, we
show how to section a long sequence for linear convolution in Section 9.1.2, and we show how
to implement the sectioned linear convolution via DFT/IDFT in Section 9.2.7. Therefore, if
we are given the Þ lter in the form of a Þ nite sequence {h�}, we already know how to compute
the output {y�} via DFT/IDFT, and it goes without saying that the DFT/IDFT are computed
by the FFT/IFFT. (The FFT algorithms are covered in Part II of this book.)

After the time-domain output sequence {y�} is computed, we can examine its frequency
content by computing the DFT of the sequence {y�} (possibly windowed) as we have discussed
thoroughly in Chapter 8Ñrecall, in particular, that the computed DFT coefÞ cients approximate
the sample values of the Fourier transform of the Þ ltered sequence {y�}; hence, a Þ lter designer
can always check whether the Þlter has the desired effect or it needs further tweaking. (More on
Þlter construction later.) Recall also that according to the Time-Domain Discrete Convolution
Theorem 7.2 proved in Chapter 7, we can relate the Fourier transform of the output to the

291

292 CHAPTER 10. DFT IN DIGITAL FILTERING AND FILTERS

Fourier transforms of the input and the Þ lter, namely,

(10.2) F{{y�}} = F{{x�}∗{h�}} = F{{x�}}·F{{h�}};

hence, we can investigate further how the Fourier transform of the input signal is modiÞ ed
by the Þ lter by forming the analytical ĤI(F), the Fourier transform of the digital Þ lter, using
Formula (7.7) from Chapter 7 on the Þ nite sequence {h�}.

It turns out that the DFT and IDFT can also be used to construct the digital Þ lter {h�} if we
know how we want to modify the frequency content of the input signalÑ e.g., the elimination or
attenuation of speciÞ c frequencies is among many other commonly desired effects. Before we
proceed with the Þ lter construction, it is useful to bring the mathematical concepts involved
in analog Þlter ing into the picture; the analog Þlter s are used to alter the Fourier transform
X(f) of the input signal x(t) so that the Fourier transform Y (f) of the output signal y(t) has
the desired amplitude and phase characteristics, and this is accomplished in the time-domain
by convolving the time-domain signal x(t) with the Þ lter function h(t). The analog Þlter s
are physical devices (e.g., circuits formed by resistors, capacitors, and inductances) which
implement the linear convolution of h(t) and the continuous-time signal x(t). By invoking the
Convolution Theorem 6.1, we obtain the Fourier transform pair:

(10.3) y(t) = x(t)∗h(t)⇐⇒ Y (f) = X(f)·H(f).

Since the desired Y (f) is the product of X(f) and H(f), the effects desired on Y (f) lead to
the proposed H(f), which can then serve as the frequency-domain speciÞ cation of the Þ lter.
For arbitrarily shaped H(f), the IDFT of appropriately sampled {H�} (possibly windowed)
gives us the digital Þ lter {h�} (which may be further windowed), which convolves with the
sampled input signal {x�} to produce {y�}Ñth e sequence which approximates the sampled
values of y(t).

10.2 Application-Oriented Terminology

Since digital Þ ltering has been practiced in a broad range of disciplines for a long time, the
same mathematical ideas and terms were called different names when they were used in dif-
ferent applications. In this section we shall introduce some commonly used terminology from
the application viewpoint. At the same time, we note that the mathematical terms and the rela-
tionship the new terminology represents are those we have established and used in a consistent
manner in the Þ rst nine chapters of this book.

1. Ò h(t): impulse response of the analog Þ lterÓ: This term comes from interpreting the
convolution integral

δ(t) ∗ h(t) =

∫ ∞

−∞
δ(λ)h(t − λ) dλ = h(t)

as the Þ ltering of an impulse function δ(t) by h(t) with the output, or response, being
h(t) itself; this term also represents a physical concept, because the analog Þ lter is a
physical device which implements the linear convolution of h(t) and a continuous-time
input signal x(t), including x(t) = δ(t).

Other names for h(t) include

10.2. APPLICATION-ORIENTED TERMINOLOGY 293

• the Þ lter

• the Þ lter impulse (response) function

• the time-response function of the Þ lter

• the Þ lter (time-domain) impulse response

• the system (time-domain) impulse response

2. Ò y(t) = x(t) ∗ h(t): a linear-system convolutionÓ : The phrase refers to a system char-
acterized by the continuous-time output y(t), which results from convolving the system
input x(t) with the system impulse response h(t). The system is linear because

(10.4) z(t) =
(
αx1(t)+βx2(t)

)
∗h(t) = αx1(t)∗h(t)+βx2(t)∗h(t).

3. Ò H(f): frequency response of an analog Þ lter (or a linear system)Ó: Recall that, in
mathematical terms, H(f) is simply the Fourier transform of the impulse response h(t).
Other names for H(f) include

• the frequency-response function of the Þ lter

• the Þ lter frequency-domain response

• the system frequency-domain response

• the frequency speciÞ cation of the Þ lter

• the analog frequency function

• the transfer factor

• the transfer function

• the system function

If H(f) is complex-valued, we can express

(10.5) H(f) = |H(f)|ejφ(f),

where the magnitude spectrum |H(f)| is called the Òmagni tude response (function)Ó of
the Þ lter, and the phase spectrum φ(f) is called the Òphas e response (function)Ó of the
Þlter .

4. ÒR eal-valued H(f): a zero-phase-shift Þ lterÓ: From H(f) = |H(f)|ejφ(f) we see that
the phase spectrum φ(f) = 0 if H(f) is real-valued. Since the Fourier transform of an
even function is purely real, the impulse response h(t) of the zero-phase-shift Þ lters is
an even function. (Note that the phase φ(f)=0 also results in H(f) = |H(f)|; hence,
H(f) is also an even function.)

5. ÒF inite-Impulse Response (FIR) Þ ltersÓ: This term refers to the discrete linear convolu-
tion formula involving sample values (or their approximations) of the impulse response
h(t). The sample sequence {h�} must be Þ nite (as implied by the name of the Þ lter),
and it is called the impulse response of the digital Þ lter.

The FIR Þ lters are also called Ò nonrecursive Þ lters.Ó

294 CHAPTER 10. DFT IN DIGITAL FILTERING AND FILTERS

6. Ò HI(f): transfer function of the FIR Þ lterÓ: The Fourier transform of the Þ nite Þlter
sequence {h�} is called the transfer function of the digital Þ lter.

Recall that the Fourier transform of a sequence has two forms and they were examined
in detail in Chapter 7. When HI(f) is referred to as the Ò transfer functionÓ of the Þ nite
sequence {h�}, it is understood that HI(f) is expressed in terms of {h�} instead of the
sum of the shifted replicas of H(f).

When dealing with the Þ nite L2-sample sequence {h�}, it is also convenient to use
ĤI(F) or H̃(θ), where the digital frequency F = f�t, and the digital angular frequency
θ = 2πF. Recall that in Chapter 7 both ĤI(F) and H̃I(θ) were shown to be equivalent
representation of H(f), with −0.5 ≤ F ≤ 0.5, −π ≤ θ ≤ π, and −fmax ≤ f ≤ fmax.
The Nyquist frequency fmax = 1/(2�t) corresponds to F = 0.5 and θ = π.

7. ÒIdeal low-pass, high-pass, and band-pass FIR Þ ltersÓ: These terms refer to those digital
Þlter s with frequency speciÞcatio n Ĥ(F) deÞ ned by the ideal waveforms given below.

1

Ideal Low-Pass Ĥ(F) Ideal High-Pass Ĥ(F)

−0.5

1 1

0.5 −0.5

Ideal Band-Pass Ĥ(F)

FF F

0.50.5 −0.50 0 0

In each case, the name of the Þ lter reß ects where the frequency-response Ĥ(F) is nonzero,
because

X̂(F)·Ĥ(F) =

{
X̂(F) if Ĥ(F) = 1; (f ∈ passing band)

0 if Ĥ(F) = 0. (f ∈ stop band)

8. ÒIdeal band-stop and notch FIR Þ ltersÓ: By reversing the passing band and stop band of
an ideal band-pass Þ lter, we obtain a band-stop Þ lter:

Ideal Band-Stop Ĥ(F)

1 1

Ideal Notch Ĥ(F)

FF

−0.5−0.5 0.5 0.500

A notch Þ lter is a band-stop Þ lter with very narrow stop band, which is useful in re-
moving an interfering signal of certain frequencyÑ e.g., a notch Þ lter can be designed to
eliminate the 60 Hz sinusoidal interference from an ECG signal. (The presence of 60 Hz
(or 50 Hz) is caused by the electrical power line.)

10.3 Revisit Gibbs Phenomenon from the Filtering Viewpoint

In Chapter 3, Section 3.10.4, we studied the Gibbs phenomenon exhibited by the truncated
N -term Fourier series of a periodic function with jump discontinuities (see Figures 3.1, 3.2,
3.6, 3.7, and 3.11.) In Section 3.10.8 we showed that the truncation of a Fourier series can be

10.3. REVISIT GIBBS PHENOMENON 295

understood as the result of applying an N -point rectangular frequency-domain window (see
Figure 3.17) to the Fourier coefÞ cients of

(10.6) gp(t) =

∞∑
k=−∞

Ckej2πkt/T .

By interpreting the N -point spectral window as the N Fourier series coefÞ cients of a periodic
time-domain function wp(t) (expressed as the Dirichlet kernel in Section 3.10.5), the Gibbs
phenomenon was shown to be the result of the periodic convolution of gp(t) and wp(t) in the
time domain.

To view the Gibbs effect from the Þ ltering viewpoint, we shall interpret the N -point se-
quence {1, 1 · · · , 1} as the N equally spaced sample values taken from the frequency response
of an ideal low-pass analog Þlter:

(10.7) H(f) =

{
1 if − fc ≤ f ≤ fc

0 otherwise
,

where fc is the desired cutoff frequency, and we must have 2fc = N/T to reßect the length of
the N -point rectangular spectral window.

In Chapter 7, Section 7.5, we show that the Fourier transform of the periodic gp(t) can be
formally deÞned as an impulse train weighted by the Fourier series coefÞ cients, namely,

(10.8) G(f) = F{gp(t)} =

∞∑
k=−∞

Ckδ

(
f − k

T

)
.

Hence, assuming that N = 2n+1, the Fourier transform Y (f) of the Þ lter output y(t) can be
expressed as

(10.9)

Y (f) = G(f)H(f) =

∞∑
k=−∞

Ck

[
H

(
k

T

)
δ

(
f − k

T

)]

=

n∑
k=−n

Ckδ

(
f − k

T

)
.

Since the impulse response h(t) = F−1{H(f)}, and for the low-pass H(f) proposed above
we have obtained the analytical h(t) in Example 5.4 (Figure 5.6),

h(t) =
sin(2πfct)

πt
= 2fc sinc(2fct),

we can therefore express the output of the Þ lter as

yp(t) = gp(t) ∗ h(t).

(As we pointed out before, the function sinc(x) = sin(πx)/(πx) is not periodic.) Hence the
Gibbs effect exhibited by the periodic output yp(t) is caused by the Þ ltering of the periodic
input gp(t) by the impulse response h(t) of an ideal low-pass Þ lter.

296 CHAPTER 10. DFT IN DIGITAL FILTERING AND FILTERS

10.4 Experimenting with Digital Filtering and Filter Design

In this section we shall demonstrate the use of DFT and IDFT in digital Þ ltering and Þ lter
design by constructing a low-pass FIR Þ lter. Let us assume that the signal data to be Þ ltered has
frequency components either lower that 30 Hz or higher than 50 Hz, and that a front-end analog
anti-aliasing Þ lter bandlimits the signal to 80 Hz. Suppose that we need a low-pass digital Þ lter
to eliminate the frequency components above 30 Hz. From the information we have about the
signal to be Þ ltered, an ideal low-pass Þlte r may be deÞ ned with a cutoff frequency fc =40 Hz:

(10.10) H(f) =

{
1 if − 40 ≤ f ≤ 40;

0 otherwise.

Since we assume that the signal to be Þ ltered is band-limited to fmax = 80 Hz, we must choose
the sampling rate R = 1/�t > 2fmax to satisfy the Nyquist condition. Let us set �t = 0.005,
which allows fmax up to R/2 = 100 Hz; hence, we only need to sample H(f) to cover the
range from−100 Hz to 100 Hz as shown below.

0−40

Ideal Low-Pass H(f)

f Hz
100−100

1

N�f = 200 Hz

40

To obtain the FIR Þ lter represented by the Þ nite N -sample impulse response {h�}, we need
to choose the length N . Since the Þ lter length N is a parameter of the design, which can be
easily changed if the digital Þ lter {h�} turns out to be too long for the Þ ltering operation to be
performed efÞ ciently, we may begin with a sufÞ ciently large N to meet the design speciÞcatio n
H(f). If we decide later to shorten the Þ lter sequence {h�}, it can be truncated using an
appropriately chosen data-weighting window (as discussed in Chapter 8) provided that the
Þ lterÕs frequency response HI(f) still approximates H(f) to our satisfaction.

To demonstrate this process using the proposed low-pass Þ lter, we shall try N = 256.
With �t = 0.005 sec, we have N�t = 256×0.005 = 1.28 sec, and H(f) will be sampled
at �f = R/N = 200/256 Hz for the IDFT computation. We can now experiment with the
digital Þ ltering and Þ lter design as outlined in the following steps:

Step 1. DeÞn e the 256 samples of H(f) by the sequence

{H−127, · · · , H−51, H−50, · · · , H−1, H0, H1, · · · , H50, H51, · · · , H128}
={0, 0, . . . , 0︸ ︷︷ ︸

76 zeros

, 1
2 , 1, 1, . . . , 1, . . . , 1, 1︸ ︷︷ ︸

101 ones

, 1
2 , 0, 0 . . . , 0︸ ︷︷ ︸

77 zeros

}.

Recall that because N = 256 is an even number, the sequence {Hr} begins at −100+

�f Hz and ends at 100 Hz. Note that, following what we have discussed in detail in
Section 4.6.2 in Chapter 4, we have split the one at f = 51�t = 39.84 Hz and use

10.4. DIGITAL FILTERING AND FILTER DESIGN 297

one-half to replace the zero at f =−39.84 Hz to maintain symmetry in the zero-padded
sampled H(f), and this results in setting H±51 = 1

2 (as shown in the deÞ ning sequence
and also in Figure 10.1).

Figure 10.1 Sampling H(f) to obtain impulse response of a FIR Þ lter.

−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

−100 −50 0 50 100
−20

0

20

40

60

80

Samples of filter specification H(f)

Finite impulse response (FIR) of the proposed low−pass digital filter

FIR {h
k
} = IDFT of {H

r
},

each H
r
 denotes a

sample of H(f) divided
by N∆t = 1.28 sec.

{H
r
}: 256 samples of H(f), r = −127, ..., 128.

(Each H(f) value has been divided by N∆t = 256x0.005 = 1.28 sec.)

Step 2. For the chosen length N = 256, compute the N -sample Þ lter sequence {h�} by the
IDFT:

(10.11) h� =

N/2∑
r=−N/2+1

H̃re
j2πr�/N , for −N/2 + 1 ≤ � ≤ N/2,

where H̃r = 1
N�tHr, because ideally DFT({h�}) = 1

N { 1
�tHr} when Hr denotes the

samples of the Fourier transform H(f) = F{h(t)} evaluated at f = r
N�t . (The exact

relationships were studied in Chapter 7, Section 7.6.) For N = 256 and �t = 0.005

seconds, we have N�t = 1.28 seconds here. The 256-sample sequence {H̃r} and the
computed 256-sample {h�} are shown together in Figure 10.1.

Step 3. Generate a test signal x(t):

(10.12) x(t) = 3− 4 cos(2πt) + 3 cos(12πt)− 1.5 cos(104πt) + 1.2 cos(150πt).

Step 4. Sample the test signal at intervals of�t = 0.005 seconds for the duration of 3 seconds
to obtain the M -sample sequence {x�}, where M =600. The 600-sample sequence {x�}
and its magnitude spectrum (computed by the DFT) are shown in Figure 10.2.

298 CHAPTER 10. DFT IN DIGITAL FILTERING AND FILTERS

Figure 10.2 Sampled noisy signal x(t) and its magnitude spectrum.

0 0.5 1 1.5 2 2.5 3

−5

0

5

10

0

0.5

1

1.5

2

2.5

3

3.5
The magnitude spectrum of the sampled sequence {x

k
}

0 300−299

DFT coefficients {X
r
} for

The 600 samples of noisy signal x(t)

∆t = 0.005 sec M∆t = 3 sec M = 600

−255 225156−156

r (f
r
 = r/(M∆t) = r/3 Hz)

The magnitude of computed

r ∈ [−299, 300]

10.4. DIGITAL FILTERING AND FILTER DESIGN 299

Step 5. Compute the linear convolution of the M -sample sequence {x�} and the N -sample
Þlter sequence {h�}.
Recall from Chapter 9 that we need to convolve {x0, x1, . . . , x599} with

{f0, f1, . . . , f255} = {h−127, . . . , h−1, h0, h1, . . . , h128}.

As discussed in Section 9.2.5 in Chapter 9, the linear convolution of {x�} and {f�}
should be converted to a cyclic convolution of two zero-padded sequences with length
(of both) equal to M+N−1, because the latter can then be computed by two DFTs and
one IDFT (via FFTs and IFFT). The result shown in Figure 10.3 is obtained by calling
the function conv(f,x) available from MATLAB, because it has implemented the fast
algorithm for the linear convolution of two sequences of arbitrary lengths.

Figure 10.3 Discrete linear convolution of {x�} and FIR Þlter {h�}.

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5

10

−100 0 100 200 300 400
−20

0

20

40

60

80

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5

10

 FIR (Finite Impulse Response)
= {h

−127
,..., h

0
, ..., h

128
}

= {f
0
, f

1
, ..., ..., f

255
}

M = 600 samples
of noisy signal x(t)
(∆t = 0.005 sec)

Discrete linear convolution result (scaled by ∆t = 0.005)

N = 256 samples

 M+N−1 = 855
 filtered samples

Recall from Chapter 9 that the discrete linear convolution of {x�} and {h�} (multiplied
by�t) approximates the continuous linear convolution of the Þ nite-duration noisy signal
x(t) and the analog Þlter h(t), so the end effects in the graph shown in Figure 10.3
are due to the Þ nite length of x(t). However, we can also use the same example to
demonstrate how to Þ lter a knowingly periodic (and hence inÞ nite) sequence.

For this particular example, the signal x(t) is periodic and we have sampled it for three
full periods, so the entire M -sample sequence {x�} can be interpreted as one period of an
inÞn itely long periodic sequence. Because the linear convolution of an inÞ nite periodic
function with a Þ nite h(t) can be deÞ ned by equivalent periodic convolution, the same
is true for the discrete linear convolution when one sequence is periodic (and hence
inÞn ite). Therefore, in this and other similar cases, we can eliminate the end effects by

300 CHAPTER 10. DFT IN DIGITAL FILTERING AND FILTERS

performing periodic convolution of the noisy sequence {x�} and the zero-padded {h�}.
Both sequences have now M = 600 samples, and following the Time-Domain Cyclic
Convolution Theorem 9.1, we use two DFT and one IDFT to compute {x�} � {f�},
where {f�} represents the zero-padded {h�} as shown in Figure 10.4. The convolution
results shown in Figure 10.4 have been multiplied by �t = 0.005 so they represent
samples of Þ ltered signal y(t).

Figure 10.4 Discrete periodic convolution of {x�} and FIR Þlter {h�}.

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5

10

0 100 200 300 400 500 600 700 800
−20

0

20

40

60

80

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5

10

Zero pad filter {h
k
} to obtain

sequence {f
k
}, k = 0, 1, ..., 599,

for periodic convolution.

Assuming the M = 600
samples are taken
from integer number
of periods.

The cyclic convolution
of two 600−sample
sequences produces
exactly 600 filtered
samples.

Step 6. Compute the DFT of the M -sample output {y�} = �t ({x�} � {f�}) to evaluate the
effect of the Þ lter. That is, we compute

(10.13) Yr =
1

M

M−1∑
�=0

y�e
−j2πr�/M , for � = 0, 1, . . . , M − 1.

The Þ ltered signal samples {y�} and the magnitude of the computed DFT coefÞ cients of
the Þ ltered sample sequence are shown in Figure 10.5.

Step 7. If the digital Þ lter {h�} needs to be truncated, one may consider using the data-
weighting windows presented in Chapter 8. For each truncated (and possibly modiÞ ed)
sequence {h�}, compute and plot its DFT results, and compare that with the design spec-
iÞcatio n H(f). When we are satisÞed with the truncated {h�}, we may repeat Steps 3—6
to determine the effect of the Þ lter on the test signal. (Steps 3—6 can also be repeated for
different test signals.)

Note that the entire process (as described by steps 1—7)can be repeated if we need to ac-
commodate any of the following changes in the Þ lter design: (i) the bandwidth of the expected

10.4. DIGITAL FILTERING AND FILTER DESIGN 301

Figure 10.5 Computed DFT coefÞ cients of the Þ ltered sample sequence.

0 0.5 1 1.5 2 2.5 3

−5

0

5

10

0

0.5

1

1.5

2

2.5

3

3.5
The magnitude spectrum of the digitally filtered signal

Clean signal samples produced by the FIR digital filter

for r, k ∈ [−299, 300]

∆t = 0.005 M = 600 M∆t = 3 sec

0 100 200 −100−200 300−299

r (f
r
 = r/(M∆t) = r/3 Hz)

The magnitude of computed

DFT coefficients {Y
r
} of

the filtered samples {y
k
}

302 CHAPTER 10. DFT IN DIGITAL FILTERING AND FILTERS

signal data is changed; (ii) the length N of the Þ lter is changed; (iii) the desired frequency
response H(f) of the Þ lter is changed, including the use of different H(f) for high-pass,
band-pass, or notch Þ lter.

Our general discussion of the experimental procedure above demonstrates how the DFT
and IDFT (hence the FFT and IFFT) can be used in digital Þ ltering and Þ lter construction, and
provides background for readers to pursue specialized Þ lter applications.

References

1. A. Ambardar. Analog and Digital Signal Processing. Brooks/Cole Publishing Company,
PaciÞ c Grove, CA, second edition, 1999.

2. R. N. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill Higher Ed-
ucation, A Division of The McGraw-Hill Companies, San Francisco, CA, third edition,
2000.

3. W. L. Briggs and V. E. Hensen. The DFT: An Owner’s Manual for the Discrete Fourier
Transform. The Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995.

4. E. O. Brigham. The Fast Fourier Transform and Its Applications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1988.

5. R. W. Hamming. Digital Filters. Prentice-Hall, Inc., Englewood Cliffs, NJ, third edition,
1989.

6. B. Porat. A Course in Digital Signal Processing. John Wiley & Sons, Inc., New York,
1997.

Part II

Fast Algorithms

303

Chapter 11

Index Mapping and Mixed-Radix
FFTs

As we indicate in Part I of this book, it is well known that the fast Fourier transform (FFT)
algorithm can be used to speed up the computation of the DFT if its length N is a power of
two. The family of FFT algorithms speciÞcally designed to handle composite N = 2n are
called the radix-2 FFTs. Although the radix-2 FFT is the most widely known and most widely
available, it is, in fact, a special case of the arbitrary factor (mixed-radix) algorithm proposed
by Cooley and Tukey in [16]. Since the radix-2 FFT Þ ts the divide-and-conquer paradigm, it
is usually presented from that perspective, and the general mixed-radix FFTs are easily left
out because the divide-and-conquer paradigm does not apply when N is the product of mixed
factors.

In this chapter we explore ways to organize the mixed-radix DFT computation facilitated
by index mapping via multidimensional arrays. This approach would allow us to study a large
number of mixed-radix FFT algorithms in a systematic manner, including the radix-2 special
case, and it also paves the way for the more specialized prime factor FFT algorithms covered
in Chapter 13.

11.1 Algebraic DFT versus FFT-Computed DFT

Given N equally spaced discrete-times samples {x0, x1, . . . , xN−1}, the algebraic DFT for-
mula used throughout Part I of this book was given by

(11.1) Xr =
1

N

N−1∑
�=0

x� ωr�
N

, ωN ≡ e−j2π/N , for r = 0, 1, . . . , N − 1,

which we derive in Chapter 4 by passing a Þ nite Fourier series as an interpolating trigonometric
polynomial through the N given samples; the associated IDFT formula allows us to recover
the time-domain sequence:

(11.2) x� =

N−1∑
r=0

Xr ω−r�
N , for � = 0, 1, . . . , N − 1.

305

306 CHAPTER 11. INDEX MAPPING AND MIXED-RADIX FFTS

While the FFTs are simply fast algorithms developed to compute the DFT, we need to be
aware of the inconsistency concerning the placement of the scaling factor Ò 1/N Ó i n the DFT
formula, because such inconsistency also exists in the mathematical software which imple-
ments the FFT algorithms. It turns out that, in the FFT literature, it is common not to include
division by N in the computed DFT, because the development of fast algorithms can be quite
involved, and it is cumbersome to carry the scaling factor 1/N all the way through while its
omission has no effect on the resulting algorithms.

Following the convention in the FFT literature, all FFT algorithms derived in Part II of this
book compute the DFT without the scaling factor 1/N ; i.e., for algorithmic development the
computed DFT is deÞned by

(11.3) Xr =

N−1∑
�=0

x� ωr�
N

, ωN ≡ e−j2π/N , for r = 0, 1, . . . , N − 1.

Since the IDFT must return the time-domain sequence {x�}, the computed IDFT is deÞ ned by

(11.4) x� =
1

N

N−1∑
r=0

Xr ω−r�
N , for � = 0, 1, . . . , N − 1.

Observe that the Inverse FFT (IFFT) algorithms for computing the IDFT can be obtained from
the FFT algorithms by redeÞ ning ωN ≡ e+j2π/N after including division by N . Therefore, the
IFFT algorithm is immediately available for every FFT algorithm developed.

11.2 The Role of Index Mapping

Index mapping plays a fundamental role in all mixed-radix algorithmsÑ efÞ cient algorithms
are developed by pairing up different index mapping schemes: one is deployed on the input data
sequence, and the other one is deployed on the DFT output. We consider Þ rst the general case
when the factors of N are arbitrary integers. To establish the notation and make explicit the
index manipulation required, we begin with a composite N with three factors. The following
notations will be used consistently throughout this chapter:

• Given three integers N0, N1, and N2, we shall use A[N0, N1, N2] to declare a 3-D
array of dimensions N0-by-N1-by-N2; each element of A will be uniquely identiÞed
as A[n0, n1, n2], where each dimensional index nk can take on values between 0 and
Nk−1.

• For N = N0×N1×N2, the 1-D input array x of length N is to be identiÞed with
(or mapped to) the 3-D array A[N0, N1, N2]. Assuming (without loss of generality)
that x�Õs are stored in (or mapped to) A using column-major scheme, we shall use
A[n0, n1, n2] to denote x� for � = n2N1N0 + n1N0 + n0, where 0 ≤ n0 ≤ N0−1,
0 ≤ n1 ≤ N1−1, and 0 ≤ n2 ≤ N2−1.

• With the dimensions of A[N0, N1, N2] Þxed , we now require the 1-D output array X

(of length N) to be identiÞ ed with (or mapped to) a 3-D array B[N2, N1, N0]. Note
that because we reverse the dimensions of the output array, we now use B[n̂2, n̂1, n̂0] to
denote Xr for r = n̂0N1N2 + n̂1N2 + n̂2 according the column-major scheme, where
0 ≤ n̂2 ≤ N2−1, 0 ≤ n̂1 ≤ N1−1, and 0 ≤ n̂0 ≤ N0−1. Observe that the numerical
range covered by dimensional index n̂k is consistent with that covered by nk.

11.2. THE ROLE OF INDEX MAPPING 307

To develop the three-factor mixed-radix FFT, we shall deploy the index mapping schemes for
x� and Xr to decouple the length-N DFT into multiple short DFT or DFT-like transforms of
lengths N0, N1 and N2. The index mapping scheme is Þ rst deployed on the input data to be
transformed by the DFT formula deÞ ned by (11.3) (without division by N):

(11.5) Xr =

N−1∑
�=0

x� ωr�
N

, ωN ≡ e−j2π/N , for r = 0, 1, . . . , N − 1;

that is, we use A[n0, n1, n2] to denote x� for � = n2N1N0 + n1N0 + n0, and we obtain the
mathematically equivalent DFT formula involving array A and its indices:

for r := 0 to N − 1 do
Xr :=

∑N0−1
n0=0

∑N1−1
n1=0

∑N2−1
n2=0 A[n0, n1, n2] ω

r(n2N1N0+n1N0+n0)
N .

end for

Next the output index mapping r = n̂0N1N2 + n̂1N2 + n̂2 is deployed so we can obtain a
mathematically equivalent formula involving also array B and its indices:

for n̂0 := 0 to N0 − 1 do
for n̂1 := 0 to N1 − 1 do

for n̂2 := 0 to N2 − 1 do
r := n̂0N1N2 + n̂1N2 + n̂2

B[n̂2,n̂1,n̂0] :=
∑N0−1

n0=0

∑N1−1
n1=0

(∑N2−1
n2=0 A[n0,n1,n2] ω

r(n2N1N0)
N

)
ω

r(n1N0)
N ωr n0

N

Xr := B[n̂2, n̂1, n̂0]

end for
end for

end for

The decoupling process begins with the innermost partial sumÑ the expression in bracketsÑ
and the entire process is covered in the following three subsections.

11.2.1 The decoupling process—Stage I

In preparation for the decoupling process to occur, we make explicit the computation of every
innermost partial sumÑ the bracketed expression in the summation formulaÑ via double for-
loops indexed by n0 and n1, and each computed partial-sum is saved in a 2-D temporary
working array V [N0, N1] as shown below:

308 CHAPTER 11. INDEX MAPPING AND MIXED-RADIX FFTS

for n̂0 := 0 to N0 − 1 do
for n̂1 := 0 to N1 − 1 do

for n̂2 := 0 to N2 − 1 do
r := n̂0N1N2 + n̂1N2 + n̂2

for n0 := 0 to N0 − 1 do
for n1 := 0 to N1 − 1 do

V [n0, n1] :=
∑N2−1

n2=0 A[n0, n1, n2]ω
r(n2N1N0)
N

end for
end for
B[n̂2, n̂1, n̂0] :=

∑N0−1
n0=0

∑N1−1
n1=0 V [n0, n1] ω

r(n1N0)
N ωrn0

N

Xr := B[n̂2, n̂1, n̂0]

end for
end for

end for

On the surface, the value of each partial sum V [n0, n1] appears to depend on all three (output
array) indices n̂0, n̂1, n̂2 due to the occurrence of r = n̂0N1N2+n̂1N2+n̂2 in the exponent of
ω

r(n2N1N0)
N . If such dependency cannot be reduced, we must compute the entire V array for

all different values of n̂0, n̂1, and n̂2 as we do hereÑ inside the triple for-loops indexed by n̂0,
n̂1, and n̂2, and no decoupling can occur. Fortunately, this does not have to be the caseÑ we
show next how to compute V [n0, n1] independent of both n̂0 and n̂1 by deploying the output
index mapping scheme on the exponent itself, and we obtain the following result after simple
expansion:

r(n2N1N0) = (n̂0N1N2 + n̂1N2 + n̂2)(n2N1N0)

= (n̂0N1N2 + n̂1N2)(n2N1N0) + n̂2(n2N1N0)

= n̂0n2N1N2N1N0 + n̂1n2N2N1N0 + n̂2(n2N1N0)

= N(n̂0n2N1 + n̂1n2) + n̂2(n2N1N0) (∵ N = N0N1N2)

= Nλ + n̂2n2N1N0, where λ = n̂0n2N1 + n̂1n2.

Because N = N0N1N2, ωN
N = 1, and ωN1N0

N = ωN2
, we can further simplify the term

ω
r(n2N1N0)

N = ωNλ

N
ωn̂2n2N1N0

N
= ωn̂2n2

N2
,

which is now independent of n̂0 and n̂1 and so is the content of V [N0, N1]Ñthat means we
only need to update array V as n̂2 varies from 0 to N2 − 1. This also means that we compute
V only N2 times (instead of N = N0N1N2 times). Since we can save all N2 copies of
V [N0, N1] in a 3-D array A1[N0, N1, N2], we can compute A1[n0, n1, n̂2] in an independent
triple for-loop indexed by n0, n1, and n̂2 as shown below. (Observe that the occurrence of
V [n0, n1] in the summation formula has now been replaced by A1[n0, n1, n̂2].)

11.2. THE ROLE OF INDEX MAPPING 309

for n0 := 0 to N0 − 1 do
for n1 := 0 to N1 − 1 do

for n̂2 := 0 to N2 − 1 do
A1[n0, n1, n̂2] :=

∑N2−1
n2=0 A[n0, n1, n2] ω

n̂2n2
N2

end for
end for

end for
for n̂0 := 0 to N0 − 1 do

for n̂1 := 0 to N1 − 1 do
for n̂2 := 0 to N2 − 1 do

r := n̂0N1N2 + n̂1N2 + n̂2

B[n̂2, n̂1, n̂0] :=
∑N0−1

n0=0

(∑N1−1
n1=0 A1[n0, n1, n̂2] ω

r(n1N0)
N

)
ωrn0

N

Xr := B[n̂2, n̂1, n̂0]

end for
end for

end for

Note that a short DFT of length N2 is deÞn ed by the for-loop indexed by n̂2:

for n̂2 := 0 to N2 − 1 do
A1[n0, n1, n̂2] =

∑N2−1
n2=0 A[n0, n1, n2] ω

n̂2n2
N2

end for

Since each short DFT (of length N2) is computed by the inner loop of the triple for-loop in-
dexed by n0, n1, and n̂2, we need to compute, in total, N0N1 (or N/N2) such short transforms
during the Þ rst stage of the decoupled computation.

11.2.2 The decoupling process—Stage II

To prepare for the next stage of decoupling, we shall do the same with the currently innermost
partial sumÑ the expression in bracketsÑ in the remainder of the summation formula. This
time we may use a 1-D temporary working array V [N0] to save the N0 partial sums explicitly
computed by a newly added for-loop indexed by n0:

310 CHAPTER 11. INDEX MAPPING AND MIXED-RADIX FFTS

for n0 := 0 to N0 − 1 do
for n1 := 0 to N1 − 1 do

for n̂2 := 0 to N2 − 1 do
A1[n0, n1, n̂2] =

∑N2−1
n2=0 A[n0, n1, n2] ω

n̂2n2
N2

end for
end for

end for
for n̂0 := 0 to N0 − 1 do

for n̂1 := 0 to N1 − 1 do
for n̂2 := 0 to N2 − 1 do

r := n̂0N1N2 + n̂1N2 + n̂2

for n0 := 0 to N0 − 1 do

V [n0] :=
∑N1−1

n1=0 A1[n0, n1, n̂2] ω
r(n1N0)
N

end for
B[n̂2, n̂1, n̂0] :=

∑N0−1
n0=0 V [n0] ω

rn0
N

Xr := B[n̂2, n̂1, n̂0]

end for
end for

end for

To decouple the computation of array V [N0], we again analyze the dependence of the term
ω

r(n1N0)
N on the output indices n̂k by expanding the exponent itself using the index mapping

r = n̂0N1N2+n̂1N2+n̂2 with the following result:

r(n1N0) = (n̂0N1N2 + n̂1N2 + n̂2)(n1N0)

= n̂0n1N0N1N2 + (n̂1N2 + n̂2)(n1N0)

= N(n̂0n1) + n̂1n1N0N2 + n̂2(n1N0).

Because N = N0N1N2, ωN
N

= 1, and ωN0N2
N = ωN1

, we can further simplify the term

ω
r(n1N0)
N = ω

N(n̂0n1)
N ωn̂1n1N0N2

N
ω

n̂2(n1N0)
N = ωn̂1n1

N1
ω

n̂2(n1N0)
N ,

which depends on n̂1 and n̂2, but it is independent of n̂0. Therefore, we can again compute the
N1×N2 copies of the 1-D array V [N0] independently, provided we save all of them in a 3-D
array A2[N0, N1, N2] for use in the summation formula. We incorporate the changes below.

11.2. THE ROLE OF INDEX MAPPING 311

for n0 := 0 to N0 − 1 do
for n1 := 0 to N1 − 1 do

for n̂2 := 0 to N2 − 1 do
A1[n0, n1, n̂2] =

∑N2−1
n2=0 A[n0, n1, n2] ω

n̂2n2
N2

end for
end for

end for
for n0 := 0 to N0 − 1 do

for n̂2 := 0 to N2 − 1 do
for n̂1 := 0 to N1 − 1 do

A2[n0, n̂1, n̂2] =
∑N1−1

n1=0 A1[n0, n1, n̂2] ω
n̂2(n1N0)
N ωn̂1n1

N1

end for
end for

end for
for n̂0 := 0 to N0 − 1 do

for n̂1 := 0 to N1 − 1 do
for n̂2 := 0 to N2 − 1 do

r := n̂0N1N2 + n̂1N2 + n̂2

B[n̂2, n̂1, n̂0] :=
∑N0−1

n0=0 A2[n0, n̂1, n̂2] ω
rn0
N

Xr := B[n̂2, n̂1, n̂0]

end for
end for

end for

Note that a short DFT-like transform of length N1 is deÞn ed by the for-loop indexed by n̂1:

for n̂1 := 0 to N1 − 1 do

A2[n0, n̂1, n̂2] =
∑N1−1

n1=0

{
A1[n0, n1, n̂2] ω

n̂2(n1N0)
N

}
ωn̂1n1

N1

end for

Since each short DFT (of length N1) is computed by the inner loop of the triple for-loop in-
dexed by n0, n̂2, and n̂1, we need to compute, in total, N0N2 (or N/N1) such short transforms
during the second stage of the decoupled computation.

11.2.3 The decoupling process—Stage III

To complete the three-factor mixed-radix FFT, we treat the last part of the summation formula
in a formal manner with index expansion

rn0 = (n̂0N1N2 + n̂1N2 + n̂2)n0 = n̂0n0N1N2 + (n̂1N2 + n̂2)n0

followed by dependence analysis of the term

ωrn0
N = ωn̂0n0N1N2

N ω
(n̂1N2+n̂2)n0
N = ωn̂0n0

N0
ω

(n̂1N2+n̂2)n0
N ,

which depends on all three output array indices; hence, we must compute the Þ nal sum in-
side a triple for-loop indexed by n̂0, n̂1, and n̂2. The complete three-factor mixed-radix
FFT algorithm is listed below. Observe that we have saved the N values of Þ nal sum into

312 CHAPTER 11. INDEX MAPPING AND MIXED-RADIX FFTS

A3[n̂0, n̂1, n̂2]Ñto be consistent with the usage of A1 and A2. Because A3[n̂0, n̂1, n̂2] con-
tains the Þn al sum previously assigned to B[n̂2, n̂1, n̂0], we can directly assign the former
value to XrÑarray B is no longer needed. Observe that the same index mapping r =

n̂0N1N2 + n̂1N2 + n̂2 identiÞes the output element Xr with A3[n̂0, n̂1, n̂2], meaning that
Xr is stored in (or mapped to) the 3-D array A3[N0, N1, N2] using row-major scheme. Since
A3[N0, N1, N2] is the transpose of B[N2, N1, N0], this is a fully consistent result, and it shows
once more that it is the index mapping scheme that counts!

for n0 := 0 to N0 − 1 do
for n1 := 0 to N1 − 1 do

for n̂2 := 0 to N2 − 1 do
A1[n0, n1, n̂2] =

∑N2−1
n2=0 A[n0, n1, n2] ω

n̂2n2
N2

end for
end for

end for
for n0 := 0 to N0 − 1 do

for n̂2 := 0 to N2 − 1 do
for n̂1 := 0 to N1 − 1 do

A2[n0, n̂1, n̂2] =
∑N1−1

n1=0 A1[n0, n1, n̂2] ω
n̂2(n1N0)
N ωn̂1n1

N1

end for
end for

end for
for n̂1 := 0 to N1 − 1 do

for n̂2 := 0 to N2 − 1 do
for n̂0 := 0 to N0 − 1 do

A3[n̂0, n̂1, n̂2] :=
∑N0−1

n0=0 A2[n0, n̂1, n̂2] ω
(n̂1N2+n̂2)n0
N ωn̂0n0

N0

r := n̂0N1N2 + n̂1N2 + n̂2

Xr := A3[n̂0, n̂1, n̂2]

end for
end for

end for

The short DFT-like transform computed in this stage is of length N0 and it is deÞned by the
for-loop indexed by n̂0:

for n̂0 := 0 to N0 − 1 do

A3[n̂0, n̂1, n̂2] :=
∑N0−1

n0=0

{
A2[n0, n̂1, n̂2] ω

(n̂1N2+n̂2)n0
N

}
ωn̂0n0

N0

end for

Since each short transform (of length N0) is computed by inner loop of the triple for-loop in-
dexed by n̂0, n̂1, and n̂2, we need to compute, in total, N1N2 (or N/N0) such short transforms
in this Þn al stage of the decoupled computation.

We have developed the three-factor algorithm step by step, and it is clear that the pairing of
the column- and row-index mapping schemes are the driving force behind the scene. Of course,
there are many other input and output index mapping schemes, which can pair up to achieve
similar cost reduction, and the corresponding mixed-radix algorithms can now be developed
without any difÞ culty following the steps we have systematically laid out in this section.

11.3. THE RECURSIVE EQUATION APPROACH 313

11.3 The Recursive Equation Approach

The term Ò recursive equationÓ refers to the single mathematical equation which deÞ nes how
AK [. . . , nq−1, n̂q, . . . , n̂ν−1] can be obtained from previously computed
AK−1[. . . , nq, n̂q+1, . . . , n̂ν−1] in a ν-factor mixed-radix FFT algorithm. In this section we
shall derive the recursive equation for an arbitrary ν-factor FFT, so its meaning and its useful-
ness as a mathematical tool in algorithm representation and extension (to arbitrary number of
factors) will become clear as we progress through this section. With the index mapping back-
ground covered and a three-factor FFT algorithm fully developed in the last section, we can
now present a compact (and fully explainable) version of the mixed-radix algorithm for com-
posite N =N0×N1×N2, which forms the basis of the so-called recursive equation approach
in the FFT literature:

Step 0. Map x� to A[n0, n1, n2] for � = n2N1N0 + n1N0 + n0.

Step 1. Compute A1[n0, n1, n̂2] =
∑N2−1

n2=0 A[n0, n1, n2] ω
n̂2n2
N2

.

Step 2. Compute A2[n0, n̂1, n̂2] =
∑N1−1

n1=0

{
A1[n0, n1, n̂2] ω

n̂2(n1N0)
N

}
ωn̂1n1

N1
.

Step 3. Compute A3[n̂0, n̂1, n̂2] =
∑N0−1

n0=0

{
A2[n0, n̂1, n̂2] ω

(n̂1N2+n̂2)n0
N

}
ωn̂0n0

N0
.

Step 4. Map A3[n̂0, n̂1, n̂2] to Xr for r = n̂0N1N2 + n̂1N2 + n̂2.

It is understood that the statement Òcomput e A1[n0, n1, n̂2]Ó i n Step 1 means Ò compute A1[n0, n1, n̂2]

for all values of n0, n1, n̂2.Ó (Recall that it was done by a triple for-loop indexed by n0, n1 and
n̂2 in the full algorithm presented in the last section.) Such understanding is assumed for all
steps performing similar computation.

11.3.1 Counting short DFT or DFT-like transforms

In Step 1, each short DFT computes A1[n0, n1, n̂2] for 0 ≤ n̂2 ≤ N2 − 1, and there are
N/N2 = N0N1 of them. In Step 2, each short DFT-like transform computes A2[n0, n̂1, n̂2]

for 0 ≤ n̂1 ≤ N1 − 1, and there are N/N1 = N0N2 of them. In Step 3, each short DFT-like
transform computes A3[n̂0, n̂1, n̂2] for 0 ≤ n̂0 ≤ N0 − 1, and there are N/N0 = N1N2 of
them.

11.3.2 The recursive equation for arbitrary composite N

In this section we show how a single recursive equation, combined with the index mapping
schemes, may be used to represent the mixed-radix ν-factor FFT for arbitrary ν. Such a recur-
sive equation needs to be extracted from the ν equations which deÞ ne the short transforms for
individual stages of the decoupled computation. Of course one can repeat the analysis and sim-
pliÞcatio n we have performed in developing the three-factor FFT to obtain any ν-factor FFT,
or we can simply do it one more time for a sufÞ ciently large number of factors and determine
the pattern to follow for any given ν (without repeating the analysis every time). We Þ nd ν =5

(i.e., N =N0×N1×N2×N3×N4) would be sufÞ ciently large for this purpose, and we use the
resulting Þ ve-factor FFT to explain an easy-to-follow road map for arbitrary ν:

314 CHAPTER 11. INDEX MAPPING AND MIXED-RADIX FFTS

Step 0. Map x� to A[n0, n1, n2, n3, n4] via the column-major scheme:

� = n4N3N2N1N0 + n3N2N1N0 + n2N1N0 + n1N0 + n0.

Step 1. Compute the Þ rst set of N/N4 short transforms deÞ ned by

A1[n0, n1, n2, n3, n̂4]=

N4−1∑
n4=0

A[n0, n1, n2, n3, n4] ω
n̂4n4
N4

.

Step 2. Compute the second set of N/N3 short transforms deÞ ned by

A2[n0, n1, n2, n̂3, n̂4]=

N3−1∑
n3=0

{
A1[n0, n1, n2, n3, n̂4] ω

n̂4(n3N2N1N0)
N

}
ωn̂3n3

N3
.

Observe that the Òe xponentÓ of the so-called twiddle factor Ò ωN Ó (inside the
braces) is the product of Ò n̂4Ó a nd Ò (n3N2N1N0)ÓÑ the former comes from the last
term of the output index map for r as so labeled in Equation (11.7) which deÞ nes the
output index splitting in the paragraph following Step 6, and the latter represents the
second term of the input index map for � as clearly labeled in Equation (11.6) which
deÞnes the input index splitting in the paragraph following Step 6.

Step 3. Compute the third set of N/N2 short transforms deÞ ned by

A3[n0, n1, n̂2, n̂3, n̂4]=

N2−1∑
n2=0

{
A2[n0, n1, n2, n̂3, n̂4] ω

(n̂3N4+n̂4)n2N1N0
N

}
ωn̂2n2

N2
.

Observe that the Òe xponentÓ of the twiddle factor Ò ωN Ó i s now the product of Ò (n̂3N4 +

n̂4)Ó a nd Ò n2N1N0ÓÑ the former involves the last two terms of the output index map
for r as labeled in Equation (11.7), and the latter represents the third term of the input
index map for � as labeled in Equation (11.6).

Step 4. Compute the fourth set of N/N1 short transforms deÞ ned by

A4[n0, n̂1, n̂2, n̂3, n̂4]=

N1−1∑
n1=0

{
A3[n0, n1, n̂2, n̂3, n̂4] ω

(n̂2N3N4+n̂3N4+n̂4)n1N0
N

}
ωn̂1n1

N1
.

Observe again that the Ò exponentÓ of the twiddle factor Ò ωN Ó i s the product of two
termsÑth e Þ rst term now involves the last three terms of the output index map for r as
labeled in Equation (11.7), and the second represents the fourth term of the input index
map for � as labeled in Equation (11.6).

Step 5. Compute the Þ fth set of short N/N0 transforms deÞ ned by

A5[n̂0, n̂1, n̂2, n̂3, n̂4]

=

N0−1∑
n0=0

{
A4[n0, n̂1, n̂2, n̂3, n̂4] ω

(n̂1N2N3N4+n̂2N3N4+n̂3N4+n̂4)n0
N

}
ωn̂0n0

N0
.

For the Þ nal step, the Òe xponentÓ of the twiddle factor Ò ωN Ó i s again the product of two
termsÑas one would now expect: the Þ rst term involves the four terms (from the second
to the last) of the output index map for r as labeled in Equation (11.7), and the second
represents the very last term of the input index map for � as labeled in Equation (11.6).

11.3. THE RECURSIVE EQUATION APPROACH 315

Step 6. Map A5[n̂0, n̂1, n̂2, n̂3, n̂4] to Xr via the row-major scheme:

r = n̂0N1N2N3N4 + n̂1N2N3N4 + n̂2N3N4 + n̂3N4 + n̂4.

Accordingly, the Ò exponentÓ of the twiddle factor in every step of the Þ ve-factor mixed-radix
FFT can be fully speciÞed by splitting the two index maps as shown below:

(11.6) � = n4N3N2N1N0 +

Step (2)︷ ︸︸ ︷
n3N2N1N0 +

Step (3)︷ ︸︸ ︷
n2N1N0 +

Step (4)︷ ︸︸ ︷
n1N0 +

(5)︷︸︸︷
n0 .

(11.7) r = n̂0N1N2N3N4 +

Step (5)︷ ︸︸ ︷
n̂1N2N3N4 +

Step (4)︷ ︸︸ ︷
n̂2N3N4 + n̂3N4 + n̂4︸︷︷︸

(2)︸ ︷︷ ︸
Step (3)

.

Since the index mapping equations in the forms of (11.6) and (11.7) are readily available for
composite N with an arbitrary number of factors, and these two equations alone prescribe
the exponent of the twiddle factor in every stage of the decoupled computation, we can fully
express all of the short transforms which collectively represent the mixed-radix FFT we are
seeking. The algorithm can now be abbreviated to one single recursive equation for the Kth

step, namely,
(11.8)

AK [. . . , nq−1, n̂q, . . . , n̂ν−1]=

Nq−1∑
nq=0

{
AK−1[. . . , nq, n̂q+1, . . . , n̂ν−1] ω

λ̂KλK
N

}
ω

n̂qnq
Nq

,

where K =ν−q=1, 2, . . . , ν for q=ν−1, ν−2, . . . , 0; λ̂K and λK are the two groups of terms
identiÞed by ÒStep (K)Ó from the two index-map splitting equations for the ν-factor composite
N = N0×N1×· · ·×Nν−1 as explained above. It is understood that A0[n0, . . . , nν−1] ≡
A[n0, . . . , nν−1] and λ̂1 = λ1 = 0 when the recursive equation is Þ rst applied to generate
A1[n0, . . . , n̂ν−1] in Step (1).

Remark: The ν-factor FFT developed in this section is referred to as the Decimation-In-Time
(DIT) FFT, which reß ects how the indices Ò �Ó o f the time-domain input elements x� are split
according to Equation (11.6).

11.3.3 Specialization to the radix-2 DIT FFT for N = 2ν

Since the ν-factor mixed-radix FFT was derived without restricting the values of the factors,
it is expected that it would have included radix-2 FFT as a special case for N = 2ν . This
is indeed the case, which can be shown clearly for ν = 5. The key is to explicitly express
equations (11.6) and (11.7) as

(11.9) � = i42
4 +

(2)︷︸︸︷
i32

3 +

(3)︷︸︸︷
i22

2 +

(4)︷︸︸︷
i12 +

(5)︷︸︸︷
i0 .

316 CHAPTER 11. INDEX MAPPING AND MIXED-RADIX FFTS

(11.10) r = τ02
4 +

(5)︷ ︸︸ ︷
τ12

3 +

(4)︷ ︸︸ ︷
τ22

2 + τ32 + τ4︸︷︷︸
(2)︸ ︷︷ ︸

(3)

.

Note that we have changed the labels of the dimensional indices to match the binary address—
based notation. To relate the binary address in the 1-D array to the multidimensional array used
in this chapter, we express � = i4i3i2i1i0, and x� = a[�] = a[i4i3i2i1i0] = A[i0, i1, i2, i3, i4],
assuming that the 1-D array a, which contains naturally ordered input {x�}, is stored in the
ν-D array A by column-major scheme; for the output we express r = τ0τ1τ2τ3τ4, and Xr =

b[r] = b[τ0τ1τ2τ3τ4] = B[τ4, τ3, τ2, τ1, τ0], assuming that the 1-D array b, which contains
naturally ordered output {Xr}, is stored in the ν-D array B (of dimensions reversed from A)
by column-major scheme.

To reveal the radix-2 FFT, observe that when N =2ν , each short transform of length Nq =2

represents a Cooley—Tukey butterß y computation. With ωNq = ωN/2

N =−1, we obtain the Þ ve
steps of a radix-2 DIT FFT for N =25 =32:

Step 1. Compute N/2 short transforms (or butterß ies) deÞ ned by

A1[i0, i1, i2, i3, τ4] = A[i0, i1, i2, i3, 0] + (−1)τ4A[i0, i1, i2, i3, 1],

or (using binary addresses with 1-D arrays)

a(1)[τ4i3i2i1i0] = a[0i3i2i1i0] + (−1)τ4a[1i3i2i1i0].

Step 2. Compute N/2 short transforms (or butterß ies) deÞ ned by

A2[i0, i1, i2, τ3, τ4] = A1[i0, i1, i2, 0, τ4] + (−1)τ3ω23τ4
N A[i0, i1, i2, 1, τ4],

or (using binary addresses with 1-D arrays)

a(2)[τ4τ3i2i1i0] = a(1)[τ40i2i1i0] + (−1)τ3ω8τ4
N a(1)[τ41i2i1i0].

Observe that the twiddle factor associated with the Þ rst term is ωτ4i323

N
=1 because i3 =0

in its exponent, and ωτ4i323

N
=ω8τ4

N
in the second term because i3 =1 in its exponent.

Step 3. Compute N/2 short transforms (or butterß ies) deÞ ned by

A3[i0, i1, τ2, τ3, τ4] = A2[i0, i1, 0, τ3, τ4] + (−1)τ2ω
22(τ32+τ4)
N A2[i0, i1, 1, τ3, τ4],

or (using binary addresses with 1-D arrays)

a(3)[τ4τ3τ2i1i0] = a(2)[τ4τ30i1i0] + (−1)τ2ω
4(τ32+τ4)
N a(2)[τ4τ31i1i0].

Observe that the twiddle factor associated with the Þ rst term always ω0
N =1 because its

exponent contains i2 =0, and the values of ω4
N

, ω8
N

, ω12
N

are assigned to the second term
depending on the actual value of the exponent Ò i222(τ32 + τ4),Ó which is simpliÞed to
Ò 4(τ32 + τ4)Ó b ecause i2 =1.

11.4. OTHER FORMS BY ALTERNATE INDEX SPLITTING 317

Step 4. Compute N/2 short transforms (or butterß ies) deÞ ned by

A4[i0, τ1, τ2, τ3, τ4] = A3[i0, 0, τ2, τ3, τ4] + (−1)τ1ω
2(τ22

2+τ32+τ4)
N A3[i0, 1, τ2, τ3, τ4],

or (using binary addresses with 1-D arrays)

a(4)[τ4τ3τ2τ1i0] = a(3)[τ4τ3τ20i0] + (−1)τ1ω
2(τ22

2+τ32+τ4)
N a(3)[τ4τ3τ21i0].

The twiddle factors involved in this step are ω0
N , ω2

N , ω4
N , . . . , ω14

N .

Step 5. Compute N/2 short transforms (or butterß ies) deÞ ned by

A5[τ0, τ1, τ2, τ3, τ4] = A4[0, τ1, τ2, τ3, τ4]+(−1)τ0ωτ32
3+τ22

2+τ32+τ4
N A4[1, τ1, τ2, τ3, τ4],

or (using binary addresses with 1-D arrays)

a(5)[τ4τ3τ2τ1τ0] = a(4)[τ4τ3τ2τ10] + (−1)τ0ωτ12
3+τ22

2+τ32+τ4
N

a(4)[τ4τ3τ2τ11].

The N/2 twiddle factors involved in this last step are ω0
N
, ω1

N
, ω2

N
, . . . , ω15

N
.

We have shown that Steps 1 through 5 of the Þ ve-factor mixed radix FFT now prescribe the in-
place radix-2 DIT FFT. For N =32 = 25, the Þ ve stages of decoupled computation correspond
to the Þ ve stages of butterß y computation. Since B[τ4, τ3, τ2, τ1, τ0] = A5[τ0, τ1, τ2, τ3, τ4],
Xr = b[τ0τ1τ2τ3τ4] = a(5)[τ4τ3τ2τ1τ0], and Xr is available from a(5) in bit-reversed order.
For speciÞ c details on binary address-based radix-2 DIT FFTs, interested readers are referred
to [13].

11.4 Other Forms by Alternate Index Splitting

In this section we demonstrate how our systematic approach can be applied at once to obtain
the Decimation-In-Frequency (DIF) form of the mixed-radix FFT, which will also lead us to
the radix-2 DIF FFT when N = 2ν . We begin with the same example for N = N0×N1×N2

from Section 11.2. This time we Þ rst deploy the index mapping scheme on the output {Xr}
computed by the DFT formula

for r := 0 to N − 1 do
Xr :=

∑N−1
�=0 x� ωr�

N

end for

With Xr = B[n̂2, n̂1, n̂0] for r = n̂0N1N2 + n̂1N2 + n̂2, we obtain the mathematically
equivalent DFT formula:

for n̂0 := 0 to N0 − 1 do
for n̂1 := 0 to N1 − 1 do

for n̂2 := 0 to N2 − 1 do
B[n̂2, n̂1, n̂0] :=

∑N−1
�=0 x� ωn̂2�

N
ω

(n̂1N2)�
N ω

(n̂0N1N2)�
N

end for
end for

end for

318 CHAPTER 11. INDEX MAPPING AND MIXED-RADIX FFTS

Observe that we have split the Ò exponentÓ of Ò ωr�
N Ó b y splitting the given mapping formula

for index Ò r,Ó i .e.,

r� = (n̂0N1N2 + n̂1N2 + n̂2)�

= n̂2� + (n̂1N2)� + (n̂0N1N2)�.
(11.11)

By repeating the decoupling processes performed in Sections 11.2.1, 11.2.2, and 11.2.3, we
obtain alternate sets of recursive equations:

Step 0. Map x� to A[n0, n1, n2] for � = n2N1N0 + n1N0 + n0.

Step 1. Compute A1[n0, n1, n̂2] =
∑N2−1

n2=0

{
A[n0, n1, n2] ω

n̂2(n1N0+n0)
N

}
ωn̂2n2

N2
.

Step 2. Compute A2[n0, n̂1, n̂2] =
∑N1−1

n1=0

{
A1[n0, n1, n̂2] ω

n̂1(n0N2)
N

}
ωn̂1n1

N1
.

Step 3. Compute A3[n̂0, n̂1, n̂2] =
∑N0−1

n0=0 A2[n0, n̂1, n̂2] ω
n̂0n0
N0

.

Step 4. Map A3[n̂0, n̂1, n̂2] to Xr for r = n̂0N1N2 + n̂1N2 + n̂2.

11.4.1 The recursive equation for arbitrary composite N

We now apply the systematic approach in Section 11.3.2 to obtain the alternately split Òe xpo-
nentÓ of the twiddle factor in every step of a Þ ve-factor mixed-radix FFT:

(11.12) � = n4N3N2N1N0 +

Step (1)︷ ︸︸ ︷
n3N2N1N0 +

Step (2)︷ ︸︸ ︷
n2N1N0 + n1N0 + n0︸︷︷︸

(4)︸ ︷︷ ︸
Step (3)

.

(11.13) r = n̂0N1N2N3N4 +

Step (4)︷ ︸︸ ︷
n̂1N2N3N4 +

Step (3)︷ ︸︸ ︷
n̂2N3N4 +

Step (2)︷ ︸︸ ︷
n̂3N4 +

(1)︷︸︸︷
n̂4 .

Since the index mapping equations in the forms of (11.12) and (11.13) are readily available
for composite N with an arbitrary number of factors, and these two equations alone prescribe
the exponent of the twiddle factor in every stage of the decoupled computation, we can fully
express all of the short transforms which collectively represent the mixed-radix FFT we are
seeking. The algorithm can now be abbreviated to one single recursive equation for the Kth

step, namely,
(11.14)

AK [. . . , nq−1, n̂q, . . . , n̂ν−1]=

Nq−1∑
nq=0

{
AK−1[. . . , nq, n̂q+1, . . . , n̂ν−1] ω

λ̂KλK
N

}
ω

n̂qnq
Nq

,

where K = ν − q = 1, 2, . . . , ν for q = ν − 1, ν − 2, . . . , 0; λ̂K and λK are the two groups of
terms identiÞed by ÒStep K Ó f rom the two index mapping equations for the ν-factor composite
N = N0×N1×· · ·×Nν−1 as explained above.

Remark: The ν-factor FFT developed in this section is referred to as the Decimation-In-
Frequency (DIF) FFT, which reß ects how the indices Ò rÓ o f the frequency-domain output ele-
ments Xr are splitted according to Equation (11.13).

11.4. OTHER FORMS BY ALTERNATE INDEX SPLITTING 319

11.4.2 Specialization to the radix-2 DIF FFT for N = 2ν

To adapt the ν-factor mixed-radix FFT for N =2ν , the procedure is analogous to that followed
in Section 11.3.3. The key is to explicitly express equations (11.12) and (11.13) as

(11.15) � = i42
4 +

(1)︷ ︸︸ ︷
i32

3 +

(2)︷ ︸︸ ︷
i22

2 + i12 + i0︸︷︷︸
(4)︸ ︷︷ ︸

(3)

;

(11.16) r = τ02
4 +

(4)︷︸︸︷
τ12

3 +

(3)︷︸︸︷
τ22

2 +

(2)︷︸︸︷
τ32 +

(1)︷︸︸︷
τ4 .

As already explained in Section 11.3.3, we use binary address—based notation to express
� = i4i3i2i1i0, and x� = a[�] = a[i4i3i2i1i0] = A[i0, i1, i2, i3, i4], assuming that the
1-D array a, which contains naturally ordered input {x�}, is stored in the ν-D array A by
column-major scheme; for the output we express r = τ0τ1τ2τ3τ4, and Xr = b[r] = b[τ0τ1τ2τ3τ4] =

B[τ4, τ3, τ2, τ1, τ0], assuming that the 1-D array b, which contains naturally ordered output
{Xr}, is stored in the ν-D array B (of dimensions reversed from A) by column-major scheme.

To reveal the radix-2 DIF FFT, observe that when N = 2ν , each short transform of length
Nq = 2 represents a Gentleman—Sande butterß y computation. With ωNq = ωN/2

N = −1, we
obtain the Þ ve steps for a (Þ ve-factor) radix-2 FFT as shown below.

Step 1. Compute N/2 short transforms (or butterß ies) deÞ ned by

A1[i0, i1, i2, i3, τ4] =

{
A[i0, i1, i2, i3, 0]+(−1)τ4A[i0, i1, i2, i3, 1]

}
ω

τ4(i323+i222+i12+i0)
N ,

or (using binary addresses with 1-D arrays)

a(1)[τ4i3i2i1i0] =

{
a[0i3i2i1i0] + (−1)τ4a[1i3i2i1i0]

}
ω

τ4(i323+i222+i12+i0)
N .

The Þ rst step deploys N/2=16 twiddle factors: ω0
N , ω1

N , ω2
N , . . . , ω15

N .

Step 2. Compute N/2 short transforms (or butterß ies) deÞ ned by

A2[i0, i1, i2, τ3, τ4] =

{
A1[i0, i1, i2, 0, τ4]+(−1)τ3A[i0, i1, i2, 1, τ4]

}
ω

τ32(i222+i12+i0)
N ,

or (using binary addresses with 1-D arrays)

a(2)[τ4τ3i2i1i0] =

{
a(1)[τ40i2i1i0] + (−1)τ3a(1)[τ41i2i1i0]

}
ω

2(i22
2+i12+i0)τ3

N .

The second step deploys N/22 =8 twiddle factors: ω0
N , ω2

N , ω4
N , . . . , ω14

N .

Step 3. Compute N/2 short transforms (or butterß ies) deÞ ned by

A3[i0, i1, τ2, τ3, τ4] =

{
A2[i0, i1, 0, τ3, τ4] + (−1)τ2A2[i0, i1, 1, τ3, τ4]

}
ω

τ22
2(i12+i0)

N ,

320 CHAPTER 11. INDEX MAPPING AND MIXED-RADIX FFTS

or (using binary addresses with 1-D arrays)

a(3)[τ4τ3τ2i1i0] =

{
a(2)[τ4τ30i1i0] + (−1)τ2a(2)[τ4τ31i1i0]

}
ω

4(i12+i0)τ2
N .

The third step deploys N/23 = 4 twiddle factors: ω0
N
, ω4

N
, ω8

N
, and ω12

N

Step 4. Compute N/2 short transforms (or butterß ies) deÞ ned by

A4[i0, τ1, τ2, τ3, τ4] =

{
A3[i0, 0, τ2, τ3, τ4] + (−1)τ1A3[i0, 1, τ2, τ3, τ4]

}
ωτ12

3i0
N ,

or (using binary addresses with 1-D arrays)

a(4)[τ4τ3τ2τ1i0] =

{
a(3)[τ4τ3τ20i0] + (−1)τ1a(3)[τ4τ3τ21i0]

}
ω8i0τ1

N
.

The N/24 = 2 twiddle factors involved in this step are ω0
N and ω8

N .

Step 5. Compute N/2 short transforms (or butterß ies) deÞ ned by

A5[τ0, τ1, τ2, τ3, τ4] = A4[0, τ1, τ2, τ3, τ4] + (−1)τ0A4[1, τ1, τ2, τ3, τ4],

or (using binary addresses with 1-D arrays)

a(5)[τ4τ3τ2τ1τ0] = a(4)[τ4τ3τ2τ10] + (−1)τ0a(4)[τ4τ3τ2τ11].

We have shown that Steps 1 through 5 of the Þ ve-factor mixed-radix FFT now prescribe the in-
place radix-2 DIF FFT. For N =32 = 25, the Þ ve stages of decoupled computation correspond
to the Þ ve stages of butterß y computation. Since B[τ4, τ3, τ2, τ1, τ0] = A5[τ0, τ1, τ2, τ3, τ4],
Xr = b[τ0τ1τ2τ3τ4] = a(5)[τ4τ3τ2τ1τ0], and Xr is available from a(5) in bit-reversed order.
For speciÞ c details on binary address—based radix-2 DIF FFT, interested readers are referred
to [13].

Chapter 12

Kronecker Product Factorization
and FFTs

In this chapter we make explicit the connection between the ν-factor mixed-radix FFT algo-
rithms and the Kronecker product factorization of the DFT matrix. This process results in a
sparse matrix formulation of the mixed-radix FFT algorithm. Although multidimensional ar-
rays do not appear in the Þ nal equation, they remain to be instrumental in the development, and
the index mapping schemes continue to play an essential roleÑthis is not surprising because
the decoupling processes are enabled by the direct manipulation of the indices. Initially the
following two deÞ nitions are needed in our treatment of the two-factor mixed-radix FFT; other
properties and rules for Kronecker products will be introduced as we progress. Readers are
assumed to be familiar with the content of Chapter 11.

Definition 12.1 Let A be a p-by-q matrix

(12.1)


a1,1 a1,2 · · · a1,q

a2,1 a2,2 · · · a2,q

...
...

...
ap,1 ap,2 · · · ap,q

 .

Then the vec operator stacks the columns of matrix A on top of one another to form a vector

321

322 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

u:

(12.2) u = vec

a1,1 a1,2 · · · a1,q

...
...

...
ap,1 ap,2 · · · ap,q

 =



a1,1

...
ap,1

a1,2

...
ap,2

...

a1,q

...
ap,q



.

The Kronecker product, also known as a direct product, or a tensor product, is deÞ ned for
two matrices of arbitrary dimensions.

Definition 12.2 Let A be a p-by-q matrix and B be an m-by-n matrix. Then the Kronecker
product of A and B is deÞned as the p·m-by-q ·n matrix

(12.3) A⊗B =


a1,1B a1,2B · · · a1,qB

a2,1B a2,2B · · · a2,qB
...

...
...

ap,1B ap,2B · · · ap,qB

 .

12.1 Reformulating the Two-Factor Mixed-Radix FFT

Recall that the deÞn ition of a length-N DFT (excluding division by N)

(12.4) Xr =

N−1∑
�=0

x� ωr�
N =

N−1∑
�=0

ωr�
N x�, ωN ≡ e−j2π/N , for r = 0, 1, . . . , N − 1,

expresses a matrix-vector product Ò X = ΩNx,Ó where x = [x0, x1, . . . , xN−1]
T ,

X = [X0, X1, . . . , XN−1]
T , and ΩN denotes the N -by-N DFT matrix deÞned by

ΩN [r, �] = ωr�
N for 0 ≤ r, � ≤ N − 1. In this section we shall derive the Kronecker product

factorization of the DFT matrix ΩN for N =N0×N1 directly from the two-factor mixed-radix
FFT. When a concrete example is needed to clarify the construction of various sparse matrices,
we shall use N = 12 with N0 = 3 and N1 = 4. To obtain the two-factor FFT in multidimen-
sional formulation, we use ν =2 and N =N0×N1 in the recursive equations set up for arbitrary
ν-factor composite N in Section 11.3 of Chapter 11.

Step 0. Map x� to A[n0, n1] for � = n1N0 + n0.

Step 1. Compute N/N1=N0 short DFT transforms of length N1:

12.1. REFORMULATING THE TWO-FACTOR MIXED-RADIX FFT 323

for n0 := 0 to N0 − 1 do
for n̂1 := 0 to N1 − 1 do

A1[n0, n̂1] =
∑N1−1

n1=0 A[n0, n1] ω
n̂1n1
N1

end for
end for

Step 2. Compute N/N0=N1 short DFT-like transforms of length N0:

for n̂1 := 0 to N1 − 1 do
for n̂0 := 0 to N0 − 1 do

A2[n̂0, n̂1] =
∑N0−1

n0=0

{
A1[n0, n̂1] ω

n̂1n0
N

}
ωn̂0n0

N0

end for
end for

Step 3. Map A2[n̂0, n̂1] to Xr for r = n̂0N1 + n̂1.

Our task is to rework the two-dimensional formulation of the two-factor mixed-radix FFT into
a sequence of matrix-vector products, which begins with the multiplication of the input vector
x by an N -by-N sparse matrix FN . Using N = N0×N1 = 3×4, we show below how to
construct the sparse matrix FN for Step 1.

Now it becomes useful to display the mapping in Step 0 in matrix form: the N0-by-N1

matrix A (for N0 = 3 and N1 = 4) and its contents are given below. Note that we have
used either an0,n1 or A[n0, n1] to address the individual elements of matrix A, and we show
an0,n1 = x� according to the column-major scheme � = n1N0+n0 = n0+3n1:

(12.5) A =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

 =

x0 x3 x6 x9

x1 x4 x7 x10

x2 x5 x8 x11

 .

In Step 1, each of the three short DFTs transforms a row of N1 = 4 elements from matrix
A; hence, each transform can be expressed as a matrix-vector product using the 4-by-4 DFT
matrix Ω4 as shown below.

(12.6)


y0

y3

y6

y9

 =


1 1 1 1

1 ω4 ω2
4 ω3

4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4



x0

x3

x6

x9

 ,

(12.7)


y1

y4

y7

y10

 =


1 1 1 1

1 ω4 ω2
4 ω3

4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4




x1

x4

x7

x10

 ,

(12.8)


y2

y5

y8

y11

 =


1 1 1 1

1 ω4 ω2
4 ω3

4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4




x2

x5

x8

x11

 .

324 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

The same results can be obtained if we directly multiply the vector x by a 12-by-12 sparse
matrix F12 which contains the elements of the 4-by-4 DFT matrix Ω4 at appropriate locations:

(12.9)



y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11



=



1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

1 0 0 ω4 0 0 ω2
4 0 0 ω3

4 0 0

0 1 0 0 ω4 0 0 ω2
4 0 0 ω3

4 0

0 0 1 0 0 ω4 0 0 ω2
4 0 0 ω3

4

1 0 0 ω2
4 0 0 ω4

4 0 0 ω6
4 0 0

0 1 0 0 ω2
4 0 0 ω4

4 0 0 ω6
4 0

0 0 1 0 0 ω2
4 0 0 ω4

4 0 0 ω6
4

1 0 0 ω3
4 0 0 ω6

4 0 0 ω9
4 0 0

0 1 0 0 ω3
4 0 0 ω6

4 0 0 ω9
4 0

0 0 1 0 0 ω3
4 0 0 ω6

4 0 0 ω9
4





x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11



.

The properly constructed sparse matrix F12 can now be expressed as the Kronecker product of
the 4-by-4 DFT matrix and a 3-by-3 identity matrix:

(12.10) F 12 = Ω4 ⊗ I3 =


1·I3 1·I3 1·I3 1·I3

1·I3 ω4 ·I3 ω2
4 ·I3 ω3

4 ·I3

1·I3 ω2
4 ·I3 ω4

4 ·I3 ω6
4 ·I3

1·I3 ω3
4 ·I3 ω6

4 ·I3 ω9
4 ·I3

 .

Accordingly, the computation performed in Step 1 of the two-factor mixed-radix FFT can be
compactly represented by a single matrix equation:

(12.11) y = (ΩN1
⊗IN0

)·x.

Observe that because x = vec A[N0, N1], and y = vec A1[N0, N1] after each row of
matrix A is multiplied by the DFT matrix ΩN1

(which is symmetric), the Kronecker product
can also be understood in terms of A and A1:

(12.12) y = (ΩN1
⊗IN0

) vec A = vec
{(

ΩN1
·AT

)T
}

= vec
{

A·ΩN1

}
= vec A1.

To rework Step 2, observe that the computed length-N vector y is contained in the N0-by-
N1 matrix A1 at the end of Step 1, which is shown below for N =3× 4:

(12.13) A1 =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

 =

y0 y3 y6 y9

y1 y4 y7 y10

y2 y5 y8 y11

 .

In Step 2, each element an0,n̂1 in A1 must be multiplied by a twiddle factor ωn̂1n0
N

at Þrs t. Our
task is to construct an N -by-N sparse matrix DN so that the same results can be obtained by
the matrix-vector product z = DN·y. Since the elements in vector y are scaled by the diagonal
elements of a diagonal matrix, we know that we must have

z� = DN [�, �]·y� = ωn0n̂1
N

y� if � = n̂1N0 + n0, (∵ y� = an0,n̂1)

and we can generate the diagonal matrix DN by advancing � from 0 to N−1 according to the
column-major index mapping scheme:

12.1. REFORMULATING THE TWO-FACTOR MIXED-RADIX FFT 325

for k := 0 to N − 1 do initialize DN to be an
for i := 0 to N − 1 do N -by-N zero matrix

DN [i, k] := 0 column by column
end for

end for
� := 0

for n̂1 := 0 to N1 − 1 do assign twiddle factors
for n0 := 0 to N0 − 1 do to diagonal elements

DN [�, �] := ωn0n̂1
N

∵ y� = an0,n̂1 =A1[n0, n̂1],
� := � + 1 and � = n̂1N0 + n0

end for
end for

For our example with N =12, N0 =3, and N1 =4, the matrix-vector product z = D12 ·y
is deÞn ed by

(12.14)



z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11



=



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 ωN 0 0 0 0 0 0 0

0 0 0 0 0 ω2
N

0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 ω2
N 0 0 0 0

0 0 0 0 0 0 0 0 ω4
N

0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 ω3
N

0

0 0 0 0 0 0 0 0 0 0 0 ω6
N





y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11



.

Since the vector z can overwrite y, we assume that the modiÞed vector z is similarly mapped
to the 3-by-4 matrix A1; i.e., we have

(12.15) A1 =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

 =

z0 z3 z6 z9

z1 z4 z7 z10

z2 z5 z8 z11

 ,

and each short DFT-like computation in Step 2 transforms a column of N0 =3 elements from
the matrix A1 (which now contains the N elements of vector z.) Each short transform can
again be expressed as a matrix-vector product using a 3-by-3 DFT matrix Ω3 as shown below.

c0

c1

c2

 =

1 1 1

1 ω3 ω2
3

1 ω2
3 ω4

3

z0

z1

z2

 ,

c6

c7

c8

 =

1 1 1

1 ω3 ω2
3

1 ω2
3 ω4

3

z6

z7

z8

 ,

c3

c4

c5

 =

1 1 1

1 ω3 ω2
3

1 ω2
3 ω4

3

z3

z4

z5

 ,

 c9

c10

c11

 =

1 1 1

1 ω3 ω2
3

1 ω2
3 ω4

3

 z9

z10

z11

 .

(12.16)

326 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

The same results can be obtained if we directly multiply the vector z by a block-diagonal
matrix G12 formed by repeating the 3-by-3 DFT matrix Ω3 on its diagonal:

(12.17)

a0,0

a1,0

a2,0

a0,1

a1,1

a2,1

a0,2

a1,2

a2,2

a0,3

a1,3

a2,3



c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11



=



1 1 1 0 0 0 0 0 0 0 0 0

1 ω3 ω2
3 0 0 0 0 0 0 0 0 0

1 ω2
3 ω4

3 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 1 ω3 ω2
3 0 0 0 0 0 0

0 0 0 1 ω2
3 ω4

3 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 ω3 ω2
3 0 0 0

0 0 0 0 0 0 1 ω2
3 ω4

3 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 1 ω3 ω2
3

0 0 0 0 0 0 0 0 0 1 ω2
3 ω4

3





z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11



.

The left-hand-side vector c in the equation above contains the elements of matrix A2[N0, N1]

(stacked column by column) as prescribed by Step 2 of the two-factor mixed-radix FFT al-
gorithm. The properly constructed sparse matrix G12 can now be expressed as the Kronecker
product of a 4-by-4 identity matrix and a 3-by-3 DFT matrix:

(12.18) G12 = I4 ⊗Ω3 =


1·Ω3 0·Ω3 0·Ω3 0·Ω3

0·Ω3 1·Ω3 0·Ω3 0·Ω3

0·Ω3 0·Ω3 1·Ω3 0·Ω3

0·Ω3 0·Ω3 0·Ω3 1·Ω3

 =


Ω3

Ω3

Ω3

Ω3

 .

Accordingly, the computation performed in Step 2 of the two-factor mixed-radix FFT can be
compactly represented by a single matrix equation:

(12.19) c = (IN1
⊗ΩN0

)·z = (IN1
⊗ΩN0

)·DN ·y.

Observe that because z = vec A1[N0, N1], and c = vec A2[N0, N1] after the columns of
A1 have been multiplied by the DFT matrix ΩN0

, the Kronecker product can also be under-
stood in terms of A1 and A2:

(12.20) c = (IN1
⊗ΩN0

) vec A1 = vec {ΩN0
·A1} = vec A2.

Combining Equations (12.11) and (12.19), the computation performed by Steps 1 and 2
together can still be expressed by a single matrix equation:

(12.21) c = (IN1
⊗ΩN0

)·DN ·
vetor y︷ ︸︸ ︷

(ΩN1
⊗IN0

)·x︸ ︷︷ ︸
vector z

.

The last step, Step 3, of the two-factor mixed-radix FFT involves mapping A2[n̂0, n̂1] to
Xr for r = n̂0N1 + n̂1. To rework Step 3, it is again useful to display the required mapping in
matrix form:

(12.22) A2 =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

 =

X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

 .

12.1. REFORMULATING THE TWO-FACTOR MIXED-RADIX FFT 327

Using the known relationship between an̂0,n̂1 and c� shown on the left-hand side of Equa-
tion (12.17), together with the known relationship between an̂0,n̂1 and Xr as identiÞ ed by (12.22),
we can now determine the relationship between vector c and the naturally ordered output vector
X . For our example with N =12, N0 =3, and N1 =4, the matrix equation

(12.23) c = PN ·X,

expresses vector c as the product of a sparse 12-by-12 permutation matrix P12 and the naturally
ordered output vector X:

(12.24)

a0,0

a1,0

a2,0

a0,1

a1,1

a2,1

a0,2

a1,2

a2,2

a0,3

a1,3

a2,3



c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11


︸ ︷︷ ︸
vector c

=



X0

X4

X8

X1

X5

X9

X2

X6

X10

X3

X7

X11


︸ ︷︷ ︸
vector c

=



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

Permutation Matrix PN



X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11


︸ ︷︷ ︸
vector X

.

Observe that c = vec A2, and X = vec AT
2 ; hence, the same permutation matrix can also be

used to relate vec A2 and vec AT
2 :

(12.25) vec A2 = PN ·vec AT
2 .

To generate the N -by-N permutation matrix PN , observe that in order to satisfy

(12.26) c� = an̂0,n̂1= A2[n̂0, n̂1] = Xr, where � = n̂1N0 + n̂0, r = n̂0N1 + n1,

we must permute Xr, the (r+1)st element in the naturally ordered vector X to the (�+1)st

position in vector c, which dictates that PN [�, r] = 1 for � = n̂1N0+n̂0, r = n̂0N1 + n̂1. The
permutation matrix PN can thus be generated by the pseudo-code:

for k := 0 to N − 1 do initialize PN to be an
for i := 0 to N − 1 do N -by-N zero matrix

PN [i, k] := 0 column by column
end for

end for
� := 0

for n̂1 := 0 to N1 − 1 do
for n̂0 := 0 to N0 − 1 do

r := n̂0N1 + n̂1 construct PN to permute
PN [�, r] := 1 Xr to the position of c�

� := � + 1 ∵ � = n̂1N0 + n̂0

end for
end for

328 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

Because c = PN ·X , we can replace c on the left-hand side of Equation (12.21) by PN ·X ,
and we can now express the entire two-factor mixed-radix FFT by one matrix equation which
relates input vector x directly to output vector X:

(12.27) PN ·X︸ ︷︷ ︸
vector c

= (IN1
⊗ΩN0

)·
vector y

DN ·
︷ ︸︸ ︷
(ΩN1

⊗IN0
)·x︸ ︷︷ ︸

vector z

.

Note that the naturally ordered output vector X can be recovered by multiplying both sides by
the inverse of the permutation matrix P−1

N = P T
N , i.e.,

(12.28) X = P T
N ·(IN1

⊗ΩN0
)·

vector y

DN ·
︷ ︸︸ ︷
(ΩN1

⊗IN0
)·x︸ ︷︷ ︸

vector z︸ ︷︷ ︸
vector c

.

Recall that z = vec A1[N0, N1], and c = vec A2[N0, N1] after each column of matrix A1 is
multiplied by the DFT matrix ΩN0

. Using the result from Equation (12.25) on c = vec A2, we
obtain

(12.29) X = P T
N ·c = P T

N ·vec A2 = P T
N ·

(
PN ·vecAT

2

)
= vec AT

2 ;

the same holds for z = vec A1:

(12.30) P T
N ·z = P T

N ·vec A1 = P T
N ·

(
PN ·vec AT

1

)
= vec AT

1 .

Therefore, the result X = vec AT
2 can be obtained by transforming P T

N
·z = vec AT

1 directly,
which requires that we transpose A1 in advance and multiply the rows of AT

1 (instead of the
columns of A1) by the DFT matrix ΩN0

, i.e.,

(12.31) X = P T
N
·c = vec AT

2 = (ΩN0
⊗IN1

)·vec AT
1 = (ΩN0

⊗IN1
)·P T

N
z,

which leads to the Þ nal expression:

(12.32) X = (ΩN0
⊗IN1

)·P T
N
·DN ·(ΩN1

⊗IN0
)︸ ︷︷ ︸

Factors of the DFT Matrix ΩN

·x.

Comparing the right-hand side of this equation with that of the deÞ ning equation X = ΩN ·
x, we have produced the Kronecker product factorization of the N -by-N DFT matrix ΩN ,
namely,

(12.33) ΩN = (ΩN0
⊗IN1

)·P T
N
·DN ·(ΩN1

⊗IN0
) .

Note that ΩN is shown to be the product of four very sparse N -by-N matricesÑtw o of them
are deÞ ned by the Kronecker products, one is a permutation matrix, and one is a diagonal
matrix.

12.2 From Two-Factor to Multi-Factor Mixed-Radix FFT

For multi-factor composite N , we may always begin with two factors assuming that

(12.34) N =

N0︷ ︸︸ ︷
F0 × · · · × Fν−1×

N1︷︸︸︷
Fν = N0 ×N1.

12.2. FROM TWO-FACTOR TO MULTI-FACTOR MIXED-RADIX FFT 329

With N0 = N/Fν and N1 = Fν , we apply the results from the last section to factor the
N -by-N DFT matrix ΩN , and we express

(12.35) X = (ΩN0
⊗IFν)·P T

N
·DN ·(ΩFν⊗IN0

)︸ ︷︷ ︸
ΩN

·x, where N0 = N/Fν .

To further decompose the N0-by-N0 DFT matrix ΩN0
, we again apply the two-factor re-

sults, because we may express the composite N0 to be the product of two factors:

(12.36) N0 =

Mν−1︷ ︸︸ ︷
F0 × · · · × Fν−2×

N1︷ ︸︸ ︷
Fν−1 = Mν−1 × Fν−1.

With N0 = Mν−1 × Fν−1, we may express

(12.37) ΩN0
=

(
ΩMν−1

⊗IFν−1

)·P T
N0
·DN0

·(ΩFν−1
⊗IMν−1

)
.

To show how the Kronecker product Ò (ΩN0
⊗ IFν)Ó c an be expanded and simpliÞ ed factor

by factor in a systematic manner, we shall use N = F0×F1×F2×F3×F4, and we deÞ ne
M4 = N/F4, M3 = M4/F3 = N/(F3F4), M2 = M3/F2 = N/(F2F3F4), M1 = M2/F1 =

N/(F1F2F3F4), and M0 =M1/F0 =1. We begin with N = M4×F4:

(12.38) ΩN = (ΩM4
⊗IF4

)︸ ︷︷ ︸
expanded below

·P T
N ·DN ·(ΩF4

⊗IM4
) ,

and we continue to factor ΩM4
(because M4 = M3×F3), so that we can expand and simplify

the product

(12.39) ΩM4
⊗ IF4

=

{
(ΩM3

⊗IF3
)·P T

M4
·DM4

·(ΩF3
⊗IM3

)

}
⊗ IF4

using some Kronecker product propertiesÑ which we are now motivated to learn about in the
next section. After the detour we shall return to Equation (12.38) and derive the matrix equation
for multi-factor mixed-radix FFT.

12.2.1 Selected properties and rules for Kronecker products

Recall that a Kronecker product is deÞ ned for matrices of arbitrary dimensions, but standard
product is deÞ ned only for conformable matrices. Therefore, when standard product A ·B
occurs in any formula that follows, it is assumed that the number of columns in A is equal to
the number of rows in B so that the expression is validÑo f course, A itself may be the result
of Kronecker products and/or standard products, and so is B.

The list of Kronecker product properties given below is not exhaustive, and the selection
is based on our needs to decompose the DFT matrix analytically. While many of these results
can be stated as stand alone theorems to be proved directly by showing that the (i, j)th element
of the matrix in the left-hand side is equal to the (i, j)th element of the matrix in the right-hand
side, such a formal proof could be laborious and may not shed light on the meaning of the
equation or how it could be used. For our purpose it is more important to understand what
the equations (representing the properties) mean and how they can be used in the context of
factoring the DFT matrix, and we shall use well-understood examples from the last section to
provide such context in our discussion. Readers interested in the proofs of these properties
may consult [26].

330 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

1. An identity matrix of order N =N0×N1 can be expressed as

(12.40) IN = IN0
⊗ IN1

= IN1
⊗ IN0

.

The same holds for zero matrices.

2. If α is a scalar, then

(12.41) A⊗ (α·B) = α·(A⊗B).

3. The Kronecker product is distributive with respect to addition, that is,

(12.42) (A + B)⊗C = A⊗C + B ⊗C; A⊗ (B + C) = A⊗B + A⊗C.

4. The Kronecker product is associative, that is,

(12.43) A⊗ (B ⊗C) = (A⊗B)⊗C.

5. While the rule (A·B)T = BT ·AT holds for standard matrix products, a different rule is
required by the Kronecker product:

(12.44) (A⊗B)T = AT ⊗BT .

6. The following rule applies to Ò mixedÓ products:

(12.45) (A⊗B)·(C ⊗D) = (A·C)⊗ (B ·D).

Observe that one standard product occurs on the left-hand side, and two standard prod-
ucts occur on the right-hand side. As stated at the beginning of this section, we shall
assume that the matrices involved make each standard product valid.

The cases involving identity matrixes warrant special attention:

(12.46) (A⊗ I)·(I ⊗D) = A⊗D = (I ⊗D)·(A⊗ I).

(12.47) (A·C)⊗ I = (A·C)⊗ (I ·I) = (A⊗ I)·(C ⊗ I).

The result can be easily extended to the product of more than two matrices:

(12.48) (A·C ·D)⊗ I =
(
(A·C)⊗ I

)·(D ⊗ I) = (A⊗ I)·(C ⊗ I)·(D ⊗ I).

7. While the rule (A·B)−1 = B−1·A−1 holds for the standard product of nonsingular matrices
A and B, a different rule is required by the Kronecker product:

(12.49) (A⊗B)−1 = A−1 ⊗B−1.

8. If each column of A is multiplied by matrix Z, then

(12.50) vec {Z ·A} = (I ⊗Z)·vec A.

Recall that (I ⊗ Z) represents a block diagonal matrix, and that we have demonstrated
this result for I4 and Z = Ω3 when deriving formula (12.20) in Section 12.1. If each
row of A is multiplied by matrix Y , then

(12.51) vec
{

A·Y T
}

= (Y ⊗ I)·vec A.

Recall that we have demonstrated this result for I3 and Y = Ω4 (which is symmetric)
when deriving formula (12.12) in Section 12.1.

12.2. FROM TWO-FACTOR TO MULTI-FACTOR MIXED-RADIX FFT 331

9. If each row of A is multiplied by matrix Y , and each column of A is multiplied by matrix
Z, then the result is the standard product Z ·A·Y T , which can also be expressed using
Kronecker products and the vector-valued operator vec:

vec
{
Z ·A·Y T

}
= (I ⊗Z)·(Y ⊗ I)·vec A

= (Y ⊗Z)·vec A. (by (12.46), property 6)
(12.52)

10. There exist permutation matrices P and Q such that

(12.53) A⊗B = P ·(B ⊗A)·Q.

12.2.2 Complete factorization of the DFT matrix

After taking a detour in the Kronecker product algebra in the last subsection, we now return to
complete the factorization of the DFT matrix ΩN of order N = F0×F1×F2×F3×F4. We have
obtained the Þ rst factor Ò P T

N
·DN ·(ΩF4

⊗ IM4
)Ó b y Equation (12.38). After relabeling P T

N
as

QF4
N and DN as DF4

N to reßect the dimension N as well as the two factors being N0 = N/F4

and N1 =F4, we have

(12.54) ΩN = (ΩM4
⊗IF4

) ·QF4
N
·DF4

N
·(ΩF4

⊗IN/F4
)︸ ︷︷ ︸

The Þ rst factor R1

.

Next, using M4 = M3×F3, we proceed to simplify the expansion of Ò (ΩM4
⊗IF4

)Ó g iven by
Equation (12.39):

ΩM4
⊗ IF4

=

{
(ΩM3

⊗IF3
)·QF3

M4
·DF3

M4
·(ΩF3

⊗IM3
)

}
⊗ IF4

∵ (12.39)

=

{
(ΩM3

⊗IF3
)⊗ IF4

}
·
{(

QF3
M4
·DF3

M4

)⊗IF4

}
·
{

(ΩF3
⊗IM3

)⊗IF4

}
∵ (12.48)

= (ΩM3
⊗IF3·F4

)·((QF3
M4
·DF3

M4

)⊗ IF4

)· (ΩF3
⊗IM3·F4

) ∵ (12.43), (12.40)

= (ΩM3
⊗IF3·F4

)·((QF3
M4
·DF3

M4

)⊗IF4

)· (ΩF3
⊗IN/F3

) .︸ ︷︷ ︸
The second factor R2

(12.55)

By repeating the same expansion and reduction process on Ò (ΩM3
⊗ IF3·F4

)Ó u sing
M3 =M2×F2, we obtain

ΩM3
⊗ IF3·F4

=

{
(ΩM2

⊗IF2
)·QF2

M3
·DF2

M3
·(ΩF2

⊗IM2
)

}
⊗ IF3·F4

=

{
(ΩM2

⊗IF2
)⊗IF3·F4

}
·
{(

QF2
M3
·DF2

M3

)⊗IF3·F4

}
·
{

(ΩF2
⊗IM2

)⊗IF3·F4

}
= (ΩM2

⊗IF2·F3·F4
)·((QF2

M3
·DF2

M3

)⊗IF3·F4

)· (ΩF2
⊗IM2·F3·F4

)

=
(
ΩM2

⊗IF2·F3·F4

)· ((QF2
M3
·DF2

M3

)⊗IF3·F4

)· (ΩF2
⊗IN/F2

)︸ ︷︷ ︸
The third factor R3

.

(12.56)

332 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

Following the pattern established by the last two factors, we can express

(12.57) ΩM2
⊗IF2·F3·F4

=
(
ΩM1

⊗IF1·F2·F3·F4

)· ((QF1
M2
·DF1

M2

)⊗IF2·F3·F4

)· (ΩF1
⊗IN/F1

)︸ ︷︷ ︸
The fourth factor R4

.

Recall that M1 =M2/F1 =N/(F1F2F3F4)=F0; hence, the Þ fth factor is given by

(12.58) ΩM1
⊗IF1·F2·F3·F4

= ΩF0
⊗IN/F0︸ ︷︷ ︸

The Þ fth factor R5

.

In summary, we have shown that for N = F0×F1×F2×F3×F4, the DFT matrix can be
expressed as the product of Þ ve N -by-N sparse matrices:

(12.59) ΩN = R5 ·R4 ·R3 ·R2 ·R1,

where each sparse-matrix factor is deÞ ned by mixed products:

R1 = QF4
N ·DF4

N ·(ΩF4
⊗IN/F4

) , N =

4∏
k=0

Fk,

R2 =

((
QF3

M4
·DF3

M4

)⊗ IF4

)
· (ΩF3

⊗IN/F3
) , M4 =

3∏
k=0

Fk,

R3 =

((
QF2

M3
·DF2

M3

)⊗ IF3·F4

)
· (ΩF2

⊗IN/F2
) , M3 =

2∏
k=0

Fk,

R4 =

((
QF1

M2
·DF1

M2

)⊗IF2·F3·F4

)
· (ΩF1

⊗IN/F1
) , M2 =

1∏
k=0

Fk,

R5 = ΩF0
⊗IN/F0

.

(12.60)

Recall that the permutation matrix QN1
N and the diagonal matrix DN1

N are both fully speciÞed
given the values for the dimension N and the (single) factor N1, because the two-factor N =

(N/N1)×N1. For easy reference, we restate the pseudo-code deÞnitions for QN1
N and DN1

N .
The following code segment generates QN1

N
, which is the transpose of the previously deÞ ned

PN :

for k := 0 to N − 1 do initialize QN1
N to be an

for i := 0 to N − 1 do N -by-N zero matrix
Q

N1
N [i, k] := 0 column by column

end for
end for
N0 := N/N1 ∵ two-factor N = (N/N1)×N1

r := 0

for n̂0 := 0 to N0 − 1 do
for n̂1 := 0 to N1 − 1 do

� := n̂1N0 + n̂0

QN1
N [r, �] := 1 ∵ PN [�, r] = 1 and QN1

N = PT
N

r := r + 1 ∵ r = n̂0N1 + n̂1

end for
end for

12.3. OTHER FORMS BY ALTERNATE INDEX SPLITTING 333

We also repeat here the pseudo-code that generates the diagonal matrix DN1
N :

for k := 0 to N − 1 do initialize DN1
N to be an

for i := 0 to N − 1 do N -by-N zero matrix
DN1

N [i, k] := 0 column by column
end for

end for
N0 := N/N1 ∵ two-factor N = (N/N1)×N1

� := 0

for n̂1 := 0 to N1 − 1 do assign twiddle factors
for n0 := 0 to N0 − 1 do to diagonal elements

D
N1
N [�, �] := ωn0n̂1

N ∵ y� = an0,n̂1 =A1[n0, n̂1],
� := � + 1 and � = n̂1N0 + n0

end for
end for

With the DFT matrix ΩN completely factored, the Þ ve-factor mixed-radix FFT can be cast
as Þ ve sparse-matrix-vector products, that is,

(12.61) X =

DFT︷ ︸︸ ︷
ΩN ·x = R5 ·

(
R4 ·

(
R3 ·(R2 ·(R1 ·x))

))
︸ ︷︷ ︸

mixed-radix FFT

.

The Þ ve steps of the mixed-radix FFT can now be represented compactly by Þ ve matrix equa-
tions:

y1 = R1 ·x =

Step 1︷ ︸︸ ︷
QF4

N
·DF4

N
·(ΩF4

⊗IN/F4
)·x,

y2 = R2 ·y1 =

Step 2︷ ︸︸ ︷((
QF3

M4
·DF3

M4

)⊗ IF4

)· (ΩF3
⊗IN/F3

)·y1,

y3 = R3 ·y2 =

Step 3︷ ︸︸ ︷((
QF2

M3
·DF2

M3

)⊗ IF3·F4

)· (ΩF2
⊗IN/F2

)·y2,

y4 = R4 ·y3 =

Step 4︷ ︸︸ ︷((
QF1

M2
·DF1

M2

)⊗IF2·F3·F4

)· (ΩF1
⊗IN/F1

)·y3,

X = R5 ·y4 =

Step 5︷ ︸︸ ︷
(ΩF0

⊗IN/F0
)·y4 .

(12.62)

Observe that the algorithm described by these Þ ve steps actually represents a self-sorting vari-
ant of the mixed-radix algorithm described previously by recursive equations in Section 11.3.2,
because the former produces naturally ordered X , whereas the latter produces scrambled out-
put c = P ·X at the end of Step 5 and all of the re-ordering work to recover X = P T · c is
done in Step 6 regardless of the number of factors. We discuss how to obtain the particular
factorization which leads to P ·X in Section 12.4.

12.3 Other Forms by Alternate Index Splitting

Recall that the alternate index splitting strategy presented in Section 11.4 in Chapter 11 leads
to the DIF FFT. In this section we shall work out the corresponding Kronecker product fac-

334 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

torization of the DFT matrix. We again begin with the two-factor FFT in multidimensional
formulation based on the recursive equation established for arbitrary ν-factor composite N in
Section 11.4 of Chapter 11.

Step 0. Map x� to A[n0, n1] for � = n1N0 + n0.

Step 1. Compute N/N1=N0 short DFT-like transforms of length N1:

for n0 := 0 to N0 − 1 do
for n̂1 := 0 to N1 − 1 do

A1[n0, n̂1] =
∑N1−1

n1=0

{
A[n0, n1] ω

n̂1n0
N

}
ωn̂1n1

N1

end for
end for

Step 2. Compute N/N0=N1 short DFT transforms of length N0:

for n̂1 := 0 to N1 − 1 do
for n̂0 := 0 to N0 − 1 do

A2[n̂0, n̂1] =
∑N0−1

n0=0 A1[n0, n̂1] ω
n̂0n0
N0

end for
end for

Step 3. Map A2[n̂0, n̂1] to Xr for r = n̂0N1 + n̂1.

Comparing this algorithm with the two-factor algorithm given in the last section, we see that
the twiddle factors contained in the diagonal matrix DN are now applied to vec A=x in Step
1 rather than vec A1 in Step 2. Since this is the only difference, we can adapt the matrix
equation from last section without repeating the reformulating process. That is, corresponding
to equation (12.32), we have

(12.63) X = (ΩN0
⊗IN1

)·P T
N
·(ΩN1

⊗IN0
)·DN · x.

To obtain the complete factorization of the DFT matrix ΩN of order N =
∏4

k=0 Fk , we
have, corresponding to Equation (12.54),

(12.64) ΩN = (ΩM4
⊗IF4

)·QF4
N
·(ΩF4

⊗IN/F4

)·DF4
N︸ ︷︷ ︸

The Þ rst factor R1

.

The expansion and reduction of Ò (ΩM4
⊗IF4

)Ó f ollow the same steps as our derivation of Equa-
tion (12.55), and we obtain the second matrix factor:

ΩM4
⊗ IF4

=

{
(ΩM3

⊗IF3
)·QF3

M4
·(ΩF3

⊗IM3
)·DF3

M4

}
⊗ IF4

∵ (12.64)

= (ΩM3
⊗IF3·F4

)·(QF3
M4
⊗IF4

)·(ΩF3
⊗IN/F3

)·(DF3
M4
⊗IF4

)
.︸ ︷︷ ︸

The second factor R2

(12.65)

The remaining factors can now be easily adapted from the results given by Equations (12.56),
(12.57), and (12.58), and the complete factorization of the DFT matrix ΩN is given by

(12.66) ΩN = R5 ·R4 ·R3 ·R2 ·R1,

12.4. FACTORIZATION RESULTS BY ALTERNATE EXPANSION 335

where each sparse-matrix factor is deÞ ned by mixed products:

R1 = QF4
N
·(ΩF4

⊗IN/F4
)·DF4

N
, N =

4∏
k=0

Fk,

R2 =
(
QF3

M4
⊗IF4

)·(ΩF3
⊗IN/F3

)·(DF3
M4
⊗IF4

)
, M4 =

3∏
k=0

Fk,

R3 =
(
QF2

M3
⊗IF3·F4

)· (ΩF2
⊗IN/F2

)·(DF2
M3
⊗IF3·F4

)
, M3 =

2∏
k=0

Fk,

R4 =
(
QF1

M2
⊗IF2·F3·F4

)· (ΩF1
⊗IN/F1

)·(DF1
M2
⊗IF2·F3·F4

)
, M2 =

1∏
k=0

Fk,

R5 = ΩF0
⊗IN/F0

.

(12.67)

12.4 Factorization Results by Alternate Expansion

We commented at the end of Section 12.2.2 that there is more than one way to factor the DFT
matrix even when the indices are mapped and split the same way. In this section we derive
the factorization results which lead to the unordered mixed-radix FFT algorithms given by
recursive equations in Sections 11.3.2 and 11.4.1 in Chapter 11.

12.4.1 Unordered mixed-radix DIT FFT

We Þ rst show how to obtain a different factorization result directly from Equation (12.28) in
Section 12.1, which is repeated here:

(12.68) X = P T
N
·(IN1

⊗ΩN0
)·DN ·(ΩN1

⊗IN0
)·x.

To obtain the complete factorization of the DFT matrix ΩN of order N =
∏4

k=0 Fk, we begin
with N =M4×F4 and we express Equation (12.68) using N0 =M4 and N1 =F4 as we have
done many times before. The result is

(12.69) ΩN = QF4
N︸︷︷︸

P 1

· (IF4
⊗ΩM4

) ·DF4
N
·(ΩF4

⊗IM4
)︸ ︷︷ ︸

factor R1

, N = M4×F4.

The expansion and reduction of Ò (IF4
⊗ΩM4

),Ó using M4 =M3×F3, follow the same steps as
our derivation of Equation (12.55), and the result is

IF4
⊗ΩM4

= IF4
⊗

{
QF3

M4
·(IF3

⊗ΩM3
)·DF3

M4
·(ΩF3

⊗IM3
)

}
∵ (12.69)

=

{
IF4
⊗

(
QF3

M4
·(IF3

⊗ΩM3

))}
·
{

IF4
⊗

(
DF3

M4
·(ΩF3

⊗IM3

))}
∵ (12.48)

=

(
IF4
⊗QF3

M4

)
︸ ︷︷ ︸

factor P 2

·
(
IF4·F3

⊗ΩM3

)
·
{
IF4
⊗

(
DF3

M4
·(ΩF3

⊗IM3

))}
︸ ︷︷ ︸

factor R2

∵ (12.43), (12.40)

(12.70)

336 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

After expanding and reducing Ò IF4·F3
⊗ΩM3

Ó a s well as the resulting Ò IF4·F3·F2
⊗ΩM2

,Ó we
obtain the complete factorization of the DFT matrix ΩN :

(12.71) ΩN =
(
P 1 ·P 2 ·P 3 ·P 4

)︸ ︷︷ ︸
matrix P T

·(R5 ·R4 ·R3 ·R2 ·R1

)
= P T ·(R5 ·R4 ·R3 ·R2 ·R1

)
,

where P T is the permutation matrix deÞ ned by the product of

P 1 = QF4
N , N =

4∏
k=0

Fk,

P 2 = IF4
⊗QF3

M4
, M4 =

3∏
k=0

Fk,

P 3 = IF4·F3
⊗QF2

M3
, M3 =

2∏
k=0

Fk,

P 4 = IF4·F3·F2
⊗QF1

M2
, M2 =

1∏
k=0

Fk;

(12.72)

and each sparse-matrix factor Rk is deÞ ned by mixed products:

R1 = DF4
N
· (ΩF4

⊗ IM4

)
,

R2 = IF4
⊗

(
DF3

M4
· (ΩF3

⊗ IM3

))
,

R3 = IF4·F3
⊗

(
DF2

M3
· (ΩF2

⊗ IM2

))
,

R4 = IF4·F3·F2
⊗

(
DF1

M2
· (ΩF1

⊗ IM1

))
,

R5 = IF4·F3·F2·F1
⊗ΩF0

.

(12.73)

Observe that with the DFT matrix now factored as ΩN = P T ·R5·R4·R3·R2·R1, we can
rewrite the DFT as

(12.74) X =

DFT︷ ︸︸ ︷
ΩN ·x = P T ·

{
R5 ·

(
R4 ·

(
R3 ·(R2 ·(R1 ·x))

))}
.

Since P T denotes a permutation matrix, we have P T =P−1, and we obtain the mixed-radix
FFT which computes Ò P ·X Ó:

(12.75) P ·X = R5 ·
(

R4 ·
(
R3 ·(R2 ·(R1 ·x))

))
︸ ︷︷ ︸

unordered mixed-radix DIT FFT

.

The Þ ve steps represented by yk = Rk·yk−1, for k = 1, . . . , 5, with y0 = x, now corresponds
to the steps of the mixed-radix algorithm which produces the scrambled output Ò P ·X Ó a nd
was previously described by the recursive equations in Sections 11.3.2 in Chapter 11.

12.5. UNORDERED FFT FOR SCRAMBLED INPUT 337

12.4.2 Unordered mixed-radix DIF FFT

Recall that the alternate index splitting strategy presented in Section 11.4 in Chapter 11 leads
to the DIF FFT. Following our explanation in Section 12.3, we obtain the matrix equation
representing the two-factor DIF FFT directly from Equation (12.68), that is,

(12.76) X = P T
N
·(IN1

⊗ΩN0
)·(ΩN1

⊗IN0
)·DN ·x.

Note that because the change from Ò DN · (ΩN1
⊗ IN0

)Ó i n Equation (12.68) to
Ò (ΩN1

⊗ IN0
) · DN Ó i n Equation (12.76) is conÞ ned within the factor R1, it has no effect

on the expansion process. Therefore, for N =F0×F1×F 2×F3×F 4, we can obtain the fac-
torization results matching the unordered DIF FFT directly from Equation (12.73) by making
the same change within each factor:

R1 =
(
ΩF4

⊗ IM4

) ·DF4
N

,

R2 = IF4
⊗

((
ΩF3

⊗ IM3

) ·DF3
M4

)
,

R3 = IF4·F3
⊗

((
ΩF2

⊗ IM2

) ·DF2
M3

)
,

R4 = IF4·F3·F2
⊗

((
ΩF1

⊗ IM1

) ·DF1
M2

)
,

R5 = IF4·F3·F2·F1
⊗ΩF0

.

(12.77)

Since the expansion process is not affected by the changes we made, the permutation matrix
P T is deÞn ed by Equation (12.72) as before, and we have obtained the desired factorization

(12.78) X =

DFT︷ ︸︸ ︷
ΩN ·x = P T ·R5 ·

(
R4 ·

(
R3 ·(R2 ·(R1 ·x))

))
︸ ︷︷ ︸

unordered mixed-radix DIF FFT

,

which leads to the unordered mixed-radix DIF FFT that computes Ò P ·XÓ b y

(12.79) P ·X = R5 ·
(

R4 ·
(
R3 ·(R2 ·(R1 ·x))

))
︸ ︷︷ ︸

unordered mixed-radix DIF FFT

.

12.5 Unordered FFT for Scrambled Input

In the last section we derived two unordered mixed-radix FFT algorithms which transform
naturally ordered input x to scrambled output c = P · X , and separate re-ordering steps
are required to unscramble c to recover X = P T · c. The re-ordering steps are speciÞed by
the Kronecker product factorization of the permutation matrix P T, that is, X = P 1 ·

(
P 2 ·

(P 3 ·(P 4 ·c))
)
.

Because of the symmetry of the DFT matrix, i.e., Ω = Ω
T , a different FFT algorithm can

be produced from the Kronecker product factorization of ΩT Ñto get that, we simply transpose
the factors of Ω. That is, corresponding to

(12.80) ΩN =
(
P 1 ·P 2 ·P 3 ·P 4

)︸ ︷︷ ︸
matrix P T

·(R5 ·R4 ·R3 ·R2 ·R1

)
= P T ·(R5 ·R4 ·R3 ·R2 ·R1

)
,

338 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

we now have

(12.81) Ω
T
N

=
(
RT

1 ·RT
2 ·RT

3 ·RT
4 ·RT

5

) (
P T

4 ·P T
3 ·P T

2 ·P T
1

)︸ ︷︷ ︸
matrix P

·= (
RT

1 ·RT
2 ·RT

3 ·RT
4 ·RT

5

)·P .

Using the factors of Ω
T
N

, we can rewrite the DFT as

(12.82) X =

DFT︷ ︸︸ ︷
ΩN · x = Ω

T
N · x = RT

1 ·
(

RT
2 ·

(
RT

3 ·
(
RT

4 ·(RT
5 ·

(
P ·x)

))))
︸ ︷︷ ︸

unordered mixed-radix FFT

.

Observe that the resulting mixed-radix FFT algorithm transforms scrambled input P ·x to
naturally ordered output X .

For the DIT FFT, we obtain the factors RT
k from Rk in Equation (12.73). In deriving each

RT
k given below, we apply the standard product rule (A ·B)T = BT ·AT , the Kronecker

product rule (A ⊗ B)T = AT ⊗ BT , and we make use of the fact that the DFT matrix Ω,
diagonal matrix D, and identity matrix I are all symmetric matrices regardless of their order.

RT
1 =

(
DF4

N
· (ΩF4

⊗ IM4

))T

=
(
ΩF4

⊗ IM4

) ·DF4
N

,

RT
2 = IT

F4
⊗

(
DF3

M4
· (ΩF3

⊗ IM3

))T

= IF4
⊗

((
ΩF3

⊗ IM3

) ·DF3
M4

)
,

RT
3 = IT

F4·F3
⊗

(
DF2

M3
· (ΩF2

⊗ IM2

)T
)

= IF4·F3
⊗

((
ΩF2

⊗ IM2

) ·DF2
M3

)
,

RT
4 = IT

F4·F3·F2
⊗

(
DF1

M2
· (ΩF1

⊗ IM1

))T

= IF4·F3·F2
⊗

((
ΩF1

⊗ IM1

) ·DF1
M2

)
,

RT
5 = IF4·F3·F2·F1

⊗ΩF0
.

(12.83)

For the DIF FFT, we obtain the factors RT
k directly from the factors Rk in Equation (12.77)

by similar steps:

RT
1 = DF4

N
· (ΩF4

⊗ IM4

)
,

RT
2 = IF4

⊗
(

DF3
M4
· (ΩF3

⊗ IM3

))
,

RT
3 = IF4·F3

⊗
(

DF2
M3
· (ΩF2

⊗ IM2

))
,

RT
4 = IF4·F3·F2

⊗
(

DF1
M2
· (ΩF1

⊗ IM1

))
,

RT
5 = IF4·F3·F2·F1

⊗ΩF0
.

(12.84)

For both DIT and DIF algorithms, the permutation matrix P =P T
4 ·P T

3 ·P T
2 ·P T

1 , where each
factor P T

k can be obtained from the factor P k in Equation (12.72):

P T
1 =

(
QF4

N

)T
= QM4

N , ∵ N = M4×F4,

P T
2 =

(
IF4
⊗QF3

M4

)T
= IF4

⊗QM3
M4

, ∵ M4 = M3×F3,

P T
3 =

(
IF4·F3

⊗QF2
M3

)T
= IF4·F3

⊗QM2
M3

, ∵ M3 = M2×F2,

P T
4 =

(
IF4·F3·F2

⊗QF1
M2

)T
= IF4·F3·F2

⊗QF0
M2

, ∵ M2 = M1×F1 = F0×F1.

(12.85)

12.6. UTILITIES OF KRONECKER PRODUCT FACTORIZATION 339

12.6 Utilities of the Kronecker Product Factorization

In the preceding sections we have derived six different factorization results of the DFT matrix,
which lead to the compact expressions of six different mixed-radix FFTs, and they correspond
to the six canonical forms of the radix-2 FFTs derived in Chapters 7, 8, and 9 in [13]. How do
we make use of these compact, but somewhat abstract, expressions in our study, development,
and implementation of the various mixed-radix FFTs? We address this question below.

First of all, it allows us to characterize each algorithm by the matrix equation which rep-
resents a typical step. For the six algorithms we have derived for N =

∏k=4
k=0 Fk , a typical

step is represented by y3 = R3 ·y2, which is sufÞ cient for many purposes when all Þ ve steps
have been laid out to provide context and allow immediate generalization to arbitrary number
of factors if needed.

1. Self-sorting mixed-radix DITNN FFT: The naturally ordered input x and naturally ordered
output X are indicated by the subscript Ò NN.Ó

(12.86) y3 =
((

QF2
M3
·DF2

M3

)⊗ IF3·F4

) · (ΩF2
⊗IN/F2

)·y2.

2. Self-sorting mixed-radix DIFNN FFT:

(12.87) y3 =
(
QF2

M3
⊗IF3·F4

)· (ΩF2
⊗IN/F2

)·(DF2
M3
⊗IF3·F4

) · y2.

3. Unordered mixed-radix DITNR FFT: The naturally ordered input x and scrambled output
P ·X are indicated by the subscript Ò NR.Ó

(12.88) y3 = IF4·F3
⊗ (

DF2
M3
· (ΩF2

⊗ IM2
)
) · y2.

4. Unordered mixed-radix DIFNR FFT:

(12.89) y3 = IF4·F3
⊗ (

(ΩF2
⊗ IM2

) ·DF3
M3

) · y2.

5. Unordered mixed-radix DITRN FFT: The scrambled input P · x and naturally ordered
output X are indicated by the subscript Ò RN.Ó

(12.90) y3 = IF4·F3
⊗ (

(ΩF2
⊗ IM2

) ·DF3
M3

) · y2.

6. Unordered mixed-radix DIFRN FFT:

(12.91) y3 = IF4·F3
⊗ (

DF2
M3
· (ΩF2

⊗ IM2
)
) · y2.

When each algorithm is characterized by a single matrix equation, we have a mathematical
basis to study and compare different algorithms in a systematic manner.

For the four unordered FFT, the re-ordering step can be studied separately by analyzing the
Kronecker product factorization of the permutation matrix P T or P . For example, a careful
study of how to re-distribute the permutations imposed by the factors of P T throughout all
steps results in the in-place self-sorting mixed-radix FFT proposed by Temperton in [49].

Second, each matrix equation tells us, in precise (but abstract) mathematical terms, exactly
what needs to be computed in a typical step, which helps us focus our thoughts and efforts
when developing (or trying to understand or evaluate) the computer program implementing

340 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

each algorithm. Note that the focus would be on deciphering the matrix equation and perform-
ing equivalent operations directly on the 1-D array y2, because no sparse matrix used in the
mathematical equation would actually be formed in an efÞcien t implementation.

Third, the extension from the two-factor case to the multi-factor case was made easy using
the rules of matrix algebra for Kronecker products.

Fourth, recall that the DITRN FFT and DIFRN FFT were generated directly from rearranging
the factors which previously form the matrix equation for the DITNR and DIFNR FFT. There-
fore, it is not surprising that many other FFT variants can be derived using the matrix algebra
of Kronecker products. For example, researchers have tailored the mixed-radix FFT to com-
posite transform length N formed by certain factorsÑ e.g., power of a speciÞ c factor, product
of speciÞ c factors, product combining mixed factors and power of speciÞ c factors, product
of pairwise-prime factors, . . . , etc.Ñ by direct manipulation of the matrix equation and/or by
incorporating specially designed index mapping schemes into the matrix equation.

Chapter 13

The Family of Prime Factor FFT
Algorithms

The prime factor algorithms (PFAs) are specialized mixed-radix algorithms which are based
on factoring the transform length into pairwise prime factors. For example, if we factor
N = 12 = 3×4, then the two factors N0 = 3 and N1 = 4 are relatively prime because their
greatest common divisor gcd(3, 4)= 1; if we factor N = 60 = 3×4×5, then the three factors
N0 = 3, N1 = 4, and N2 = 5 are said to be pairwise prime, because we have gcd(3, 4) = 1,
gcd(4, 5)=1, and gcd(3, 5)=1. Note that in the multi-factor case, meeting the pairwise prime
condition guarantees that any two products of arbitrary factors are also relatively primeÑfor
example, gcd(3×4, 5)=1, gcd(3, 4×5)=1, and gcd(3×5, 4)=1. Although the Þ rst prime fac-
tor algorithm was published by Good [24] prior to the introduction of the decimation-in-time
mixed-radix FFT by Cooley and Tukey [16], we shall derive in Section 13.2 the two-factor PFA
by adding bells and whistles to the simpler and more easily understood mixed-radix FFT, us-
ing also the various algorithmic and/or mathematical tools we have established and thoroughly
explained in deriving the family of mixed-radix FFTs in Chapters 11 and 12.

Although a DFT of composite length N can be computed by a mixed-radix FFT whether
the factors of N are pairwise prime or not, it was recognized by Cooley et. al. in [15] that
the prime factor algorithm can be extremely useful when used in combination with the mixed-
radix algorithm. They further clariÞ ed in [15] that the prime factor algorithm described by
Good [24] had been mistakenly said to be equivalent to Cooley and TukeyÕs arbitrary-factor
(mixed-radix) FFT algorithm, and they stressed the importance of distinguishing between these
two algorithms since each has its particular advantages which can be exploited in appropriate
circumstances. This is indeed the case, and the family of prime factor algorithms has continued
to grow with further development by Kolba and Parks [31], Winograd [55], Burrus and Eschen-
bacher [9], Nussbaumer [35], Rothweiler [41], Otto [36], and Temperton [45, 46, 47, 48, 50].
After we discuss the design and implementation of the prime factor algorithm, it will be clear
that the PFA has the following advantages:

• When the factors are pairwise prime, the PFA incurs fewer arithmetic operations than the
mixed-radix FFT, because the twiddle factors are eliminated and the associated scaling
operations are not required in the PFA.

• It can be useful to combine the PFA with a radix-2 FFT. For example, if N = N0×N1 =

341

342 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

512 × 77, then the two factors N0 = 512 and N1 = 77 are relatively prime, we can
use prime factor algorithm to set up DFTs of lengths N0 and N1. Then each DFT of
length N0 = 512 = 29 can be computed by a radix-2 FFT, and each DFT of length
N1 = 77 = 7× 11 can be computed by a prime factor algorithm.

• It can also be useful to combine the PFA with an arbitrary factor (mixed-radix) FFT. For
example, if N = 4 × 9 × 25 × 49, we can factor N = N0 × N1 with N0 = N1 =

2× 3× 5× 7, and use the mixed-radix FFT to set up DFTs of lengths N0 and N1. The
PFA can then be used to compute each DFT of length N0 = N1 = 2×3×5×7, because
the factors F0 = 2, F1 = 3, F2 = 5, and F3 = 7 are pairwise prime.

• The indexing schemes used by the PFA can be made simpler than that required for the
mixed-radix FFT.

• The PFA is easy to program because of the elimination of twiddle factors and the sim-
plicity of the indexing scheme.

• A self-sorting in-place PFA is available and it is equally easy to program.

As to the theory behind the PFA, in Section 13.5 we shall formally introduce a few relevant
concepts from elementary number theory concerning the properties of integers, and we pro-
ceed to prove the Chinese Remainder Theorem (CRT), because CRT and CRT-related index
maps are responsible for the number-theoretic splitting of the DFT matrix, which gives rise
to the PFA. Although the matrix equation representing the two-factor PFA can be expanded
(using the rules of matrix algebra for Kronecker products) to represent the multi-factor PFA
as previously done for the mixed-radix FFT, it remains important to acquire the background
in number theory to understand the theoretical aspects of the multi-factor index map, because
an efÞcien t implementation of the multi-factor PFA depends on a number of theoretical results
which are signiÞ cant in their own right.

In the remainder of this chapter we shall consider some practical issues related to the perfor-
mance of the prime factor algorithms, including the efÞ cient implementation of the multi-factor
PFA and the computation of short DFTs or short rotated DFTs in the PFA.

13.1 Connecting the Relevant Ideas

We shall Þ rst review and connect the relevant ideas from the preceding two chapters in the con-
text of deriving and extending a two-factor mixed-radix FFT expressed by Equation (12.27):

(13.1) PN ·X = vecA2 = (IN1
⊗ΩN0

)·DN ·(ΩN1
⊗IN0

)·vecA︸ ︷︷ ︸
inputx

, where N = N0 ×N1.

Recall that we went through the following stages before we arrived at Equation (13.1):

Stage I We assumed that the input sequence x was stored in matrix A[N0, N1] by standard
column-major index mapping scheme, and the output sequence X was stored in ma-
trix B[N1, N0] (which is the transpose of the intermediate matrix A2[N0, N1]) also by
column-major index mapping scheme.

Stage II We combine the two predetermined index mapping schemes with the chosen index
splitting scheme to decouple the DFT computation into multiple short DFT or DFT-like

13.2. DERIVING THE TWO-FACTOR PFA 343

transforms along the columns and rows of the input matrix A[N0, N1] and the interme-
diate matrix A1[N0, N1].

Stage III We then derive the Kronecker product factorization of the DFT matrix ΩN by trans-
lating the operations performed on columns and rows of matrices A and A1 to equivalent
matrix operations on the two vectors vec A and vec A1, which were extended from the
two matrices column by column.

Stage IV Based on the predetermined index mapping schemes for input x and output X , we
were able to identify x = vec A and X = vec B = vec AT

2 . The latter leads us to
deÞ ne a permutation matrix PN such that PN ·X = vec A2.

Stage V We obtain the factorization of the DFT matrix ΩN by writing (13.1) as

(13.2) X = P T
N
·(IN1

⊗ΩN0
)·DN ·(ΩN1

⊗IN0
)︸ ︷︷ ︸

Kronecker product factorization of ΩN

·x = ΩN ·x.

Once we have factored ΩN , we may use the rules of matrix algebra for Kronecker products to
incorporate the similarly factored ΩN0

into (13.2) if N0 remains composite, and this process
can be repeated until we obtain the formula for the desired mixed-radix FFT.

We show next that the prime factor algorithms may be derived via stages in parallel to those
we have just reviewed in this section.

13.2 Deriving the Two-Factor PFA

In this section our objective is to derive the two-factor prime factor FFT given by

(13.3) PN ·X︸ ︷︷ ︸
vecB

= (IN1
⊗ΩN0

)·(ΩN1
⊗IN0

)·QN ·x︸ ︷︷ ︸
vecA

,

where N = N0 × N1 and gcd(N0, N1) = 1; PN and Q
N

are specially designed permutation
matrices to be discussed in detail below. Comparing Equation (13.3) with Equation (13.1),
we see that all scaling operations involving twiddle factors on the diagonal of DN have been
eliminatedÑ this is the key feature of the prime factor FFT.

With the Þ ve-stage road map set up in the last section, we now derive (13.3) stage by stage.
Whenever a concrete example is needed, we shall use N0 = 3 and N1 = 4 as before for easy
comparisonÑ this is possible because the two factors are relatively prime.

13.2.1 Stage I: Nonstandard index mapping schemes

As described by Burrus and Eschenbacher in [9], the Ruritanian map is used to store input
sequence x in matrix A[N0, N1], and the Chinese Remainder Theorem (CRT) map is used to
store output sequence X in matrix B[N0, N1].

The Ruritanian index mapping scheme deÞ nes

(13.4) x� = A[n0, n1] if � =
〈
N1n0 + N0n1

〉
N

def
= residue of

(
N1n0 + N0n1

)
modulo N.

It is useful to display the mapping in matrix form for N = N0 × N1 = 3 × 4. According
to (13.4), A[n0, n1] (denoted also by an0,n1) stores x� for

� =
〈
N1n0 + N0n1

〉
N

=
〈
4n0 + 3n1

〉
N
;

344 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

we thus have

(13.5) A =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

 =

x0 x3 x6 x9

x4 x7 x10 x1

x8 x11 x2 x5

 .

Note that vecA 	= x. (This is where Q
N

, the permutation matrix associated with vecA, comes
in.)

The CRT index mapping scheme deÞ nes
(13.6)

Xr = B[n̂0, n̂1] if r =
〈
ρN1n̂0 + qN0n̂1

〉
N

def
= residue of

(
ρN1n̂0 + qN0n̂1

)
modulo N,

where 0 < ρ < N0 and 0 < q < N1 are integers satisfying

(13.7) ρN1 = sN0 + 1, qN0 = tN1 + 1, for integers 0 < s < N1, 0 < t < N0.

This is called the CRT map because the existence of integers ρ, s, q, and t are guaranteed by the
Chinese remainder theorem (to be discussed in Section 13.5.3) when N0 and N1 are relatively
prime. It is also useful to display the mapping in matrix form for N = N0 ×N1 = 3× 4. For
this simple example, we can determine the integers ρ = 1, s = 1, q = 3, and t = 2 by trial and
error, and we know B[n̂0, n̂1] (denoted also by bn̂0,n̂1) stores Xr for

r =
〈
ρN1n̂0 + qN0n̂1

〉
N

=
〈
4n̂0 + 9n̂1

〉
N
.

We thus have

(13.8) B =

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

 =

X0 X9 X6 X3

X4 X1 X10 X7

X8 X5 X2 X11

 .

As pointed out by Temperton in [45], the inverse CRT map determines n̂0 and n̂1 from Ò r mod

N0Ó a nd Ò r mod N1Ó (which are also derived in Section 13.5.3), i.e.,

(13.9) Xr = B[n̂0, n̂1] if n̂0 =
〈
r
〉

N0
, and n̂1 =

〈
r
〉

N1
.

Note that vecB 	= X , either. (This is where PN , the permutation matrix associated with vecB,
comes in.)

With the existence of ρ and q satisfying (13.7) guaranteed by the Chinese remainder theo-
rem, the inverse Ruritanian map for x� = A[n0, n1] is given by

(13.10) n0 =
〈
ρ�

〉
N0

, n1 =
〈
q�

〉
N1

,

where 0 < ρ < N0 and 0 < q < N1 are integers satisfying (13.7) above, which can also be
expressed as

(13.11)
〈
ρN1

〉
N0

= 1,
〈
qN0

〉
N1

= 1.

The Ruritanian index map is formally presented in Section 13.5.5.

13.2. DERIVING THE TWO-FACTOR PFA 345

13.2.2 Stage II: Decoupling the DFT computation

Since ωN
N = 1, it is a fact that ωM

N = ω

〈
M

〉
N

N . Accordingly, we may use � = N1n0 + N0n1

instead of � =
〈
N1n0 + N0n1

〉
N

when � appears in the exponent of ωN . After we substitute
x� = A[n0, n1] and � = N1n0 + N0n1 in the DFT formula, the XrÕs may be computed by the
for-loop:

for r := 0 to N − 1 do

Xr :=
∑N0−1

n0=0

∑N1−1
n1=0 A[n0, n1] ω

r·(N1n0+N0n1)

N .

end for

To split the exponent of ωN , we substitute r = ρN1n̂0 + qN0n̂1, instead of using r =〈
ρN1n̂0 + qN0n̂1

〉
N

, and we obtain

r · (N1n0 + N0n1) = (ρN1n̂0 + qN0n̂1) · (N1n0 + N0n1)

= ρN2
1 n̂0n0 + ρN1N0n̂0n1 + qN1N0n̂1n0 + qN2

0 n̂1n1

= ρN2
1 n̂0n0 + ρNn̂0n1 + qNn̂1n0 + qN2

0 n̂1n1.

(13.12)

Using ωN
N = 1, together with ρN1 = sN0 + 1 and qN0 = tN1 + 1 from Equation (13.7), we

simplify

ω
r·(N1n0+N0n1)

N = ω
ρN2

1 n̂0n0
N · ωρNn̂0n1

N
· ωqNn̂1n0

N
· ωqN2

0 n̂1n1
N

= ω
ρN2

1 n̂0n0
N · (ωN

N)
ρn̂0n1 · (ωN

N)
qn̂1n0 · ωqN2

0 n̂1n1
N

= ω
(ρN1)N1n̂0n0
N · ω(qN0)N0n̂1n1

N (∵ ωN

N = 1)

= ω
(sN0+1)N1n̂0n0
N · ω(tN1+1)N0n̂1n1

N

= ωN1n̂0n0
N · ωN0n̂1n1

N (∵ ωN0N1
N = ωN

N = 1)

= ωn̂0n0
N0

· ωn̂1n1
N1

. (∵ ωN0
N

= ωN1
, ωN1

N
= ωN0

)

(13.13)

Substituting Xr = B[n̂0, n̂1] and the now simpliÞ ed ω
r·(N1n0+N0n1)

N =ωn̂0n0
N0

·ωn̂1n1
N1

in the
for-loop indexed by r, we are ready to decouple the DFT which is now described by the double
for-loop indexed by n̂0 and n̂1:

for n̂1 := 0 to N1 − 1 do
for n̂0 := 0 to N0 − 1 do

B[n̂0, n̂1] :=
∑N0−1

n0=0

(∑N1−1
n1=0 A[n0, n1] ωn̂1n1

N1

)
ωn̂0n0

N0

end for
end for

Applying the decoupling technique we have learned in Chapter 11, we can compute the brack-
eted Òs hort DFTÓ in an independent double for-loop indexed by n0 and n̂1, and we have suc-
cessfully decoupled the DFT into N0 short DFTs of length N1 plus N1 short DFTs of length
N0:

346 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

for n0 := 0 to N0 − 1 do
for n̂1 := 0 to N1 − 1 do

A1[n0, n̂1] :=
∑N1−1

n1=0 A[n0, n1] ωn̂1n1
N1

end for
end for
for n̂1 := 0 to N1 − 1 do

for n̂0 := 0 to N0 − 1 do
B[n̂0, n̂1] :=

∑N0−1
n0=0 A1[n0, n̂1] ωn̂0n0

N0

end for
end for

Since a genuine two-dimensional DFT is ÒdeÞ nedÓ on input matrix x[N0, N1] (which rep-
resents, among other possibilities, actual data from a 2-D image of dimensions N0-by-N1) and
output matrix X [N0, N1] by the formula

(13.14) X [r0, r1] =

N0−1∑
�0=0

N1−1∑
�1=0

x[�0, �1] ω
r1�1
N1

ωr0�0
N0

,

for 0 ≤ r0 ≤ N0 − 1 and 0 ≤ r1 ≤ N1 − 1, we have now successfully mapped the given
length-N one-dimensional DFT X = ΩNx by Òpermut ationsÓ (of both input and output) into
a true two-dimensional DFT with respect to the input matrix A[N0, N1] and output matrix
B[N0, N1].

13.2.3 Organizing the PFA computation–Part 1

Recall that for our example with N0 = 3 and N1 = 4, the N = N0×N2 = 12 input and
output elements are stored in matrices A and B according to the Ruritanian and CRT maps
respectively:

(13.15) A =

x0 x3 x6 x9

x4 x7 x10 x1

x8 x11 x2 x5

 ; B =

X0 X9 X6 X3

X4 X1 X10 X7

X8 X5 X2 X11

 .

While it is convenient to describe the two-factor PFA algorithm as performing the short
DFT on each column and each row of matrix A, in actual implementation we do not need to
physically store the input data in a 2-D matrix, provided that we can access the right group of
elements directly from the input array {x�} in an equally convenient manner. We shall now
use the same example to describe the direct access methods proposed by Temperton [45].

At Þr st, to help focus our attention on the indices, we replace the input and output maps by
two integer maps, namely,

(13.16) A =

0 3 6 9

4 7 10 1

8 11 2 5

 ; B =

0 9 6 3

4 1 10 7

8 5 2 11

 .

Our objective is to generate the indices contained in the matrices row by row or column by
column without storing the entire matrices. For each mapping scheme, we show how to achieve
this objective below.

13.2. DERIVING THE TWO-FACTOR PFA 347

1. For the Ruritanian map contained in matrix A, we only need to use the Ruritanian for-
mula to obtain the Þ rst row {0, 3, 6, 9}. After taking a close look of the indices in the
second row of matrix A, it appears that {4, 7, 10, 1} can be generated by computing

(13.17)
〈
0 + N1

〉
N
,

〈
3 + N1

〉
N
,

〈
6 + N1

〉
N
,

〈
9 + N1

〉
N
,

where N1 =4 and N =N0×N1 =12. This is indeed the case. Similarly, the third row of
indices can be generated from the second row and so on.

If one deals with columns, the indices in the second column can be generated from the
Þr st by computing

(13.18)
〈
0 + N0

〉
N
,

〈
4 + N0

〉
N
,

〈
8 + N0

〉
N
,

where N0 =3 and N =N0×N1 =12.

The same results are obtained if we use the Ruritanian mapping formula to compute the
indices one by one. Suppose

� = A[n0, n1] =
〈
n0N1 + n1N0

〉
N
,

then
A[n0 + 1, n1] =

〈
(n0 + 1)N1 + n1N0

〉
N

=
〈
� + N1

〉
N
;

A[n0, n1 + 1] =
〈
n0N1 + (n1 + 1)N0

〉
N

=
〈
� + N0

〉
N
.

For arbitrary ν ≥ 2, the ν-dimensional Ruritanian map is formally introduced in Sec-
tion 13.5.5.

2. For the CRT map contained in matrix B, we only need to use the CRT formula to
generate the Þ rst row, and the second row is obtained by

(a) cyclic shifting the Þr st row to get {3, 0, 9, 6};
(b) increasing the cyclic shifted indices by one, i.e., obtain

{3 + 1, 0 + 1, 9 + 1, 6 + 1} = {4, 1, 10, 7}
as the second row.

Similarly, by adding one to {7, 4, 1, 10} (which is the result from cyclic shifting the
second row {4, 1, 10, 7}), we obtain the third row in B. The generation of indices
column by column follows the same pattern.

The same results are obtained if we use the inverse CRT map (see Section 13.5.4) to
relate n̂0 and n̂1 (row and column indices of B[n̂0, n̂1]) to r, the index of the output
element Xr mapped to B[n̂0, n̂1]. Suppose

r = B[n̂0, n̂1], then n̂0 = 〈r〉N0
, n̂1 = 〈r〉N1

,

which implies that

〈n̂0 + 1〉N0
= 〈r + 1〉N0

, and 〈n̂1 + 1〉N1
= 〈r + 1〉N1

.

By Chinese remainder theorem (to be covered in Section 13.5.3), the mapping from r to
n̂0 and n̂1 is unique, and we have

r + 1 = B[〈n̂0 + 1〉N0
, 〈n̂1 + 1〉N1

].

For arbitrary ν ≥ 2, the ν-dimensional CRT map is formally introduced in Section 13.5.4.

348 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

13.3 Matrix Formulation of the Two-Factor PFA

13.3.1 Stage III: The Kronecker product factorization

With the twiddle factors (or phase factors) totally absent, the now decoupled length-N DFT can
be computed by performing N0 short DFT of length N1 along the rows of matrix A[N0, N1]

(containing QN ·x), followed by N1 short DFT of length N0 along the columns of the inter-
mediate matrix A1[N0, N1]. These operations are translated to equivalent operations on vecA

and vecA2 as before, and we immediately obtain the desired matrix equation:

(13.19) vecB︸ ︷︷ ︸
PN·X

= (IN1
⊗ΩN0

)·
vecA1︷ ︸︸ ︷

(ΩN1
⊗IN0

)·vecA︸ ︷︷ ︸
QN x

.

Note that this matrix equation expresses the Òd eÞn itionÓ of a true two-dimensional DFT on
matrices A[N0, N1] and B[N0, N1] as explained at the end of Stage II.

13.3.2 Stage IV: Defining permutation matrices

To demonstrate the relationship between vecA and the input sequence x and that between
vecB and the output sequence X via permutation matrices, we resort to our example for
N = N0×N1 = 3×4. Based on the Ruritanian map explicitly given for this example by
Equation (13.5), we show that vecA is the product of a sparse 12-by-12 permutation matrix
Q12 and vector x.

(13.20)

a0,0

a1,0

a2,0

a0,1

a1,1

a2,1

a0,2

a1,2

a2,2

a0,3

a1,3

a2,3



x0

x4

x8

x3

x7

x11

x6

x10

x2

x9

x1

x5


︸ ︷︷ ︸

vecA

=



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0


︸ ︷︷ ︸

Permutation Matrix Q12



x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11


︸ ︷︷ ︸
vector x

13.3. MATRIX FORMULATION OF THE TWO-FACTOR PFA 349

Based on the CRT map explicitly given for this example by Equation (13.8), we show that
vecB is the product of a sparse 12-by-12 permutation matrix P12 and vector X .

(13.21)

b0,0

b1,0

b2,0

b0,1

b1,1

b2,1

b0,2

b1,2

b2,2

b0,3

b1,3

b2,3



X0

X4

X8

X9

X1

X5

X6

X10

X2

X3

X7

X11


︸ ︷︷ ︸

vecB

=



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

Permutation Matrix P12



X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11


︸ ︷︷ ︸
vector X

For arbitrarily given N = N0 × N1 subject to the condition gcd(N0, N1) = 1, the N -by-
N permutation matrix QN (associated with vec A) is constructed by the pseudo-code which
implements the Ruritanian index map � =

〈
N1n0+N0n1

〉
N

so that, through the multiplication
of QN , x� can be permuted to the position of an0,n1 in vecA.

for i := 0 to N − 1 do initialize QN to be an
for k := 0 to N − 1 do N -by-N zero matrix

QN [k, i] := 0 column by column
end for

end for
k := 0

for n1 := 0 to N1 − 1 do
for n0 := 0 to N0 − 1 do

� :=
〈
N1n0 + N0n1

〉
N

construct QN to
QN [k, �] := 1 permute x� to an0,n1

k := k + 1 location for next an0,n1 in vecA

end for
end for

Accordingly, a short and precise mathematical deÞn ition for QN [k, �], 0 ≤ k, � ≤ N − 1, is
given by

(13.22) QN [k, �] =

{
1 if k = n1N0 + n0 and � =

〈
N1n0 + N0n1

〉
N
;

0 otherwise.

Similarly, the permutation matrix PN (associated with vec B) is constructed by the pseudo-
code which implements the CRT index map r =

〈
ρN1n̂0 + qN0n̂1

〉
N

so that, through the
multiplication of PN , Xr can be permuted to the position of bn̂0,n̂1 in vecB.

350 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

for i := 0 to N − 1 do initialize PN to be an
for k := 0 to N − 1 do N -by-N zero matrix

PN [k, i] := 0 column by column
end for

end for
k := 0

for n̂1 := 0 to N1 − 1 do
for n̂0 := 0 to N0 − 1 do

r :=
〈
ρN1n̂0 + qN0n̂1

〉
N

construct PN to
PN [k, r] := 1 permute Xr to bn̂0,n̂1

k := k + 1 location for next bn̂0,n̂1 in vecB

end for
end for

The deÞn ition for PN [k, r], 0 ≤ k, � ≤ N − 1, can thus be compactly expressed as

(13.23) PN [k, r] =

{
1 if k = n̂1N0 + n̂0 and r =

〈
ρN1n̂0 + qN0n̂1

〉
N
;

0 otherwise.

13.3.3 Stage V: Completing the matrix factorization

Since PN is a permutation matrix, its inverse is simply its transpose, i.e., P−1
N

= P T
N

, and we
may rewrite Equation (13.3) as

(13.24) X = P T
N ·(IN1

⊗ΩN0
)·(ΩN1

⊗IN0
)·QN︸ ︷︷ ︸

Kronecker product factorization of ΩN

·x.

The Kronecker product factorization of the DFT matrix ΩN can thus be expressed as

(13.25) ΩN = P T
N ·(IN1

⊗ΩN0
)·(ΩN1

⊗IN0
)·QN = P T

N ·(ΩN1
⊗ΩN0

)·QN .

Note that if we multiply both sides of Equation (13.25) by the inverses of the permutation
matrices, the same result can be expressed as the Kronecker product factorization of a permuted
DFT matrix:

(13.26) PN ·ΩN ·QT
N = ΩN1

⊗ΩN0
.

This result is referred to as the Òn umber-theoreticÓ splitting of the DFT matrix in the FFT
literature, because the number theoretic properties of the indices (or addresses) of the data are
exploited by the index maps, which are expressed through the permutation matrices QN and
PN .

13.4 Matrix Formulation of the Multi-Factor PFA

In parallel to our derivation of the Þ ve-factor mixed-radix FFT in Section 12.2.2, we now derive
the PFA for N = F0×F1×F2×F3×F4, where FkÕs are pairwise prime. We deÞ ne M4 =N/F4,
M3 = M4/F3 = N/(F3F4), M2 = M3/F2 = N/(F2F3F4), M1 = M2/F1 = N/(F1F2F3F4),

13.4. MATRIX FORMULATION OF THE MULTI-FACTOR PFA 351

and M0 =M1/F0 =1. We begin with N = M4×F4. Because M4 and F4 are relatively prime,
we factor ΩN according to (13.25), i.e.,

(13.27) ΩN = P T
N
·(ΩF4

⊗ΩM4
)·Q

N
,

where QN is obtained from (13.22) with the two factors N0 and N1 replaced by M4 and F4,
and we use ρ4 and q4, instead of ρ and q, to label the constants associated with the CRT map
based on N = M4 × F4:

(13.28) QN [k, �] =

{
1 if k = n1M4 + n0 and � =

〈
F4n0 + M4n1

〉
N
;

0 otherwise.

(13.29) PN [k, r] =

{
1 if k = n̂1M4 + n̂0 and r =

〈
ρ4F4n̂0 + q4M4n̂1

〉
N
;

0 otherwise.

Since M4 = M3 × F3, where M3 and F3 are relatively prime, the M4-by-M4 DFT matrix
ΩM4

can be similarly factored:

(13.30) ΩM4
= P T

M4
·(ΩF3

⊗ΩM3
)·QM4

.

Using the right-hand side of (13.30) and the rules of matrix algebra for Kronecker products,
we may now expand the term Ò ΩF4

⊗ΩM4
Ó i n (13.27):

ΩF4
⊗ΩM4

= ΩF4
⊗

[
P T

M4
·(ΩF3

⊗ΩM3
)·QM4

]
= (IF4

·ΩF4
)⊗

[
P T

M4
·(ΩF3

⊗ΩM3
)·QM4

]
=

(
IF4

⊗ P T
M4

)
·
{
ΩF4

⊗
[(

ΩF3
⊗ΩM3

)·Q
M4

]}
=

(
IF4

⊗ P T
M4

)
·
{(

ΩF4
·IF4

)⊗ [(
ΩF3

⊗ΩM3

)·QM4

]}
=

(
IF4

⊗ P T
M4

)
·(ΩF4

⊗ΩF3
⊗ΩM3

)·(IF4
⊗Q

M4

)
.

(13.31)

When the expanded result is incorporated into (13.27), we obtain

(13.32) ΩN = P T
N
·
(
IF4

⊗ P T
M4

)
·(ΩF4

⊗ΩF3
⊗ΩM3

)︸ ︷︷ ︸
to be expanded further

·(IF4
⊗QM4

)·QN .

Since M3 = M2 × F2, where M2 and F2 are relatively prime, the DFT matrix ΩM3
can be

factored in exactly the same manner as ΩM4
, and we proceed to expand the term Ò ΩF4

⊗ΩF3
⊗

ΩM3
.Ó Observe that ΩF4

⊗ ΩF3
= GF4×F3

is a matrix of dimension F4×F3 = N/M3; hence,
the expansion result of the Kronecker product GN/M3

⊗ΩM3
is readily available from (13.31)

if we substitute ΩF4
and ΩM4

by GN/M3
, ΩM3

and deÞn e the factors and permutation matrices
accordingly:

ΩF4
⊗ΩF3

⊗ΩM3

=
(
ΩF4

⊗ΩF3

)⊗ΩM3

= GN/M3
⊗ΩM3

=
(
IN/M3

⊗ P T
M3

)
·(GN/M3

⊗ΩF2
⊗ΩM2

)·(IN/M3
⊗Q

M3

) (
from (13.31)

)
=

(
IN/M3

⊗ P T
M3

)
·(ΩF4

⊗ΩF3
⊗ΩF2

⊗ΩM2

)︸ ︷︷ ︸
to be expanded further

·(IN/M3
⊗QM3

)
.

(13.33)

352 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

Since M2 = F0×F1, where F0 and F1 are relatively prime, we apply (13.31) again to complete
the expansion:

ΩF4
⊗ΩF3

⊗ΩF2
⊗ΩM2

=
(
ΩF4

⊗ΩF3
⊗ΩF2

)⊗ΩM2

=
(
IN/M2

⊗ P T
M2

)
·
[(

ΩF4
⊗ΩF3

⊗ΩF2

)⊗ΩF1
⊗ΩF0

]
·(IN/M2

⊗Q
M2

)
=

(
IN/M2

⊗ P T
M2

)
·(ΩF4

⊗ΩF3
⊗ΩF2

⊗ΩF1
⊗ΩF0

)·(IN/M2
⊗QM2

)
.

(13.34)

For N = F0 × F1 × F2 × F3 × F4, where Fk Õs are pairwise prime, the complete factorization
of the DFT matrix can thus be expressed as

(13.35) ΩN = UT · (ΩF4
⊗ΩF3

⊗ΩF2
⊗ΩF1

⊗ΩF0

) · V ,

where UT and V are N -by-N permutation matrices deÞ ned by the products of sparse permu-
tation matrices used during each step of the expansion process:

UT =

[(
IN/M2

⊗ PM2

) · (IN/M3
⊗ PM3

) · (IN/M4
⊗ PM4

) · PN

]T

= P T
N
· (IN/M4

⊗ P T
M4

) · (IN/M3
⊗ P T

M3

) · (IN/M2
⊗ P T

M2

)
;

(13.36)

(13.37) V =
(
IN/M2

⊗QM2

) · (IN/M3
⊗QM3

) · (IN/M4
⊗QM4

) ·QN .

The matrix equation representing the Þ ve-factor PFA can be obtained directly from (13.35),
with permutation matrices U and V deÞ ned by (13.36) and (13.37):

(13.38) X =

DFT︷ ︸︸ ︷
ΩN ·x = UT· (ΩF4

⊗ΩF3
⊗ΩF2

⊗ΩF1
⊗ΩF0

)·V ·x.

13.4.1 Organizing the PFA computation—Part 2

The PFA based on (13.38) can be written as

(13.39) X̂ =
(
ΩF4

⊗ΩF3
⊗ΩF2

⊗ΩF1
⊗ΩF0

)
x̂,

where X̂ = UX and x̂ = V x denote the permuted output and input vectors. In this section
we shall discuss how to organize the computation of X̂ according to (13.39), assuming x̂ is
already available. (The generation of scrambled x̂ from naturally ordered input x, as well as
the recovery of naturally ordered X from scrambled output X̂ , will be examined after we
study the mathematical theory behind the specially designed index mapping schemes in the
next section.)

Observe that the computation of

(13.40) X̂ = (A⊗B) x̂ = (I ⊗B)︸ ︷︷ ︸
R2

· (A⊗ I)︸ ︷︷ ︸
R1

x̂

can be easily handled by extracting matrix factors R1 and R2 from the Kronecker product
A⊗B:

13.5. NUMBER THEORY AND INDEX MAPPING 353

Step 1. Compute x̂2 = R1 x̂, where R1 = A⊗ I;

Step 2. Compute X̂ = R2 x̂2, where R2 = I ⊗B.

Accordingly, we can organize the computation of (13.39) by splitting the Kronecker prod-
uct

(13.41) X̂ =
(
ΩF4

⊗ΩF3
⊗ΩF2

⊗ΩF1
⊗ΩF0

)
x̂ = (A⊗B) x̂

in various ways. For example, we may proceed as follows: let AF4
= ΩF4

, let BM4
=

ΩF3
⊗ΩF2

⊗ΩF1
⊗ΩF0

, and we express

(13.42) ΩF4
⊗BM4

=
(
IF4
⊗BM4

)︸ ︷︷ ︸
I ⊗B

· (ΩF4
⊗ IM4

)︸ ︷︷ ︸
A⊗ I

to extract sparse-matrix factor R1 = ΩF4
⊗ IM4

.
To extract the second matrix factor R2, this process can be repeated by splitting

(13.43) IF4
⊗BM4

= IF4
⊗ΩF3︸ ︷︷ ︸
A

⊗ΩF2
⊗ΩF1

⊗ΩF0︸ ︷︷ ︸
B

= AN/M3
⊗BM3

.

Again, because A⊗B = (I ⊗B)·(A⊗ I), we obtain

(13.44) R2 = AN/M3
⊗ IM3

= IF4
⊗ΩF3

⊗ IM3
.

It follows that R3 can be extracted from splitting

(13.45) IN/M3
⊗BM3

= IN/M3
⊗ΩF2︸ ︷︷ ︸
A

⊗ΩF1
⊗ΩF0︸ ︷︷ ︸
B

in the same manner, and we obtain

(13.46) R3 = AN/M2
⊗ IM2

= IN/M3
⊗ΩF2

⊗ IM2
.

The remaining two factors R4 and R5 can be extracted from splitting IN/M2
⊗BM2

= IN/M2
⊗

ΩF1
⊗ΩF0

= AN/F0
⊗ΩF0

, resulting in

(13.47) R4 = AN/F0
⊗ IF0

= IN/M2
⊗ΩF1

⊗ IF0
, R5 = IN/F 0

⊗ΩF0
.

With all Þ ve sparse matrix factors available, we can now express

(13.48) X̂ =
(
ΩF4

⊗ΩF3
⊗ΩF2

⊗ΩF1
⊗ΩF0

)
x̂ =

(
R5 ·R4 ·R3 ·R2 ·R1

)
x̂,

and the computation of X̂ can be organized as

(13.49) X̂ =

{
R5 ·

(
R4 ·

(
R3 ·(R2 ·(R1 ·x̂))

))}
.

13.5 Number Theory and Index Mapping by Permutations

In the last two sections we made use of specially designed index mappings to derive the prime-
factor algorithms in matrix form. In this section we study the theory behind these index
mappings, and we will see how all ν-factor PFAs (ν ≥ 2) can be obtained directly from ν-
dimensional index mappings with proven mathematical properties.

354 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

13.5.1 Some fundamental properties of integers

The division of a by b: Let a and b be two integers with b positive. We can Þ nd integers q

and r to satisfy the equation

(13.50) a = b× q + r, 0 ≤ r < b,

where b is called the modulus, q is called the quotient, and r is called the remainder.
When r = 0, b and q are factors or divisors of a, and b is said to divide a, commonly
denoted by Ò b | a.Ó When a has no other divisors than 1 and a, a is prime. In all other
cases, a is composite.

The greatest common divisor: The largest number which is a divisor of both a and c is called
the greatest common divisor of a and c, and we denote it by gcd(a, c).

Relative primality: If gcd(a, c) = 1, then a and c have no other common divisor than 1; they
are called relatively (or mutually) prime.

Congruent modulo b: If a = b×q+r and c = b×s+r, then a and c are said to be congruent
modulo b, denoted by

(13.51) c ≡ a mod b or a ≡ c mod b.

For example, using b = 7 as the modulus, we have 19 ≡ 40 mod 7 because 40 =

7×5+5 and 19 = 7×2+5. Note that for each Þ xed modulus b, a = b×q+r is treated
as an equivalence relation, and we could obtain the same remainder r for inÞ nitely many
choices of aÑ a ll these choices of a are congruent with respect to modulus b.

For every c ≡ a mod b, we immediately have a − c = b × (q − s) + 0. Hence, the
positive b divides (a− c), and we have

(13.52) b | (a− c) iff c ≡ a mod b.

That is, two integers with the same residue modulo b must differ by a multiple of b. In
the example above we have 19 ≡ 40 mod 7, which implies 7 | (40−19), and vice versa.

Observe that if a = b× q + r, then b | (a− r), and we have r ≡ a mod b as expected.
For the example 19 ≡ 40 mod 7, we thus have 5 ≡ 40 mod 7 and 5 ≡ 19 mod 7.

Residue modulo b: If a = b× q + r, the arithmetic operation to produce only the residue of
a modulo b is denoted by

(13.53)
〈
a
〉
b

= r.

For example,
〈
40

〉
7

= 5,
〈
19

〉
7

= 5, and
〈
5
〉
7

= 5. The equality of the residues can be
directly expressed as

〈
40

〉
7

=
〈
19

〉
7

=
〈
5
〉
7

Rules of residue (or modular) arithmetic: Since the residue of a modulo b is restricted to
the range 0 ≤ r ≤ b− 1 determined by the modulus, the following rules may be used to
simplify

〈
a
〉

b
when a is given in a computationally difÞ cult form.

(13.54)
〈
a1 ± a2

〉
b

=
〈〈a1〉b ± 〈a2〉b

〉
b

13.5. NUMBER THEORY AND INDEX MAPPING 355

(13.55)
〈
a1 × a2

〉
b

=
〈〈a1〉b × 〈a2〉b

〉
b

It was pointed out by McClellan and Rader [33] that in actually performing computa-
tions, one can always replace a congruence c ≡ a mod b, which describes a relation
among whole classes of numbers with the same residue, by the equality of the residues〈
c
〉

b
=

〈
a
〉

b
. Now the rules of computation may be applied to both sides as needed.

Euclid’s algorithm: This algorithm uses division method to Þn d gcd(A, C), where A and C

are two positive integers. We shall describe the algorithm, demonstrate how it works,
and prove that the result produced by EuclidÕs algorithm is indeed the greatest common
divisor. To determine gcd(A, C), EuclidÕs algorithm computes the following sequence
of remainders iteratively:

Compute R0 =
〈
A

〉
C

R1 =
〈
C

〉
R0

R2 =
〈
R0

〉
R1

...

until Rµ =
〈
Rµ−2

〉
Rµ−1

= 0

If R0 = 0 then gcd(A, C) = C

else gcd(A, C) = Rµ−1

(13.56)

As shown in the following examples, EuclidÕs algorithm is easy to apply.

Example 13.1 Let A = 165 and C = 99; we simply compute the remainders as re-
quired by the algorithm:

R0 =
〈
165

〉
99

= 66

R1 =
〈
99

〉
66

= 33

R2 =
〈
66

〉
33

= 0

gcd(165, 99) = R1 = 33.

(13.57)

To Þ nd out whether A and C are relatively prime, we may use EuclidÕs algorithm to
determine whether gcd(A, C) = 1.

Example 13.2 Let A = 195, B = 124, EuclidÕs algorithm Þ nds gcd(195, 124) = 1 as
expected.

R0 =
〈
195

〉
124

= 71

R1 =
〈
124

〉
71

= 53

R2 =
〈
71

〉
53

= 18

R3 =
〈
53

〉
18

= 17

R4 =
〈
18

〉
17

= 1

R5 =
〈
17

〉
1

= 0

gcd(195, 124) = R4 = 1.

(13.58)

356 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

Note that EuclidÕs algorithm assumes that A and C are positive integers without loss of
generality, because gcd(±A, ±C) = gcd

(|±A|, |±C|) = gcd(A, C), one only needs
to Þnd the greatest common divisor of two positive integers.

We show next that gcd(A, C) is indeed computed by EuclidÕs algorithm. If R0 = 0, then
the algorithm terminates, and C is the greatest common divisor as expected. Otherwise,
we note the following:

1. The remainders generated by EuclidÕs algorithm are decreasing in value because
0 < R0 < C, 0 < R1 < R0, · · · , 0 < Rk < Rk−1 implies 0 < Rk < Rk−1 <

· · · < R1 < R0; hence, Rµ = 0 is expected after Þ nite number of steps.

2. The residues RkÕs computed by EuclidÕs algorithm satisfy the following equations:

A = C × q0 + R0

C = R0 × q1 + R1

R0 = R1 × q2 + R2

R1 = R2 × q3 + R3

...

Rµ−3 = Rµ−2 × qµ−1 + Rµ−1

Rµ−2 = Rµ−1 × qµ + 0. (∵ Rµ = 0)

(13.59)

Since Rµ = 0 in the last equation, we establish that Rµ−1 divides Rµ−2; i.e., Rµ−1

is a factor of Rµ−2. Observe that Rµ−3 is a linear combination of Rµ−2 and Rµ−1,
where Rµ−2 contains Rµ−1 as a factor; we thus establish that Rµ−1 is also a factor
of Rµ−3. Since this argument applies to each preceding equation in the system, we
conclude that Rµ−1 is a factor of C (from the second equation) and A (from the
Þr st equation.)

3. Now that Rµ−1 is a common divisor of A and C, we show next that no other
common divisor of A and C is greater than Rµ−1. Letting positive integer D

denote an arbitrary common divisor of A and C, we substitute A = D ×M and
C = D × F into the division equation A = C × q0 + R0, and we rewrite the
system (13.59) as

R0 = A− C × q0 = D ×M −D × F × q0

R1 = C −R0 × q1 = D × F −R0 × q1

R2 = R0 −R1 × q2

R3 = R1 −R2 × q3

...

Rµ−1 = Rµ−3 −Rµ−2 × qµ−1

0 = Rµ−2 −Rµ−1 × qµ. (∵ Rµ = 0)

(13.60)

From the Þ rst equation in the system (13.60) we see that D divides R0; hence,
D ≤ R0. From the next equation we establish that D divides R1 because D is a
factor in the right-hand side; hence, D ≤ R1. By continuing this argument with
each subsequent equation, we establish that D |Rµ−1 and D ≤ Rµ−1. This proves
that Rµ−1 is the greatest common divisor of A and C.

13.5. NUMBER THEORY AND INDEX MAPPING 357

As pointed out by Nussbaumer in [35], an important consequence of EuclidÕs algorithm
is that gcd(A, C) can be expressed as a linear combination of A and C. That is, there
exist integers ρ and q such that

(13.61) ρA + qC = gcd(A, C).

This result can be easily established from system (13.60): The Þ rst equation expresses
R0 as a linear combination of A and C; the second equation shows that R1 is a linear
combination of A and C using R0 from the preceding equation. Given R0 and R1, the
fact that Rk+2 is a linear combination of Rk+1 and Rk dictates that Rµ−1 = gcd(A, C)

is a linear combination of A and C.

Bezout’s relation When A and C are relatively prime, the relation given by (13.61) is known
as BezoutÕs relation: There exist integers ρ and q such that

(13.62) ρA + qC = 1 if gcd(A, C) = 1.

Diophantine equation The linear equation with integer coefÞ cients A, C, and K given by

(13.63) Ax + Cy −K = 0 or Ax + Cy = K

is called the Diophantine equation. From (13.61) we know that Diophantine equation
has integer solutions ρ and q if K = D = gcd(A, C). Observe that with the right-hand
side K = D, if we express A = D ×M and C = D × F , solving (13.63) is equivalent
to solving

(13.64) Mx + Fy = 1, where gcd(M, F) = 1.

We remark that there are an inÞ nite number of integer solutions to the Diophantine equa-
tion given by (13.63). To see this, assume that integers ρ and q form a particular solution;
by subtracting Aρ + Cq = K from Ax + Cy = K we obtain

(13.65) A(x− ρ) + C(y − q) = 0 or A(x − ρ) = C(q − y).

We may now factor out D = gcd(A, C) from A and C in (13.65) to obtain

(13.66) M(x− ρ) = F (q − y), where gcd(M, F) = 1,

and it follows that

(13.67) F | (x− ρ) =⇒ x = ρ + m× F, where m is any integer.

Substituting x = ρ + m× F into (13.66), we obtain

(13.68) M ×m = q − y =⇒ y = q −m×M.

Consequently, an inÞ nite number of linearly related solutions may be generated from a
particular solution according to (13.67) and (13.68), one for each choice of integer m.

Example 13.3 Suppose that a particular solution to the Diophantine equation 165x +

99y = 33 is known to be x = ρ = −1 and y = q = 2. Using D = gcd(165, 99) = 33

358 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

found by EuclidÕs algorithm, we determine M = 165/D = 5 and F = 99/D = 3.
Hence a general solution can be described as

(13.69) x = −1 + 3m, y = 2− 5m, where m is any integer.

For each nonzero m, a different solution is generated: e.g., for m = −2, we obtain
x = −7 and y = 12; for m = 7, we obtain x = 20 and y = −33.

In general, a Diophantine equation of the form Ax + Cy = K has integer solutions if
and only if D = gcd(A, C) divides K . To see this, observe that the existence of integers
x and y to satisfy Ax + Cy = D(Mx + Fy) = K implies that D divides K; hence, the
latter is easily established as a necessary condition. To establish the same as a sufÞ cient
condition, we observe that if D divides K , then we may express K = D× d, where d is
an integer, and we can rewrite Ax+Cy = K as Mx+Fy = d, where gcd(M, F) = 1.
The solution x and y now exist because we have already established that integer solution
for x̃ = x/d and ỹ = y/d exists for the equivalent problem of solving

(13.70) Mx̃ + F ỹ = 1, gcd(M, F) = 1.

From x̃ and ỹ we recover x = d× x̃ and y = d× ỹ.

Solving Diophantine equation by Euclid’s algorithm An iterative process for Þ nding the so-
lutions to

(13.71) Ax + Cy = gcd(A, C)

can be derived from, and explicitly built into, EuclidÕs algorithm described by sys-
tem (13.60). We begin with expressing R0 as a linear combination of A and C:

R0 = A− C × q0

= Aa0 + Cc0

=⇒ a0 = 1, c0 = −q0.

(13.72)

Using R0 = Aa0 + Cc0 in the second equation, we obtain

R1 = C −R0 × q1

= −Aa0q1 + C(1 − c0q1)

= Aa1 + Cc1

=⇒ a1 = −a0q1, c1 = 1− c0q1.

(13.73)

Using Rk = Aak + Cck for k = 0 and k = 1 in the third equation, we obtain

R2 = R0 −R1 × q2

= A(a0 − a1q2) + C(c0 − c1q2)

= Aa2 + Cc2

=⇒ a2 = a0 − a1q2, c2 = c0 − c1q2.

(13.74)

Because the rest of EuclidÕs algorithm computes the same equation Rk = Rk−2 −
Rk−1 × qk for k = 2, 3, . . . , the pattern for computing ak and ck from ak−1, ck−1

and qk has been revealed as

13.5. NUMBER THEORY AND INDEX MAPPING 359

(13.75) ak = ak−2 − ak−1 × qk, ck = ck−2 − ck−1 × qk, k ≥ 2.

These two equations can now be built into EuclidÕs algorithm as shown below.

R0 = A− C × q0

a0 = 1, c0 = −q0

R1 = C −R0 × q1

a1 = −a0 × q1, c1 = 1− c0 × q1

R2 = R0 −R1 × q2

a2 = a0 − a1 × q2, c2 = c0 − c1 × q2

R3 = R1 −R2 × q3

...

Rµ−1 = Rµ−3 −Rµ−2 × qµ−1

aµ−1 = aµ−3 − aµ−2 × qµ−1, cµ−1 = cµ−3 − cµ−2 × qµ−1

0 = Rµ−2 −Rµ−1 × qµ. (∵ Rµ = 0)

(13.76)

Hence, this revised EuclidÕs algorithm computes Rµ−1 = gcd(A, C) and solves, at the
same time, Ax + Cy = Rµ−1 with solutions x = aµ−1 and y = cµ−1, where µ ≥ 1

assuming that R0 	= 0. (If R0 = 0, then C = gcd(A, C), the equation Ax + Cy = C

with A = C × q0 can be solved by inspection. This case can be easily taken care of in
the computer program when implementing EuclidÕs algorithm.)

360 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

Example 13.4 The revised Euclid algorithm determines gcd(195, 124) = 1 and solves 195x+

124y = 1 as shown below.

R0 = A− C × q0 = 195− 124× 1 = 71

a0 = 1, c0 = −q0 = −1

R1 = C −R0 × q1 = 124− 71× 1 = 53

a1 = −a0 × q1 = −1× 1 = −1

c1 = 1− c0 × q1 = 1− (−1)× 1 = 2

R2 = R0 −R1 × q2 = 71− 53× 1 = 18

a2 = a0 − a1 × q2 = 1− (−1)× 1 = 2

c2 = c0 − c1 × q2 = −1− 2× 1 = −3

R3 = R1 −R2 × q3 = 53− 18× 2 = 17

a3 = a1 − a2 × q3 = −1− 2× 2 = −5

c3 = c1 − c2 × q3 = 2− (−3)× 2 = 8

R4 = R2 −R3 × q4 = 18− 17× 1 = 1

a4 = a2 − a3 × q4 = 2− (−5)× 1 = 7

c4 = c2 − c3 × q4 = −3− 8× 1 = −11

R5 = R3 −R4 × q5 = 17− 1× 17 = 0

The solutions found are x = a4 = 7 and y = c4 = −11. It can be easily veriÞed that
195×7+124×(−11) = 1365−1364 = 1. Using x0 = 7 and y0 = −11 as a particular solution,
we can generate an inÞnite number of linearly related solutions according to Equations (13.67)
and (13.68), and they are

x = 7 + 124m, y = −11− 195m,

where m is any integer.

Theorem 13.1 If Ax + Cy = D = gcd(A, C), then x and y are relatively prime.

Proof: Recall that solving the given equation is equivalent to solving

(13.77) Mx + Fy = 1, gcd(M, F) = 1,

where M = A/D, F = C/D. Suppose gcd(x, y) = d > 0. If we substitute x = d × x̃ and
y = d× ỹ into (13.77), we obtain

(13.78) d× (Mx̃ + F ỹ) = 1,

which dictates that d is a factor of 1; hence, d = 1, and gcd(x, y) = d = 1. �

13.5. NUMBER THEORY AND INDEX MAPPING 361

Theorem 13.2 The Diophantine equation written in the following form

(13.79) Mx = Fz + 1, gcd(M, F) = 1, M > 0, F > 0,

has general solutions in the form

(13.80) x = x0 + m× F, z = z0 + m×M,

where x0 and z0 denote a particular solution, and m is any integer. The given equation has a
unique solution x = ρ and z = s if the range is restricted to 0 < ρ ≤ F−1 and 0 < s ≤ M−1.

Proof: Observe that we can rewrite the given equation in the form Mx + Fy = 1 if we deÞn e
y = −z. Hence all of the previous results apply, and we can solve for x and y using EuclidÕs
algorithm as before. The properties of the solutions x and z are then the properties of x and
−y. Note that for M > 0 and F > 0, the nonzero integer solutions x and y of the equation
Mx + Fy = 1 must have opposite signs: i.e., either x > 0 and y < 0 or x < 0 and y > 0. We
can thus conclude that x and z = −y must be both positive or both negative.

Following (13.67), the general solution x = x0 + m × F ; following (13.68), the general
solution y = y0 −m×M leads to z = −y = −(y0 −m×M) = z0 + m×M .

To obtain solutions in the range 0 < ρ ≤ F − 1 and 0 < s ≤ M − 1, observe that we can
always choose m > 0 so that x̃0 = x0 + m × F > 0 and z̃0 = z0 + m ×M > 0, and we
deÞ ne

(13.81) ρ = 〈x̃0〉F , s = 〈z̃0〉M ,

so that 0 < ρ = x̃0 − αF ≤ F − 1 and 0 < s = z̃0 − βM ≤ M − 1 form unique solutions in
the speciÞed ranges. �

Example 13.5 Recall that x0 = 7 and y0 = −11 satisfying 195x + 124y = 1 were found
by EuclidÕs algorithm; hence, positive x0 = 7 and positive z0 = −y0 = 11 satisfy 195x =

124y + 1. Note that ρ = 7 and s = 11 form unique solution in the range 0 < ρ < 124 and
0 < s < 195.

Since the general solution is given by x = 7 + 124m and z = 11+ 195m, for m = −1 we
have negative x1 = −117 and negative z1 = −184. Since x1 < 0 and y1 = −z1 > 0 solve
195x + 124y = 1, the equation 124y = 195t + 1 for y > 0 and t = −x > 0 can be solved
by y = y1 = 184 and t = −x1 = 117. Note that the unique solution of 195ρ = 124s + 1 is
different from that of 124q = 195t + 1, although 0 < ρ, t < 124 and 0 < q, s < 195. The
latter form and its solutions are formalized in the next theorem.

Theorem 13.3 The Diophantine equation written in the following form

(13.82) Fy = Mw + 1, gcd(M, F) = 1, M > 0, F > 0,

has general solutions in the form

(13.83) y = y0 + m×M, w = w0 + m× F,

where y0 and w0 denote a particular solution, and m is any integer. The given equation has a
unique solution y = q and w = t if the range is restricted to 0 < q ≤M−1 and 0 < t ≤ F−1.

Proof: (Similar to the proof of Theorem 13.2.)

362 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

Definition 13.4 The unique solution 0 < ρ ≤ F − 1 satisfying

(13.84) 〈ρM〉F = 1 or ρM = sF + 1, where gcd(M, F) = 1,

is deÞned as the reciprocal of M modulo F :

(13.85) ρ = 〈M〉−1
F .

Similarly, the unique solution 0 ≤ q ≤M − 1 satisfying

(13.86) 〈qF 〉M = 1 or qF = tM + 1, where gcd(M, F) = 1,

is deÞn ed as the reciprocal of F modulo M :

(13.87) q = 〈F 〉−1
M

.

Theorem 13.5 If gcd(M, F) = 1, ρ = 〈M〉−1
F

, and q = 〈F 〉−1
M

, then

gcd(ρ, F) = 1, gcd(q, M) = 1;(13.88)

ρM + qF = N + 1, where N = M×F.(13.89)

Proof: Let gcd(ρ, F) = D. If we substitute ρ = αD and F = βD into ρM = sF + 1, we
obtain

(13.90) D ·(αM − sβ) = 1,

which dictates that D = 1; hence, we have proved that gcd(ρ, F) = 1. The same can be done
to prove gcd(q, M) = 1, and we see no need to repeat it.

We assume next that r = 〈ρM + qF 〉N ; hence, ρM + qF = αN + r, where 0 ≤ r < N .
Because ρ = 〈M〉−1

F
, and q = 〈F 〉−1

M
, we may express

(13.91) ρM = sF + 1, qF = tM + 1,

and it follows that

ρM + qF = sF + 1 + qF = αN + r,

ρM + qF = ρM + tM + 1 = αN + r,
(13.92)

from which we obtain

(s + q)·F = αN + (r − 1) =⇒ F | (r − 1)

(ρ + t)·M = αN + (r − 1) =⇒M | (r − 1)
(13.93)

Because M and F do not have common factor, (M×F) | (r− 1). Since N = M×F , we must
have N | (r − 1), which is only possible when r − 1 = 0 because 0 ≤ r < N . Hence we have
proved that r = 1 and ρM + qF = αN + 1.

To show that α = 1, note that 0 < ρM < N and 0 < qF < N because 0 < ρ < F and
0 < q < M ; hence, ρM + qF = αN + 1 < 2N , and we must have α = 1. �

13.5. NUMBER THEORY AND INDEX MAPPING 363

13.5.2 A simple case of index mapping by permutation

The simple index map given in the next theorem provides the Þ rst link between the DFT and
number theory.

Theorem 13.6 [33] For � = 0, 1, 2, · · · , N − 1, the mapping f(�) =
〈
ρ�

〉
N

is one-to-one if ρ

and N are relatively prime.

Proof: To show that f is one-to-one, we need to show f(k) 	= f(j) if k 	= j for 0 ≤ k, j ≤
N − 1. This is to be proved by contradiction: we assume that there exist k 	= j such that
f(k) = f(j). This assumption results in〈

ρk
〉

N
=

〈
ρj

〉
N
, k 	= j, 0 ≤ k, j ≤ N − 1.

The equality of the residues dictates that the modulus N divides (ρk − ρj); i.e., we must have

N | ρ(k−j),

which contradicts the given conditions gcd(ρ, N) = 1 and 0 < |k − j| < N , because they
forbid N to become a divisor of either term. Hence our assumption is incorrect, and this proves
that all N values of f(�) for 0 ≤ � ≤ N − 1 are distinct as desired. �

Example 13.6 For relatively prime integers ρ = 3 and N = 4, we may use f(�) =
〈
3�

〉
4

to
map the sequence {0, 1, 2, 3} to {f(0), f(1), f(2), f(3)} = {0, 3, 2, 1}, which is a permutation
of the original sequence. When the original sequence represents the indices of data samples
contained in vector x = {x0, x1, x2, x3}, the index mapping results in the permuted y =

{x0, x3, x2, x1}.
In general, for every Ò ρÓ r elatively prime to N , we can express the permutation y� = xf(�)

by matrix-vector product y = Q
N
x, where Q

N
is the permutation matrix deÞn ed by

(13.94) QN [�, k] =

{
1 if k = f(�) =

〈
ρ�

〉
N
;

0 otherwise.

To connect the DFT of the permuted y to the DFT of the original x, we denote

X = ΩN ·x, and Y = ΩN ·y, where y =QN ·x.

For f(r) =
〈
ρr

〉
N

, we express

(13.95) Yf(r) =
N−1∑
�=0

y� ω
f(r)·�
N =

N−1∑
�=0

xf(�) ω
f(r)·�
N .

Recall that ωN
N = 1; hence, the exponent of ωN is evaluated modulo N , that is,

(13.96) ωM
N = ω

〈
M

〉
N

N .

Because M and
〈
M

〉
N

are interchangeable in the exponent of ωN , we may use Ò ρrÓ f or f(r)

and Ò ρ�Ó f or f(�), and we obtain

(13.97) ω
f(r)·�
N = ωρ·r·�

N = ωr·ρ·�
N = ω

r·f(�)
N .

364 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

This result connects the number theory to the DFT, and we can now rewrite (13.95) as

(13.98) Yf(r) =

N−1∑
�=0

xf(�) ω
f(r)·�
N =

N−1∑
�=0

xf(�) ω
r·f(�)
N =

N−1∑
m=0

xm ωr·m
N = Xr.

Therefore, for two sequences related by y� = xf(�), the DFTs are related by Yf(r) = Xr.
Recall that for input data we express y = QNx; for the output we may relate X and Y by

(13.99) X = QN ·Y or Y = QT
N
·X.

13.5.3 The Chinese remainder theorem

To provide application context before this theorem is stated, we shall consider the problem of
solving simultaneous linear congruences with respect to different moduli. The problem takes
the following form: Solve for unknown integer S to satisfy the ν congruences〈

S
〉

F0
= r0,〈

S
〉

F1
= r1,〈

S
〉

F2
= r2,

...〈
S

〉
Fν−1

= rν−1.

(13.100)

In other words, the solution Ò SÓ w e are seeking must be evaluated to each speciÞed residue
modulo each given modulus.

Example 13.7 For F0 =3, F1 =4, r0 =2, and r1 =3, the congruences
〈
S

〉
3

= 2 and
〈
S

〉
4

= 3

may be solved by trial and error. It is obvious that S = 23 is the solution.

The Chinese remainder theorem provides a unique solution which simultaneously satis-
Þes the ν congruences given by (13.100), provided that the moduli are pairwise prime. This
theorem is formally stated and proved below.

Theorem 13.7 (Chinese remainder theorem) Let F0, F1, . . . , Fν−1 be positive integers that
are pairwise prime; i.e,

(13.101) gcd(F�, Fk) = 1 when � 	= k.

Let N = F0×F1× · · · × Fν−1, and let r0, r1, . . . , rν−1 be integers, 0 ≤ rk ≤ Fk − 1 for
0 ≤ k ≤ ν−1. Then there is exactly one integer 0 ≤ S ≤ N −1 that satisÞ es the congruences〈
S

〉
Fk

= rk for 0 ≤ k ≤ ν − 1.

Proof: As we have pointed out at the beginning of this chapter, the pairwise prime condi-
tion (13.101) implies that Fk and Lk = N/Fk are relatively prime, i.e.,

(13.102) gcd(Lk, Fk) = 1, k = 0, 1, . . . , ν − 1.

Under the condition gcd(Lk, Fk) = 1, we can now Þ nd ρk to satisfy the congruence

(13.103)
〈
ρkLk

〉
Fk

= 1

13.5. NUMBER THEORY AND INDEX MAPPING 365

by solving the Diophantine equation

(13.104) ρkLk = skFk + 1, where gcd(Lk, Fk) = 1

for 0 < ρk < Fk, 0 < sk < Lk. (The Diophantine equation and its solutions were discussed
in detail in the last section.)

Observe that L� = N/F� contains each Fk, k 	= �, as a factor; hence, Fk divides L� and〈
L�

〉
Fk

= 0. Using the prescribed remainders r�, together with the now available ρ� and L�,
for 0 ≤ � ≤ ν − 1, we let

(13.105) Ŝ =
ν−1∑
�=0

r�ρ�L� = r0ρ0L0 + r1ρ1L1 + · · ·+ rν−1ρν−1Lν−1.

Using the rules of residue arithmetic, we show next that
〈
Ŝ
〉

Fk
= rk for every k:

〈
Ŝ

〉
Fk

=

〈
ν−1∑
�=0

r�ρ�L�

〉
Fk

=

〈
ν−1∑
�=0

〈
r�ρ�L�

〉
Fk

〉
Fk

=

〈〈
rkρkLk

〉
Fk

+

ν−1∑
�=0
�
=k

〈
r�ρ�

〉
Fk
·

0︷ ︸︸ ︷〈
L�

〉
Fk

〉
Fk

=

〈
rkρkLk

〉
Fk

+ 0

=
〈〈

rk

〉
Fk
· 〈ρkLk

〉
Fk

〉
Fk

=
〈
rk

〉
Fk
· 1

= rk.

(13.106)

Although Ŝ is a solution, it will not be the only solution. Because
〈
Ŝ − αN

〉
Fk

=
〈
Ŝ

〉
Fk

for

any integer α, we can deÞne S =
〈
Ŝ
〉

N
so that 0 ≤ S ≤ N − 1 is the solution in the desired

range.
To prove that S =

〈
Ŝ

〉
N

is the unique solution between 0 and N − 1, let us assume that
S2 is another solution. Since rk =

〈
S2

〉
Fk

=
〈
S

〉
Fk

implies that Fk divides (S2 − S),
k = 0, 1, . . . , ν − 1, we establish that (S2 − S) is a multiple of N = F0×F1× · · · ×Fν−1;
i.e., S2 = S + βN , where β is an integer. With 0 ≤ S ≤ N − 1 and 0 ≤ S2 ≤ N − 1, we
must have β = 0; hence, S2 = S, and S is the unique solution in the range between 0 and
N − 1. �

13.5.4 The ν-dimensional CRT index map

As we proved in Theorem 13.7 Chinese Remainder Theorem (CRT): under the condition that

N =

ν−1∏
k=0

Fk, where ν ≥ 2, gcd(Fj , Fk) = 1 if j 	= k,

366 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

there is exactly one integer 0 ≤ r ≤ N − 1 that satisÞ es the congruences
〈
r
〉

Fk
= n̂k for

0 ≤ n̂k ≤ Fk − 1, 0 ≤ k ≤ ν − 1, and we have shown that r =
〈
Ŝ

〉
N

, where

(13.107) Ŝ =
ν−1∑
k=0

ρkLkn̂k, ρk = 〈Lk〉−1
Fk

, Mk = N/Fk.

Observe that if we deÞ ne

(13.108) Xr = B[n̂0, n̂1, . . . , n̂ν−1], for r =
〈
Ŝ

〉
N
,

then there is exactly one index 0 ≤ r ≤ N − 1 corresponding to one location, denoted by
[n̂0, n̂1, . . . , n̂ν−1], in the ν-dimensional array B[F0, F1, . . . , Fν−1], and we may obtain r

using the so-called CRT map:

(13.109) r =

〈
ν−1∑
k=0

〈
N

Fk

〉−1

Fk

N

Fk
n̂k

〉
N

, where ν ≥ 2.

The inverse CRT map, which determines the corresponding element B[n̂0, n̂1, . . . , n̂ν−1]

for every Xr, is deÞ ned by the ν given linear congruences:

(13.110) n̂k =
〈
r
〉

Fk
, k = 0, 1, . . . , ν − 1.

Example 13.8 For N = F0×F1×F2 = 3×4×5, if the DFT output X of length N has
been mapped to the 3-D array B[F0, F1, F2] by the CRT map, we can determine the frequency
index of Xr from its location in B according to the formula

r =

〈〈
20

〉−1

3
·20 n̂0 +

〈
15

〉−1

4
·15 n̂1 +

〈
12

〉−1

5
·12 n̂2

〉
60

=
〈
40 n̂0 + 45 n̂1 + 36 n̂2

〉
60

.

(13.111)

For example, the element mapped to B[1, 3, 4] is X19, because r=
〈
40 + 135 + 144

〉
60

=19.
For each Xr, we can determine its location in B using the inverse CRT map. For example,

the element in B corresponding to X47 is B[2, 3, 2], because n̂0 =
〈
47

〉
3

= 2, n̂1 =
〈
47

〉
4

=

3, and n̂2 =
〈
47

〉
5

= 2.

13.5.5 The ν-dimensional Ruritanian index map

The Ruritanian correspondence proposed by Good [24] was also established under the condi-
tion that

N =
ν−1∏
k=0

Fk, where ν ≥ 2, gcd(Fj , Fk) = 1 if j 	= k.

For 0 ≤ � ≤ N − 1, the Ruritanian correspondence maps x� to A[n0, n1, . . . , nν−1] if

(13.112) � =

〈
ν−1∑
k=0

Lk nk

〉
N

, where Lk =
N

Fk
, ν ≥ 2,

and � is the only solution (in the range from 0 to N − 1) that satisÞes all ν congruences〈
ρk�

〉
Fk

= nk for 0 ≤ nk ≤ Fk − 1, 0 ≤ k ≤ ν − 1, ρk =
〈
Lk

〉−1

Fk
. The proof of this result

consists of three parts:

13.5. NUMBER THEORY AND INDEX MAPPING 367

1. Prove that T̂ =
∑ν−1

k=0 Lk nk is a solution by showing that
〈
ρkT̂

〉
Fk

= nk for every k:

〈
ρkT̂

〉
Fk

=

〈
ρk

ν−1∑
τ=0

Lτnτ

〉
Fk

=

〈
ν−1∑
τ=0

〈
ρkLτnτ

〉
Fk

〉
Fk

=

〈〈
ρkLknk

〉
Fk

+

ν−1∑
τ=0
τ
=k

0︷ ︸︸ ︷〈
Lτ

〉
Fk
·〈ρknτ

〉
Fk

〉
Fk

=

〈
ρkLknk

〉
Fk

+ 0 (∵ Fk divides Lτ)

=
〈〈

ρkLk

〉
Fk
·〈nk

〉
Fk

〉
Fk

= 1·〈nk

〉
Fk

(
∵ ρk =

〈
Lk

〉−1

Fk

)
= nk.

(13.113)

2. Prove that � =
〈
T̂

〉
N

is a solution: because
〈
T̂ − αN

〉
Fk

=
〈
T̂

〉
Fk

for any integer α, we

can deÞne � =
〈
T̂

〉
N

so that 0 ≤ � ≤ N − 1 is a solution.

3. Prove � =
〈
T̂

〉
N

is the unique solution in the range from 0 to N − 1.

To show this, we assume �̂ is another solution. Since nk =
〈
ρk �̂

〉
Fk

=
〈
ρk�

〉
Fk

implies

that Fk divides ρk(�̂ − �), and we know gcd(ρk, Fk) = 1 (from Theorem 13.5), we
conclude that Fk divides (�̂− �) for k = 0, 1, . . . , ν − 1. Hence (�̂− �) is a multiple of
N =F0×F1× · · · ×Fν−1; i.e., �̂ = � + βN , where β is an integer. With 0 ≤ � ≤ N − 1

and 0 ≤ �̂ ≤ N − 1, we must have β = 0; hence, �̂ = �, and � is the unique solution in
the range from 0 to N − 1.

Again the inverse Ruritanian map is deÞ ned by the ν given congruences nk =
〈
ρk�

〉
Fk

, k =

0, 1, . . . , ν − 1.

Example 13.9 For N = F0×F1×F2 = 3×4×5, if the DFT input data sequence x of length
N has been mapped to the 3-D array A[F0, F1, F2] by the Ruritanian map, we can determine
the time index of x� from its location in A according to the formula

� =
〈
20 n0 + 15 n1 + 12 n2

〉
60

.(13.114)

For example, the element mapped to A[1, 3, 4] is x53 because �=
〈
20 + 45 + 48

〉
60

=53.

For each x�, we can determine its location in A using the inverse CRT map nk =
〈
ρk�

〉
Fk

,

with ρ0 =
〈
20

〉−1

3
= 2, ρ1 =

〈
15

〉−1

4
= 3, ρ2 =

〈
12

〉−1

5
= 3. For example, the element

in A corresponding to x47 is A[1, 1, 1], because n0 =
〈
94

〉
3

= 1, n1 =
〈
141

〉
4

= 1, and
n2 =

〈
141

〉
5

= 1.

368 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

13.5.6 Organizing the ν-factor PFA computation—Part 3

For arbitrary ν ≥ 2, we now have the ν-dimensional CRT and Ruritanian index mapping
formulas available from Sections 13.5.4 and 13.5.5; hence, the recursive equations representing
a multi-factor PFA can be derived in the same manner as the arbitrary factor mixed-radix FFT.
For ν = 3, we have N = F0×F1×F2. Assuming that the three factors are pairwise prime, we
map the input x� to A[n0, n1, n2] using the 3-D Ruritanian map from Section 13.5.5, and we
map the output Xr to B[n̂0, n̂1, n̂2] using the 3-D CRT map from Section 13.5.4. By repeating
the systematic decoupling processes performed in Sections 11.2.1, 11.2.2, and 11.2.3 with the
two new mapping formulas, we obtain the recursive equations describing the three-factor PFA:

Step 0. Map x� to A[n0, n1, n2] using the 3-D Ruritanian mapping formula.

Step 1. Compute A1[n0, n1, n̂2] =
∑N2−1

n2=0 A[n0, n1, n2] ω
n̂2n2
F2

.

Step 2. Compute A2[n0, n̂1, n̂2] =
∑N1−1

n1=0 A1[n0, n1, n̂2] ω
n̂1n1
F1

.

Step 3. Compute A3[n̂0, n̂1, n̂2] =
∑N0−1

n0=0 A2[n0, n̂1, n̂2] ω
n̂0n0
F0

.

Step 4. Map B[n̂0, n̂1, n̂2] = A3[n̂0, n̂1, n̂2] to Xr using the 3-D CRT mapping formula.

The Kronecker matrix equation representing the three-factor PFA is available from Equa-
tion (13.48) in Section 13.4.1, namely,

(13.115) vecB =
(
ΩF2

⊗ΩF1
⊗ΩF0

)
vecA,

where matrix A contains input sequence {x�} according to the 3-D Ruritanian map, and matrix
B contains output {Xr} according to the CRT map.

In either form the generalization to arbitrary ν-factor PFA is immediate as we have done in
obtaining the mixed-radix FFT for arbitrary composite N .

13.6 The In-Place and In-Order PFA

13.6.1 The implementation-related concepts

In Section 13.2 we provided full details in the derivation of a two-factor PFA, and we illustrated
the crucial index mapping steps using an example for N =N0×N1 with N0 =3 and N1 =4. In
this section we shall use the same example to introduce the concepts of in-place and in-order
implementation.

Recall the Þ rst version of the two-factor PFA given in Section 13.2:

for n0 := 0 to N0 − 1 do
for n̂1 := 0 to N1 − 1 do

A1[n0, n̂1] :=
∑N1−1

n1=0 A[n0, n1] ωn̂1n1
N1

end for
end for
for n̂1 := 0 to N1 − 1 do

for n̂0 := 0 to N0 − 1 do
B[n̂0, n̂1] :=

∑N0−1
n0=0 A1[n0, n̂1] ωn̂0n0

N0

end for
end for

13.6. THE IN-PLACE AND IN-ORDER PFA 369

Since each inner for-loop computes a DFT, we can explicitly express it as a matrix-vector
product. By updating each vector to contain the computed matrix-vector product, we immedi-
ately obtain the Òi n-placeÓ implementation of the two-factor PFA. For N0 =3 and N1 =4, the
in-place PFA is shown below.

for n0 := 0 to 2 do
an0,0

an0,1

an0,2

an0,3

 :=


1 1 1 1

1 ω1
4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4



an0,0

an0,1

an0,2

an0,3


end for

for n1 := 0 to 3 doa0,n1

a1,n1

a2,n1

 :=

1 1 1

1 ω1
3 ω2

3

1 ω2
3 ω4

3

a0,n1

a1,n1

a2,n1


end for

As explicitly shown inside each for-loop, the PFA is now in-place because each short DFT
computed as a matrix-vector product overwrites the data vectorÑ either a row or a column of
the matrix A, which initially represents the input data sequence according to the Ruritanian
map, and at the end of the PFA computation, the updated matrix A represents the DFT output
according to the CRT map. That is,

(13.116) On input: A =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

 =

x0 x3 x6 x9

x4 x7 x10 x1

x8 x11 x2 x5

 .

(13.117) On output: A =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

 =

X0 X9 X6 X3

X4 X1 X10 X7

X8 X5 X2 X11

 .

As we explained in Section 13.2.3, while it is convenient to describe the two-factor PFA
as performing the short DFT on each column and each row of matrix A, in actual implemen-
tation we do not need to physically store the input data in a 2-D matrix, provided that we can
access the right group of elements directly from the input array {x�} in an equally convenient
manner, and we have used the same example with N0 = 3 and N1 = 4 to develop the direct
access methods in Section 13.2.3. Using the direct access method described there we would
be overwriting the input elements as shown here:

(13.118)


x0

x3

x6

x9

 :=


1 1 1 1

1 ω1
4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4




x0

x3

x6

x9

 ,


x4

x7

x10

x1

 :=


1 1 1 1

1 ω1
4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4




x4

x7

x10

x1

 ,


x8

x11

x2

x5

 :=


1 1 1 1

1 ω1
4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4




x8

x11

x2

x5

 .

370 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

(13.119)

x0

x4

x8

 :=

1 1 1

1 ω1
3 ω2

3

1 ω2
3 ω4

3

x0

x4

x8

 ,

 x3

x7

x11

 :=

1 1 1

1 ω1
3 ω2

3

1 ω2
3 ω4

3

 x3

x7

x11

 ,

 x6

x10

x2

 :=

1 1 1

1 ω1
3 ω2

3

1 ω2
3 ω4

3

 x6

x10

x2

 ,

x9

x1

x5

 :=

1 1 1

1 ω1
3 ω2

3

1 ω2
3 ω4

3

x9

x1

x5

 .

Consequently, the actual in-place computations are performed directly on the input data
array:

(13.120) On input: x = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}.

Since the input and output are still linked by the now-absent matrix A as explicitly shown in
Equation (13.116), we know that the updated array x now contains scrambled output, i.e.,

(13.121) On output: x = {X0, X7, X2, X9, X4, X11, X6, X1, X8, X3, X10, X5}.

Therefore, the in-place PFA we obtain is not in-orderÑ e.g., the updated x1 equals X7, the
updated x3 equals X9, the updated x5 equals X11, . . . , etc. If we want to have an in-place and
in-order PFA, we must have the updated input array x contain the DFT output X0, X1, . . . ,
X11 in consecutive order so that each updated xk equals Xk for every k = 0, 1, . . . , 11.

Since the ordering of the input elements is explicitly linked to the ordering of the output
elements by Equation (13.116), even matrix A is not used in the actual implementation; we
can see that in order to have an in-place and in-order PFA, we must use the same index map
for input and output. For example, if the Ruritanian map is used for input, then it must also be
used for output:

(13.122) On input: A =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

 =

x0 x3 x6 x9

x4 x7 x10 x1

x8 x11 x2 x5

 .

(13.123) On output: A =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

 =

X0 X3 X6 X9

X4 X7 X10 X1

X8 X11 X2 X5

 .

Since we change the output map from CRT to Ruritanian, we need to re-derive the in-order
PFA in Section 13.6.2.

If the CRT map is used for output, then it must also be used for input:

(13.124) On input: A =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

 =

x0 x9 x6 x3

x4 x1 x10 x7

x8 x5 x2 x11

 .

(13.125) On output: A =

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

 =

X0 X9 X6 X3

X4 X1 X10 X7

X8 X5 X2 X11

 .

Since we change the input map from Ruritanian to CRT, we need to re-derive this version of
the in-order PFA in Section 13.6.3.

13.6. THE IN-PLACE AND IN-ORDER PFA 371

13.6.2 The in-order algorithm based on Ruritanian map

For N = N0×N1, where N0 and N1 are relatively prime, the decoupling process in Sec-
tion 13.2.2 must now be redone using the Ruritanian mapping formula on both index � and
index r; hence, we modify (13.12) as below.

r ·
�︷ ︸︸ ︷

(N1n0 + N0n1) = (N1n̂0 + N0n̂1) · (N1n0 + N0n1)

= N2
1 n̂0n0 + N1N0n̂0n1 + N1N0n̂1n0 + N2

0 n̂1n1

= N2
1 n̂0n0 + Nn̂0n1 + Nn̂1n0 + N2

0 n̂1n1.

(13.126)

Using ωN
N

= 1, together with ωN1
N = ωN0

and ωN0
N = ωN1

, we obtain

(13.127) ω
r·(N1n0+N0n1)

N = ωN1n̂0n0
N0

·ωN0n̂1n1
N1

.

The modiÞ ed two-factor PFA can now be easily described:

Step 0. Map x� to A[n0, n1] using the Ruritanian index map.

Step 1. Compute A1[n0, n̂1] =
∑N1−1

n1=0 A[n0, n1] ω
N0n̂1n1
N1

.

Step 2. Compute B[n̂0, n̂1] =
∑N0−1

n0=0 A1[n0, n̂1] ω
N1n̂0n0
N0

.

Step 3. Map B[n̂0, n̂1] to Xr using the Ruritanian index map.

When the direct indexing method described in Section 13.2.3 is used in actual implemen-
tation as explained in Section 13.6.1, the in-place implementation of this version of the PFA
overwrites every input xk by output Xk for 0 ≤ k ≤ N − 1, and we have obtained an in-order
PFA. Note that the decoupled transforms in Step 1 and Step 2 are not exactly DFTs, and we
will address how to compute such DFT-like short transforms in Section 13.7.

13.6.3 The in-order algorithm based on CRT map

Alternatively, we may use the CRT index map on both input and output to obtain another in-
place and in-order PFA. For N = N0×N1, where N0 and N1 are relatively prime, we modify
Equation (13.126) as below.

r ·
�︷ ︸︸ ︷

(ρN1n0 + qN0n1)

= (ρN1n̂0 + qN0n̂1) · (ρN1n0 + qN0n1)

= ρ2N2
1 n̂0n0 + ρqN0N1n̂0n1 + ρqN0N1n̂1n0 + q2N2

0 n̂1n1

= ρN1(sN0 + 1)n̂0n0 + ρNn̂0n1 + qNn̂1n0 + qN0(tN1 + 1)n̂1n1.

(13.128)

For N = N0×N1, using ωN
N

= 1, together with ωN1
N = ωN0

and ωN0
N = ωN1

, we obtain

(13.129) ω
r·(ρN1n0+qN0n1)

N = ωρn̂0n0
N0

·ωqn̂1n1
N1

.

The modiÞ ed two-factor PFA can now be easily described:

Step 0. Map x� to A[n0, n1] using the CRT index map.

372 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

Step 1. Compute A1[n0, n̂1] =
∑N1−1

n1=0 A[n0, n1] ω
qn̂1n1
N1

.

Step 2. Compute B[n̂0, n̂1] =
∑N0−1

n0=0 A1[n0, n̂1] ω
ρn̂0n0
N0

.

Step 3. Map B[n̂0, n̂1] to Xr using the CRT index map.

Again, when the direct indexing method described in Section 13.2.3 is used in actual im-
plementation as explained in Section 13.6.1, the in-place implementation of this version of
the PFA overwrites every input xk by output Xk for 0 ≤ k ≤ N − 1, and we have obtained
another in-order PFA. Note that the decoupled transforms in Step 1 and Step 2 of this version
of the in-order PFA are not exactly DFTs, either, and we will address how to compute them in
Section 13.7.

13.7 Efficient Implementation of the PFA

When the DFT length N is composite with three or more factors, we know that a mixed-radix
FFT can be implemented through a sequence of index mappings to 3-D arrays with the DFT-
like transforms computed by nested multiplication (as proposed by de Boor [18] and described
by Chu and George with details in [13]). When the three or more factors are pairwise prime, a
multi-factor prime factor FFT can be implemented as a sequence of two-factor PFAs as noted
by Burrus and Eschenbacher [9] and Temperton [45].

Note that for the arbitrary factor mixed-radix FFT, three-dimensional arrays are used in
the actual implementation [13, 18]. However, for the multi-factor prime factor FFT, the data
are not physically stored in a two-dimensional matrix, because we can use the direct indexing
methods described in Section 13.2.3 to access the 1-D input array x, and we have demonstrated
how the direct indexing methods are used in the actual in-place implementation of two-factor
PFAs by an example in Section 13.6.1. Recall that both Ruritanian and CRT maps are unique,
and they identify each unique group of elements for the DFT or DFT-like computation.

Suppose N = F0×F1×F2, where the three factors are pairwise prime; hence, each factor
and the product of the other two factors are also relatively prime, and we can deÞ ne three
two-factor PFAs by expressing N = N0×N1 with N1 =Fk and N0 =N/Fk for k = 0, 1, 2.

The in-place and in-oder implementation of the three-factor PFA consists of the following
three stages:

Stage A. Let N1 = F0, and N0 = F1×F2; compute the N0 length N1 DFT-like transforms
in-place. The arithmetic operations required are proportional to N0×N2

1 = N×F0.

Remarks: The groups of elements identiÞ ed by the direct indexing scheme for the length
N1 transforms in this stage and the next two stages are the groups uniquely determined
by the chosen three-factor mapping scheme.

Stage B. Let N1 = F1, and N0 = F0×F2; compute the N0 length N1 DFT-like transforms
in-place. The arithmetic operations required are proportional to N0×N2

1 = N×F1.

Stage C. Let N1 = F2, and N0 = F0×F1; compute the N0 length N1 DFT-like transforms
in-place. The arithmetic operations required are proportional to N0×N2

1 = N×F2.

Accordingly, the total arithmetic operations required by the three-factor PFA are proportional
to N(F0 + F1 + F2). If the DFT length N is composite with arbitrary ν > 3 pairwise-prime
factors, a sequence of ν two-factor PFA can be deÞ ned with N0 = Fk and N1 = N/Fk

13.7. EFFICIENT IMPLEMENTATION OF THE PFA 373

for k = 0, 1, . . . , ν − 1, and the ν-stage PFA algorithm would require arithmetic operations
proportional to N(F0 + F1 + · · ·+ Fν−1).

The efÞ ciency of the PFA depends on the size of each factor, because in every stage the
N/Fk DFT or DFT-like transforms are of length Fk; hence, the factors are desired to be rel-
atively small. For example, the collection of the so-called small-n DFTs provided by Nuss-
baumer in [35] are for factors from the set {2, 3, 4, 5, 7, 8, 9, 16}. Note that we can choose at
most four pairwise-prime factors from this set, and the largest N = 5×7×9×16 = 5040. (As
mentioned at the beginning of this chapter, the PFA based on these small-n DFT modules can
be combined with radix-2 FFT or mixed-radix FFT to perform much larger transforms.)

As to the DFT-like transforms in the two versions of the in-order PFA, they are referred to
in the literature as Òr otated DFTÓ for reasons given below.

Version (i) Ruritanian map based in-order PFA For N = 3 × 4 with N0 = 3 and N1 = 4,
the three DFT-like transforms involving ωN0r�

N1
are

(13.130)


x0

x3

x6

x9

 :=


1 1 1 1

1 ω3
4 ω6

4 ω9
4

1 ω6
4 ω12

4 ω18
4

1 ω9
4 ω18

4 ω27
4




x0

x3

x6

x9

 , · · · , · · · etc.

The four DFT-like transforms involving ωN1r�

N0
are

(13.131)

x0

x4

x8

 :=

1 1 1

1 ω4
3 ω8

3

1 ω8
3 ω16

3

 x0

x4

x8

 , · · · , · · · , · · · , etc.

Version (ii) CRT map based in-order PFA For N = N0×N1 = 3 × 4, recall ρ = 1 and
q = 3; hence, we have three DFT transforms involving ωqr�

N1
= ω3r�

N1

(13.132)


x0

x3

x6

x9

 :=


1 1 1 1

1 ω3
4 ω6

4 ω9
4

1 ω6
4 ω12

4 ω18
4

1 ω9
4 ω18

4 ω27
4



x0

x3

x6

x9

 , · · · , · · · , etc.

The four DFT-like transform involving ωρr�
N0

with ρ = 1 represents the DFT itself:

(13.133)

x0

x4

x8

 :=

1 1 1

1 ω1
3 ω2

3

1 ω2
3 ω4

3

x0

x4

x8

 , · · · , · · · , · · · , etc.

Observe that each of the DFT-like matrices in Equations (13.130), (13.131),(13.132), and (13.133)
can be expressed as the product of a DFT matrix and a permutation matrix. For example, by
making use of ω4

4 = 1, we obtain
1 1 1 1

1 ω3
4 ω6

4 ω9
4

1 ω6
4 ω12

4 ω18
4

1 ω9
4 ω18

4 ω27
4

 =


1 1 1 1

1 ω3
4 ω6

4 ω9
4

1 ω2
4 ω4

4 ω6
4

1 ω1
4 ω2

4 ω3
4



=


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



1 1 1 1

1 ω1
4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4


(13.134)

374 CHAPTER 13. PRIME FACTOR FFT ALGORITHMS

Because this can be done for every DFT-like matrix in the two in-order PFAs, the DFT-like
matrices are referred to as the rotated DFT. If we let P denote the permutation matrix and let
Ω denote the DFT matrix, the result of a rotated DFT given by

(13.135) z = (PΩ)y

can be obtained by permuting the DFT result, that is,

(13.136) z = P (Ωy).

Therefore, by adding a permutation step, all specially designed small-n DFT modules can be
used to compute the rotated DFTs needed in the efÞ cient implementation of the prime factor
FFT algorithms. Among the two in-order PFAs, the one based on CRT map has simpler direct
indexing scheme, and the Fortran code implementing the algorithm was described in [45],
where the small-n rotated DFTs for factors of 2, 3, and 4 are included and they are explicitly
coded to minimize the arithmetic operations.

Chapter 14

On Computing the DFT of Large
Prime Length

The conventional FFT usually refers to the family of mixed-radix algorithms for rapidly com-
puting the DFT deÞ ned by the formula (excluding division by N):

Xr =

N−1∑
�=0

x�e
−j2πr�/N , for r = 0, 1, · · · , N − 1,(14.1)

and the IDFT deÞ ned by the formula (including division by N):

x� =
1

N

N−1∑
r=0

Xre
j2πr�/N , for � = 0, 1, · · · , N − 1,(14.2)

where j≡√−1, and the sequences x� and Xr each consists of N complex data samples.
The various FFTs are tailored to the DFT/IDFT of different lengths. As discussed in Chap-

ter 11, when the length N is a power of two, the familiar radix-2 FFT achieves a complex-
ity of O(N log2N); when N is not a power of two, the DFT/IDFT can be computed by the
FFT generalized for composite N =

∏m
k=1Fk , and the complexity becomes O(N(F1 +F2 +

· · ·+Fm)). When some or all of the factors are pairwise prime, the prime factor FFT algo-
rithms presented in Chapter 13 can be used, possibly in combination with the radix-2 FFT
or mixed-radix FFT. For general composite N , various forms of the mixed-radix FFT and
the prime factor FFT were proposed during the four decades from the late 1950s to the early
1990s [4, 9, 16, 18, 24, 31, 41, 44, 45, 50, 55]. These algorithms are particularly efÞ cient
when N is the product of small factors. For example, the mutually prime factors of N must be
selected from the set {2, 3, 4, 5, 7, 8, 9, 16} in most published prime factor FFT algorithms.

Accordingly, the performance of the FFT for composite N depends on the sizes of the
factors: at one extreme, when all factors are identical and equal to two, we have the highly
efÞcient O(N log2N) radix-2 FFT; at the other extreme, when N/2 is a large prime number,
the complexity becomes O(N(2 + N/2)), and the execution time grows with N2, which is at
the same rate as computing the DFT/IDFT directly according to Equations (14.1) and (14.2).
Therefore, for transforms with length N being a large prime or containing large prime factors,
little improvement can be expected from the various mixed-radix FFTs. In this chapter we
shall present two alternatives which can improve the performance of FFT when its length N

375

376 CHAPTER 14. COMPUTING DFT OF LARGE PRIME LENGTH

is a large prime or contains large prime factors, and we provide MATLAB implementation to
demonstrate the merits of these algorithms implemented in a high-level language.

14.1 Performance of FFT for Prime N

Numerical experiments in MATLAB 5.3 and MATLAB 7.4: While many available FFT
programs can handle non-power-of-two lengths, users are usually warned that such data sets
may be processed by much slower algorithms [28, 29, 39]. For FFT of large prime length, we
could face the situation that neither the speed nor the accuracy is acceptable. In this section we
experiment with built-in FFT codes from two versions of MATLAB R©1. Our results demon-
strate the great improvement made in MATLAB 7.4 in the computation of prime-length FFT.
Because the FFT codes provided by both versions of MATLAB are built-in functions, a fair
comparison of length-2n FFT and prime-length FFT can be made using the same executable
code in all cases.

In MATLAB 5.3, the FFT code runs at drastically different speeds depending on whether
the length is a power of two or a large prime. For example, given in Tables 14.1 and 14.2 are
some tests we ran using MATLAB 5.3 built-in FFT and inverse FFT functions, namely, fft and
ifft. In Table 14.1 we compare the cpu times and the total number of ß oating-point operations
(ß ops) required to compute ifft(fft(x)) for complex series x of length N1 =2s and prime length
N2. For each power-of-two N1, we select the largest prime N2 < N1, which can be obtained
by N2 =max(primes(N1)) in MATLAB.

Table 14.1 Performance of MATLAB 5.3 built-in FFT.

Computing ifft(fft(x)) for complex series
of length N1 =2s and prime length N2

Built-in Code Built-in Code
Timings Arithmetic Cost Prime Timings Arithmetic Cost

N1 = 2s (CPU 1.3 GHz) Total Flops N2 (CPU 1.3 GHz) Total Flops
2048 0.0010 sec 0.25 million 2039 0.87 sec 67 million
4096 0.0025 sec 0.54 million 4093 3.44 sec 268 million
8192 0.0058 sec 1.16 million 8191 13.73 sec 1 billion

16384 0.0130 sec 2.49 million 16381 54.78 sec 4 billion
32768 0.0290 sec 5.31 million 32749 218.09 sec 16 billion

From the timing results in Table 14.1, we see that the computing time for prime N2 grows
with N2

2 (instead of N1log2N1 for N1 = 2s), and that for N2 = 4093, the time required is
already more than a thousand times longer than the radix-2 FFT time for N1 = 212 = 4096.
Since the O

(
N2

2

)
time quadrupled when N2 is doubled, it quickly grows to 218 seconds for

prime N2 = 32749, which is more than 7,000 times longer than the 0.029 seconds needed to
complete both forward and inverse FFT for N1 =215 =32768.

Since the number of ß oating-point operations grows with N2
2 for prime N2, we are also

concerned with the loss of accuracy in the computed results when N2 is large. To measure the
error, we compare the result y = ifft(fft(x)) with the input series x, and we report the relative

1MATLAB is a registered trademark of The MathWorks, Inc.

14.1. PERFORMANCE OF FFT FOR PRIME N 377

error

E∞ ≡ ‖x− y‖∞
‖x‖∞

in Table 14.2. Because ifft(fft(x)) should reproduce x, the difference between y and x reß ects
the loss of accuracy in the computing process. From the results in Table 14.2, we see that
for N1 = 2s, the full double-precision accuracy is maintained for all N1 values ranging from
2048 to 32768; however, for prime N2 values in the same range, the loss of accuracy is quite
signiÞ cantÑ only single-precision accuracy remains for N2 ≥ 16381. (Note that since MAT-
LAB supports IEEE 16-digit precision, all results are computed in standard double precision
ßo ating point arithmetic. If the fft and ifft functions were implemented for a single-precision
environment, we risk losing all signiÞcan t digits in y when N2≥16381.)

Table 14.2 Measuring error in computing ifft(fft(x)) in MATLAB 5.3.

Measuring error in computing y= ifft(fft(x))
for complex series of length N1 =2s and prime length N2

Relative Prime Relative
N1 =2s Error E∞ N2 Error E∞

2048 2.6407e—15 2039 1.8057e—11
4096 2.3728e—15 4093 7.1580e—10
8192 4.3739e—15 8191 1.1085e—9

16384 4.0839e—15 16381 1.4637e—8
32768 6.0783e—15 32749 5.7189e—8

This is no longer the case with MATLAB 7.4, which includes executable code (based on
the FFTW library [20, 30]) for computing the DFT of large prime length N efÞcien tly and
accurately as demonstrated by the results in Tables 14.3 and 14.4. Note that the function
flops is no longer available in MATLAB 7.4; hence, the total ß oating-point operations are
not reported in Table 14.3.

Table 14.3 Performance of MATLAB 7.4 built-in FFT.

Computing ifft(fft(x)) for complex series
of length N1 =2s and prime length N2

Built-in Code Built-in Code
Timings Prime Timings

N1 = 2s (CPU 3.2 GHz) N2 (CPU 3.2 GHz)

2048 0.0005 sec 2039 0.0019 sec
4096 0.0011 sec 4093 0.0039 sec
8192 0.0025 sec 8191 0.0050 sec

16384 0.0059 sec 16381 0.0128 sec
32768 0.0173 sec 32749 0.0625 sec

To gain the knowledge concerning the design and implementation of fast algorithms for
computing the prime-length DFT, we shall explore two approaches in the remainder of this
chapter, and we provide MATLAB implementation to demonstrate the merits of these algo-
rithms.

378 CHAPTER 14. COMPUTING DFT OF LARGE PRIME LENGTH

Table 14.4 Measuring error in computing ifft(fft(x)) in MATLAB 7.4.

Measuring error in computing y= ifft(fft(x))
for complex series of length N1 =2s and prime length N2

Relative Prime Relative
N1 =2s Error E∞ N2 Error E∞

2048 4.2611e—16 2039 1.0699e—15
4096 5.0700e—16 4093 1.3466e—15
8192 4.8105e—16 8191 1.8412e—15

16384 5.9934e—16 16381 5.4653e—15
32768 6.0071e—16 32749 1.5449e—15

14.2 Fast Algorithm I: Approximating the FFT

To describe this approach, we interpret the DFT results from Equation (14.1) as the function
values of

(14.3) F (θ) =

N−1∑
�=0

x�e
−j�θ

at equispaced θr = r(2π/N) between 0 and 2π, yielding Xr = F (θr) for r = 0, 1, · · · ,
N−1.

The approximate FFT algorithm proposed by Anderson and Dahleh [2] combines the radix-
2 FFT and local Taylor series expansion to approximate Xr = F (θr) in the following manner:

Step 1. Express the kth derivative of F (θ) as

(14.4) F (k)(θ) =

N−1∑
�=0

(−j�)kx�e
−j�θ =

N−1∑
�=0

x̃�e
−j�θ, where x̃� = (−j�)kx�.

Note that F (0)(θ) = F (θ).

Step 2. Evaluate F (θ), F ′(θ), F ′′(θ), · · · , and F (k)(θ) at a set of M = 2s (M > N) equis-
paced θ̂ values between 0 and 2π; i.e., use {θ̂0, θ̂1, · · · , θ̂M−1} with θ̂r ≡ r(2π/M), and
compute

(14.5) F (k)(θ̂r) =

N−1∑
�=0

x̃�e
−j�θ̂r =

N−1∑
�=0

x̃�e
−j2πr�/M , for r = 0, 1, · · · , M − 1.

To convert (14.5) to an M -point (and M -term) DFT, we need to add more terms with
zero coefÞ cients. That is, we deÞ ne α̃� = x̃� for 0 ≤ � ≤ N − 1, and add α̃� = 0 for
N ≤ � ≤M − 1 to obtain the properly deÞ ned DFT, namely,

F (k)(θ̂r) =

M−1∑
�=0

α̃�e
−j2πr�/M , for r = 0, 1, · · · , M − 1.(14.6)

Since M is a power of two, the function F (θ) and each of its derivatives can now be
evaluated on the M equispaced θ̂r values by a radix-2 FFT algorithm at the cost of
O (M log2M) arithmetic operations.

14.2. FAST ALGORITHM I: APPROXIMATING THE FFT 379

Step 3. For every θr = r(2π/N), 0 ≤ r ≤ N − 1, we determine the nearest θ̂n = n(2π/M),
and we approximate Xr = F (θr) by computing Xr ≈ T (θ̂n + δ), where δ = θr − θ̂n,
and

T (θ̂n + δ) = F (θ̂n) + δF ′(θ̂n) +
δ2

2!
F ′′(θ̂n) + · · ·+ δk

k!
F (k)(θ̂n)(14.7)

is the degree-k Taylor polynomial expanded at each chosen θ̂n.

The complexity of this algorithm is O(kM log2M), where k is the degree of TaylorÕs polyno-
mial in (14.7), and M = 2s >N is the length of the extended DFT in (14.6). To approximate
the IDFT results from Equation (14.2), the corresponding steps can be similarly developed.

14.2.1 Array-smart implementation in MATLAB

In this section we give the approximate FFT/IFFT algorithms in the form of MATLAB R© func-
tions Tfft and iTfft. To obtain an array-smart implementation, we have made use of MATLAB
vectorized operations and built-in functions (including the fft/ifft) in processing all data ar-
rays. To make the vectorized algorithm easy to understand, we connect the pseudo-code to our
mathematical derivation by using the same Greek letters as array names, and we identify the
elements of each array in a comment immediately after the array is named. For example, we
have used Ò θÓ t o name the array containing [θ0, θ1, · · · , θM−1] in the pseudo-code for function
Tfft. Note that Ò θÓ can be simply replaced by ÒthetaÓ in the actual code.

380 CHAPTER 14. COMPUTING DFT OF LARGE PRIME LENGTH

Algorithm 14.1 The approximate FFT algorithm Tfft in MATLAB-style pseudo-code

function FX = Tfft(x, degree)

begin
N = length(x);

M = 2ö nextpow2(N); compute smallest M =2p >N

α̃ = [x, zeros (1, M—N)]; array α̃ = [α̃0, α̃1, · · · , α̃M−1]

θ = linspace(0, 2∗π, N+1);

θ = θ(1:N); array θ = [θ0, θ1, · · · , θN−1]

θ̂ = linspace(0, 2∗π, M+1); array θ̂ = [θ̂0, · · · , θ̂M−1, θ̂M]

h = 2∗π/M ;

IDX = round(θ/h) + 1; compute n for all nearest θ̂n

δ = (θ − θ̂(IDX)); compute all δ=θr − θ̂n

f = fft(α̃); call built-in fft to compute M function values
f = [f, f(1)]; include function value at boundary θ̂M =2π

FX = f(IDX); extract all F (θ̂n) values
S = δ; initialize S by array δ

for k = 1 to degree
α̃ = α̃.∗(−j∗[0:M—1]); j =

√−1 is a built-in constant in MATLAB
fprime = fft(α̃); call built-in fft to compute M derivative values
fprime = [fprime, fprime(1)]; include derivative value at θ̂M =2π

FX = FX + S.∗fprime(IDX); compute T (θ̂n + δ) term by term
S = S.∗(δ/(k + 1));

end for
end

14.2. FAST ALGORITHM I: APPROXIMATING THE FFT 381

Algorithm 14.2 The approximate IFFT algorithm iTfft in MATLAB pseudo-code

function FXINV = iTfft(X, degree)

begin
N = length(X);

M = 2ö nextpow2(N); compute smallest M =2p >N

α̃ = [X, zeros (1, M—N)]; array α̃ = [α̃0, α̃1, · · · , α̃M−1]

θ = linspace(0, 2∗π, N+1);

θ = θ(1:N); array θ = [θ0, θ1, · · · , θN−1]

θ̂ = linspace(0, 2∗π, M+1); array θ̂ = [θ̂0, · · · , θ̂M−1, θ̂M]

h = 2∗π/M ;

IDX = round(θ/h) + 1; compute n for all nearest θ̂n

δ = (θ − θ̂(IDX)); compute all δ=θr − θ̂n

f = ifft(α̃); call built-in ifft to compute M function values
f = [f, f(1)]; include function value at boundary θ̂M =2π

FXINV = f(IDX); extract all F (θ̂n) values
S = δ; initialize S by array δ

for k = 1 to degree
α̃ = α̃.∗(j∗[0:M—1]); j =

√−1 is a built-in constant in MATLAB
fprime = ifft(α̃); call built-in ifft to compute M derivative values
fprime = [fprime, fprime(1)]; include derivative value at boundary θ̂M =2π

FXINV = FXINV + S.∗fprime(IDX); compute T (θ̂n + δ) term by term
S = S.∗(δ/(k + 1));

end for
FXINV = FXINV ∗M/N ; including division by N

end

14.2.2 Numerical results

We evaluate the two function M-Þ les Tfft.m and iTfft.m on computing the DFT/IDFT of data
sets with prime length N2, and we present the results in Table 14.5. In coding the algorithm,
we have chosen the smallest M =2s >N to be the length of the extended DFT/IDFT, and we
leave the degree k of TaylorÕs polynomial as an input parameter. Since the execution time and
the accuracy of the algorithm are determined by both M and k, we identify the values used in
our experiment in Table 14.5.

In Table 14.5, we choose degree k to gain the maximum accuracy in the results. For
computing the DFT/IDFT of the same data (with results more accurate than Table 14.2), the
Tfft and iTfft times for prime N2 ≥ 4093 are signiÞ cantly faster than those for prime N2 in
Table 14.1, even the user M-Þ le is interpreted and expected to run more slowly than executable
code, and they reß ect the expected difference between an O(kM log2M) algorithm and an
O(N2

2) algorithm. Compared with the results in Tables 14.3 and 14.4, the approximated results
are less accurate than those computed by the built-in FFT in MATLAB 7.4, and they are also
less accurate than those computed by the BluesteinÕs FFT to be presented in the next section.

382 CHAPTER 14. COMPUTING DFT OF LARGE PRIME LENGTH

Table 14.5 Evaluating function M-Þ les Tfft.m and iTfft.m for large prime N .

Computing X =Tfft(x, k) and y =iTfft(X, k)

for complex x of prime length N2.
MATLAB 5.3 MATLAB 7.4

Prime Method Parameters M-File Times M-File Times Relative
N2 M =2s degree k (CPU 1.3 GHz) (CPU 3.2 GHz) Error E∞
2039 2048 22 0.06 sec 0.03 sec 7.1549e—13
4093 4096 22 0.14 sec 0.06 sec 1.4760e—12
8191 8192 22 0.31 sec 0.13 sec 2.9721e—12

16381 16384 22 0.65 sec 0.28 sec 6.7510e—12
32749 32768 22 1.55 sec 0.67 sec 1.5064e—11

14.3 Fast Algorithm II: Using Bluestein’s FFT

Shortly after Cooley and Tukey published their original paper [16] on radix-2 FFT and its
potential generalization to mixed-radix FFT, Bluestein presented an FFT for arbitrary N in-
cluding primes [5]. BluesteinÕs algorithm resurfaced in 1991 through a theoretical study of
its performance on the hypercube [43], where it was shown to require fewer communication
cycles than BerglandÕs mixed radix FFT [4] for composite N . Although BluesteinÕs FFT
handles sequences of prime length N with a desirable complexity of O(M log2M), where
M =2s≥2N − 2, its implementation and performance results seem to have been absent in the
FFT literature.

In this section, we shall derive BluesteinÕs FFT and provide array-smart implementations
for both FFT and its inverse in MATLAB. The MATLAB programs are then used to compute
the DFT/IDFT of prime length in the numerical experiments that follow.

14.3.1 Bluestein’s FFT and the chirp Fourier transform

We indicated in Chapter 9 that the discrete cyclic convolution is useful in the development
of the chirp Fourier transform as well as the fast Fourier transform algorithm for arbitrary
(possibly prime) N . The chirp Fourier transform was covered in Section 9.3 in Chapter 9,
where we showed it to represent a partial DFT, which can be converted to a partial linear
convolution, and the latter can be converted to a partial cyclic convolution computable by two
FFTs and one inverse FFT. BluesteinÕs FFT makes use of the same ideas to turn a DFT of length
N into a partial linear convolution, and the latter can be turned into a partial cyclic convolution
computable by two FFTs and one inverse FFT of lengths all equal to M =2s≥2N−2.

14.3. FAST ALGORITHM II: USING BLUESTEINÕS FFT 383

14.3.2 The equivalent partial linear convolution

We begin by rewriting the DFT deÞn ed by (14.1) as

(14.8)

Xr =

N−1∑
�=0

x� ωr�
N , ωN ≡ e−j2π/N , for r = 0, 1, · · · , N − 1,

=

N−1∑
�=0

x� ω
1
2 (r2+�2−(r−�)2)
N

= ω
1
2 r2

N

N−1∑
�=0

x� ω
1
2 �2

N ω
− 1

2 (r−�)2

N .

To convert the DFT deÞ ned by (14.8) to a partial linear convolution, we deÞ ne

(14.9) Zr = ω
− 1

2 r2

N Xr , y� = x�ω
1
2 �2

N , hr−� = ω
− 1

2 (r−�)2

N ,

and rewrite (14.8) as

(14.10) Zr =

N−1∑
�=0

y� ·hr−� , r = 0, 1, . . . , N − 1 .

Observe that {Z0, Z1, · · · , ZN−1} computed according to Formula (14.10) are the middle N

(beginning with the N th) elements obtained from the linear convolution of the length-N se-
quence

{y0, y1, · · · , yN−1}
and the length-(2N−1) sequence

{f0, f1, · · · , f2N−2} = {h−N+1, h−N+2 · · · , h−1, h0, h1, · · · , hN−1}.

As we did in Section 9.3 before, we have explicitly stored the data

{h−N+1, h−N+2, · · · , h−1, h0, h1, · · · , hN−1}

in the array f in the speciÞed order, so that f0 refers to the Þ rst element in the sequence, and
fk refers to the (k+1)st element in the sequence. Accordingly, for prime N = 5, we need
the middle Þ ve elements (beginning with the Þ fth) from the linear convolution deÞ ned by the
stationary sequence

{y0, y1, y2, y3, y4},
which is of length N =5, and the moving sequence (to be reversed as shown in Figure 9.11)

{f0, f1, f2, f3, f4, f5, f6, f7, f8} = {h−4, h−3, h−2, h−1, h0, h1, h2, h3, h4},

which is of length 2N−1 = 9. (See Figure 9.11 for a very similar example.)

Remark 1: Note that we have hn = ω
− 1

2 n2

N here, which is different from hn = ω
1
2 n2

KN deÞ ned
in the chirp Fourier transform presented in Section 9.3, and we now have hn = hn±N .
Therefore, with hn = hn+N = hn+5, we have

{h−4, h−3, h−2, h−1} = {h1, h2, h3, h4},

384 CHAPTER 14. COMPUTING DFT OF LARGE PRIME LENGTH

and the formula given by (14.10) can be interpreted as a cyclic convolution of
{y0, y2, y1, y3, y4} and {h0, h1, h2, h3, h4} as deÞn ed in Section 9.2.3. However,
since the length N 	= 2s, we still have to extend it to a cyclic convolution of length
M = 2s. Note that for N = 5, the results {Z0, Z1, Z2, Z3, Z4} computed by (14.10)
are the Þrs t N = 5 elements obtained from the cyclic convolution of the following two
sequences of length M =2N−2=23: the stationary sequence is given by

{y0, y1, y2, y3, y4, 0, 0, 0},

and the moving sequence is given by

{f0, f1, f2, f3, f4, f5, f6, f7}
= {h0, h1, h2, h3, h1, h2, h3, h4}
= {h0, h1, h2, h3, h−1, h−2, h−3, h−4} (∵ h� = h−�)

= {h0, h1, h2, h3, h4, h3, h2, h1}, (∵ h−� = h−�+N)

where N −2 = 3 zeros are appended to {y0, y1, . . . , y4}, and N−2 = 3 elements
{h3, h2, h1} are appended to {h0, h1, . . . , h4}.
In general, if 2N−2 is a power of two, then M =2N−2=2s is the shortest power-of-two
length we may use to implement the cyclic convolution of length N .

Remark 2: When 2N − 2 	= 2n, we must choose M = 2s > 2N − 1. It turns out that
we obtain the same result (which is to be derived in the next section) whether we treat
Formula (14.10) as a partial linear convolution or a cyclic convolution of length N , we
have chosen not to convert h−k to h−k+N in the development so that the extension (to
length M = 2s > 2N−1) strategy can be easily adapted for implementing the chirp
Fourier transform (as deÞ ned in Chapter 9) if it is needed.

14.3.3 The equivalent partial cyclic convolution

We have indicated above that if 2N−2 is a power of two, then M =2N−2=2s is the shortest
power-of-two length we may use to implement the equivalent cyclic convolution of length N .
The fact that we shall do exactly that for N = 5 does not prevent us from using the same
example to explain what the algorithm ought to do when we must choose M = 2s > 2N−1.
Indeed, for N = 5, if we re-examine the partial linear convolution deÞ ned by (14.10), it is
not difÞ cult to see that {Z0, Z1, Z2, Z3, Z4} are also the Þ rst Þ ve elements resulting from the
cyclic convolution of the stationary sequence

{y0, y1, y2, y3, y4, 0, 0, 0, 0}

and the moving sequence (to be reversed as shown in Figure 9.12)

{h0, h1, h2, h3, h4, h−4, h−3, h−2, h−1}.

(See Figure 9.12 for a very similar example.)
Since both sequences are of length 2N−1 = 9 	= 2n, we must obtain an equivalent cyclic

convolution of length M = 2s > 2N−1, so that it can be computed by two radix-2 FFTs and
one radix-2 IFFT. For 2N−1 = 9, we use the next power of two for M ; hence, M = 16. To
obtain the equivalent cyclic convolution, we simply pad the stationary sequence with zeros,

14.3. FAST ALGORITHM II: USING BLUESTEINÕS FFT 385

and move the last N−1=4 elements of the moving sequence to the end; i.e., we perform the
cyclic convolution of the sequences

{y0, y1, y2, y3, y4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
and

{h0, h1, h2, h3, h4, 0, 0, 0, 0, 0, 0, 0, h−4, h−3, h−2, h−1}.
Assuming that the moving sequence {h0, h1, . . . , h4, 0, . . . , 0, h−4, . . . , h−1} is stored

as {f0, f1, · · · , f15}, we can now invoke the time-domain Cyclic Convolution Theorem 9.1,
to compute

(14.11) {Zr} = IDFT ({Yr ·Fr}) ,

where

(14.12) {Yr} = DFT ({y�}) , {Fr} = DFT ({f�}) .

Remark: Note that the scaling factor in Theorem 9.1 has been removed because the IDFT
deÞ ned by Formula (14.2) includes division by M , while the DFT deÞn ed by Formula (14.1)
excludes division by M .

Therefore, BluesteinÕs FFT requires the computation of a full cyclic convolution of length
M = 2s via FFT/IFFT at a cost proportional to M log2M . We shall take the Þ rst N results

from the convolution results {Z0, Z1, · · · , ZM−1}, and we obtain Xr = Zrω
1
2 r2

N for r =

0, 1, . . . , N − 1.

14.3.4 The algorithm

Bluestein’s Algorithm for computing the discrete Fourier transform

Xr =

N−1∑
�=0

x� ωr�
N , r = 0, 1, . . . , N − 1, N 	= 2n.

Step 1. Compute the elements needed in the moving sequence:

(14.13) h� = ω
− 1

2 �2

N , � = 0, 1, . . . , N − 1,

where ω
− 1

2 �2

N = ω−�2

2N
, and ω2N = e−jπ/N . Note that because h−� =h�, only h� needs to

be computed.

Step 2. DeÞn e M as the smallest power of two that is greater than or equal to 2N−2, and
compute the extended moving sequence of length M deÞ ned by

(14.14) f� =


h� , � = 0, 1, . . . , N − 1;

hM−� , � = M −N + 1, . . . , M − 1;

0, � = N, . . . , M −N, if M > 2N − 2.

Step 3. Use the radix-2 FFT to compute the DFT deÞ ned by

(14.15) Fr =
M−1∑
�=0

f� ωr�
M

, r = 0, 1, . . . , M − 1.

386 CHAPTER 14. COMPUTING DFT OF LARGE PRIME LENGTH

Step 4. Given {x�}, compute the zero-padded stationary sequence deÞ ned by

(14.16) y� =

{
x�ω

1
2 �2

N , � = 0, 1, . . . , N − 1,

0, � = N, . . . , M − 1,

where ω
1
2 �2

N = ω�2

2N , and ω2N = e−jπ/N .

Step 5. Use the radix-2 FFT to compute the DFT deÞ ned by

(14.17) Yr =

M−1∑
�=0

y� ωr�
M , r = 0, 1, . . . , M − 1,

where ωM = e−j2π/M .

Step 6. Compute

(14.18) Ur = Yr ·Fr , r = 0, 1, . . . , M − 1.

Step 7. Use the radix-2 IFFT to compute the IDFT deÞ ned by

(14.19) Zr =
1

M

M−1∑
�=0

U� ω−r�
M , r = 0, 1, . . . , M − 1,

where ωM = e−j2π/M .

Step 8. Extract the XrÕs from the top N elements in {Zr} by

(14.20) Xr = Zrω
1
2 r2

N , r = 0, . . . , N − 1,

where ω
1
2 r2

N = ωr2

2N , and ω2N = e−jπ/N .

14.3.5 Array-smart implementation in MATLAB

In this section we give BluesteinÕs FFT/IFFT algorithms in the form of MATLAB R© functions
Bfft and iBfft, which implement the steps outlined above. In coding the algorithm, we have
made use of MATLAB vectorized operations and built-in functions (including fft/ifft) in pro-
cessing all data arrays. By examining the steps in the Bfft algorithm, we see that it calls the
built-in fft (twice) and ifft (once) on three data sets with length extended to M =2s≥2N−2.
In the iBfft, the roles of fft and ifft are reversed, but the number of calls remains three in total.
The complexity of the Bfft and iBfft is thus O(M log2M).

14.3. FAST ALGORITHM II: USING BLUESTEINÕS FFT 387

Algorithm 14.3 BluesteinÕs FFT algorithm Bfft in MATLAB-style pseudo-code

function Z = Bfft(x)

begin
N = length(x);

θ = π/N ;

p = rem((0:N—1).ö 2, 2∗N);

h = exp(j∗θ∗p); j =
√−1 is a built-in constant in MATLAB

f = h;

M = 2ö nextpow2(2∗N−2); compute smallest M =2s≥2N−2

f(M—N+2:M) = h(N:—1:2);

if M > 2 ∗N − 2

f(N+1:M—N+1) = zeros(1, M−2∗N +1);

end
fout = fft(f); call built-in fft
wp = exp(−j∗θ∗p);

y = x. ∗ wp;

y(N+1:M) = zeros(1, M�N);

yout = fft(y); call built-in fft
u = yout. ∗ fout;
w = ifft(u); call built-in ifft
Z = w(1:N). ∗ wp;

end

Algorithm 14.4 Bluestein�s IFFT algorithm iBfft in MATLAB-style pseudo-code

function Y = iBfft(z)

begin
N = length(z);

θ = −π/N ; (i) change the sign of θ

p = rem((0:N� 1).� 2, 2∗N);

h = exp(j∗θ∗p); j =
√−1 in MATLAB

f = h;

M = 2� nextpow2(2∗N−2); compute smallest M =2s≥2N−2

f(M�N+2:M) = h(N:�1: 2);

if M > 2 ∗N − 2

f(N+1:M� N+1) = zeros(1, M−2∗N +1);

end
fout = ifft(f); (ii) change fft to ifft
wp = exp(−j∗θ∗p);

g = z. ∗ wp;

g(N+1:M) = zeros(1, M�N);

gout = ifft(g); (iii) change fft to ifft
u = gout. ∗ fout;
w = fft(u); (iv) change ifft to fft
Y = w(1:N). ∗ wp;

Y = Y ∗M/N ; including division by N

end

388 CHAPTER 14. COMPUTING DFT OF LARGE PRIME LENGTH

14.3.6 Numerical results

We report the performance of function M-� les Bfft.m and iBfft.m in this section. For DFT/IDFT
of prime lengths N2, the results for computing iBfft(Bfft(x)) are given in Table 14.6. Note that
the values for N2 in Tables 14.6 are those used to evaluate iTfft/Tfft in Table 14.5, and the
same sets of values were used to evaluate ifft/fft in Tables 14.1, 14.2, 14.3, and 14.4. For the
same length, an identical complex array x is used in all tables.

Table 14.6 Performance of Bluestein�s FFT for large prime N .

Computing y =iBfft(Bfft(x))
for complex x of prime length N2.

MATLAB 5.3 (CPU 1.3 GHz) MATLAB 7.4 (CPU 3.2 GHz)
Prime M-�le Relative M-�le Relative
N2 Timings Error E∞ Timings Error E∞
2039 0.02 sec 6.6436e�15 0.009 sec 1.1239e�15
4093 0.04 sec 1.2546e�14 0.018 sec 1.1887e�15
8191 0.08 sec 1.2104e�14 0.036 sec 1.2467e�15

16381 0.16 sec 1.9542e�14 0.088 sec 1.3126e�15
32749 0.37 sec 3.6524e�14 0.286 sec 1.4063e�15

The performance of the functions Bfft and iBfft in Table 14.6 is consistent with our ex-
pectation from an O(M log2 M) algorithm, where M = 2s≥ 2N2−2. (For each N2 given in
Table 14.6, the smallest M = 2s is obtained by setting the exponent s = nextpow(2∗N2−2)

in the M-� le functions Bfft and iBfft.) To assess the different approaches for prime N2, we
compare Table 14.6 with Tables 14.1 and 14.2, and we see that very signi� cant improvement
in both execution time and accuracy is gained by functions Bfft and iBfft when using MAT-
LAB 5.3. When comparing the MATLAB 7.4 results in Table 14.6 with those in Tables 14.3
and 14.4, note that the interpreted M-� le functions Bfft and iBfft are expected to run more
slowly than the built-in executable code. Compared with the approximate FFT results in Ta-
ble 14.5, Bluestein�s FFT runs faster and provides more accurate results in all cases.

Bibliography

[1] A. Ambardar. Analog and Digital Signal Processing. Brooks/Cole Publishing Company,
Paci� c Grove, CA, second edition, 1999.

[2] C. Anderson and M. D. Dahleh. Rapid computation of the discrete Fourier transform.
SIAM J. Sci. Comput., 17(4):913�919, 1996.

[3] J. Arsac. Fourier Transforms and the Theory of Distributions. Prentice-Hall, Inc., Engle-
wood Cliffs, NJ, 1966.

[4] G. D. Bergland. The fast Fourier transform recursive equations for arbitrary length
records. Math. Comp., 21(98):236�238, 1967.

[5] L. L. Bluestein. A linear �lter ing approach to the computation of discrete Fourier
transform. IEEE Transactions on Audio and Electroacoustics, AU-18:451�455, 1970.
Reprinted in Digital Signal Processing, Eds. L. R. Rabimer and C. M. Rader, pp. 317�
321, IEEE Press, New York, 1972.

[6] R. N. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill Inc., San
Francisco, CA, third edition, 2000.

[7] W. L. Briggs and V. E. Hensen. The DFT: An Owner’s Manual for the Discrete Fourier
Transform. The Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995.

[8] E. O. Brigham. The Fast Fourier Transform and Its Applications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1988.

[9] C. S. Burrus and P. W. Eschenbacher. An in-place, in-order prime factor FFT algo-
rithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-29:806�
817, 1981.

[10] T. Butz. Fourier Transformation for Pedestrians. Springer-Verlag, Berlin, 2006.

[11] D. C. Champeney. Fourier Transforms and Their Physical Applications. Academic Press
Inc., London, UK, 1973.

[12] D. C. Champeney. A Handbook of Fourier Theorems. Cambridge University Press,
Cambridge, UK, 1987.

[13] E. Chu and A. George. Inside the FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms. CRC Press, Boca Raton, FL, 2000.

389

390 BIBLIOGRAPHY

[14] R. V. Churchill. Fourier Series and Boundary Value Problems. McGraw-Hill Book
Company, Inc., New York, second edition, 1963.

[15] J. W. Cooley, P. A. W. Lewis, and P. D. Welch. Historical notes on the fast Fourier
transform. IEEE Trans. Audio and Electroacoustics, 15:76�79, 1967.

[16] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Math. Comp., 19:297�301, 1965.

[17] H. F. Davis. Fourier Series and Orthogonal Functions. Allyn and Bacon, Inc., Boston,
MA, 1963.

[18] C. de Boor. FFT as nested multiplications, with a twist. SIAM J. Sci. Stat. Comput.,
1:173�178, 1980.

[19] A. Deitmar. A First Course in Harmonic Analysis. Springer-Verlag, New York, second
edition, 2005.

[20] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT. In
Proceedings of the International Conference on Acoustics, Speech, and Signal Process-
ing, volume 3, pp. 1381�1384, 1998.

[21] D. Gabor. Theory of communication. J.I.E.E., 93(Part III):492�444, 1946.

[22] R. R. Goldberg. Fourier Transforms. Cambridge University Press, Cambridge, UK, 1965.

[23] R. C. Gonzales and R. E. Woods. Digital Image Processing. Addison-Wesley Publishing
Company, Reading, MA, 1992.

[24] I. J. Good. The interaction algorithm and practical Fourier analysis. J. Roy. Statist. Soc.,
Ser. B, 20:361�372, 1958. Addendum, 22:372�375, 1960.

[25] J. C. Goswami and A. K. Chan. Fundamentals of Wavelets. John Wiley & Sons, Inc.,
New York, 1999.

[26] A. Graham. Kronecker Products and Matrix Calculus with Applications. Ellis Horwood
Limited, West Sussex, UK, 1981.

[27] R. W. Hamming. Digital Filters. Prentice-Hall, Inc., Englewood Cliffs, NJ, third edition,
1989.

[28] D. J. Higham and N. J. Higham. The MATLAB Guide. The Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2000.

[29] D. J. Higham and N. J. Higham. The MATLAB Guide. 2nd ed., The Society for Industrial
and Applied Mathematics, Philadelphia, PA, 2005.

[30] FFTW: The Fastest Fourier Transform in the West. http://www.fftw.org/.

[31] D. P. Kolba and T. W. Parks. A prime factor algorithm using high-speed convolution.
IEEE Trans. Acoust. Speech Signal Process, ASSP-25:281�294, 1977.

[32] C. F. Van Loan. Computational Frameworks for the Fast Fourier Transform. The Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1992.

BIBLIOGRAPHY 391

[33] J. H. McClellan and C. M. Rader. Number Theory in Digital Signal Processing. Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1979.

[34] Y. Nievergelt. Wavelets Made Easy. Birkh¤auser Boston, Cambridge, MA, 1999.

[35] H. J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer Series
in Information Sciences. Springer-Verlag, Berlin, 1981.

[36] J. S. Otto. Symmetric prime factor fast Fourier transform algorithms. SIAM J. Sci. Stat.
Comput., 19:419�431, 1989.

[37] A. Papoulis. The Fourier Integral and Its Applications. McGraw-Hill Book Company,
Inc., New York, 1962.

[38] B. Porat. A Course in Digital Signal Processing. John Wiley & Sons, Inc., New York,
1997.

[39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in C++: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK,
second edition, 2001.

[40] J. N. Rayner. An Introduction to Spectral Analysis. Pion Limited, London, UK, 1971.

[41] J. H. Rothweiler. Implementation of the in-order prime factor transform for variable
sizes. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-30:105�
107, 1982.

[42] E. M. Stein and G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces. Prince-
ton University Press, Princeton, NJ, 1971.

[43] P. N. Swarztrauber, R. A. Sweet, W. L. Briggs, V. E. Henson, and J. Otto. Bluestein�s
FFT for arbirary N on the hypercube. Parallel Computing, 17:607�617, 1991.

[44] C. Temperton. Self-sorting mixed-radix fast Fourier transforms. J. of Computational
Physics, 52:1�23, 1983.

[45] C. Temperton. Implementation of a self-sorting in-place prime factor FFT algorithm. J.
of Computational Physics, 58:283�299, 1985.

[46] C. Temperton. Implementation of a prime factor FFT algorithm on Cray-1. Parallel
Computing, 6:99�108, 1988.

[47] C. Temperton. A new set of minimum-add small-n rotated DFT modules. J. of Compu-
tational Physics, 75:190�198, 1988.

[48] C. Temperton. A self-sorting in-place prime factor real/half-complex FFT algorithm. J.
of Computational Physics, 75:199�216, 1988.

[49] C. Temperton. Self-sorting in-place fast Fourier transforms. SIAM J. Sci. Comput.,
12:808�823, 1991.

[50] C. Temperton. A generalized prime factor FFT algorithm for any n = 2p3q5r. SIAM J.
Sci. Comput., 13:676�686, 1992.

392 BIBLIOGRAPHY

[51] E. C. Titchmarsh. Introduction to the Theory of Fourier Integrals. Clarendon Press,
Oxford, UK, 1962.

[52] J. S. Walker. Fourier Analysis. Oxford University Press, New York, 1988.

[53] H. J. Weaver. Applications of Discrete and Continuous Fourier Analysis. John Wiley &
Sons, Inc., New York, 1983.

[54] H. J. Weaver. Theory of Discrete and Continuous Fourier Analysis. John Wiley & Sons,
Inc., New York, 1989.

[55] S. Winograd. On computing the DFT. Math. Comp., 32:175�199, 1978.

[56] C. R. Wylie. Advanced Engineering Mathematics. McGraw-Hall Book Company, New
York, fourth edition, 1975.

Index

A
Absolute integrability, 158
Aliased frequencies, 32, 239

anti-aliasing, 36
example, 32, 35
in the DFT, 102, 129

Amplitude, 4
Analog signals, 25

B
Band-limited signal

almost band-limited, 179
Fourier transform of, 158
nonperiodic, 158
periodic, 27

DFT, 27
sampling theorem, 160, 161, 207

Band-pass signals
sampling of, 209

Band-stop FIR � lter, 294
Bartlett window, 247

Fourier transform of, 248
normalized, 248

magnitude spectrum, 248
Bessel�s inequality, 76�78
Bezout�s relation, 357
Blackman window, 251

Fourier transform of, 251
normalized, 251

magnitude spectrum, 253
Bluestein�s FFT, 382
Bounded closed interval, 46

C
Cauchy�Schw arz inequality, 68

used in examples, 70
Cesaro sum, 95
Chinese remainder theorem, 364
Chirp Fourier transform, 284, 382

Circulant matrix, 278
Comb function, 211
Commensurate sum, 23, 117, 124

DFT coef� cients of, 117
Complex exponential modes, 8

Fourier series, 24, 60
phases, 13

Conventional convolution, discrete
by sectioned DFT, 273
of two � nite sequences, 267

with steps illustrated, 269
Convolution integral, 191
Convolution theorems, 191

invoked, 248, 292
Convolution, continuous, 189

of � nite-duration signals, 267
Cosine modes, 6, 25

disguised, 20
Fourier series, 24
phase shifts, 9, 13, 26
shifted, 25

phase angle, 25
time shifts, 9, 13, 26

CRT (Chinese remainder theorem) index
map, 344, 365

Cyclic convolution, 275, 286, 384
de� ned, 278
in matrix form, 278
with steps illustrated, 279

Cyclic convolution theorems, 280

D
dB (decibel) units, 246
DC (direct current) term, 9, 48
DFT (Discrete Fourier Transform), 109

aliased frequencies, 102, 129
alternate forms, 39, 41, 114

conversion between, 114
computed DFT coef� cients, 126

393

394 INDEX

de� nition, 29
deriving the formulas, 109
examples, 29
�n ite Fourier series, 27, 38
frequency leakage, 126
matrix equation, 111
of concatenated sequences, 116
of windowed sequence, 239
programming in MATLAB, 147
reconstructed signal, 127
sample size, 41
sampling at jump discontinuities, 104

DIF (decimation-in-frequency) FFT
mixed-radix, 317
radix-2, 319

Digital � ltering and � lters
DFT application in, 291

Digital � lters
band-stop and notch FIR, 294
�n ite-impulse response (FIR), 293
low-pass, high-pass, and band-pass FIR,

294
nonrecursive, 293
transfer function of, 294

Digital frequency, 21, 22, 26, 211
angular, 21, 212
frequency grids, 31

Nyquist interval, 31
Dimension-less variable θ, 5, 26, 61, 118
Diophantine equation, 357
Dirac delta function, 185
Dirichlet kernel, 91

alternate forms, 92
mainlobe, 92
sidelobes, 92

Dirichlet�s theorem, 45, 212
Discrete convolution theorem, 193

time-domain, 228
Discrete exponential function, 219

bilateral, 222
Discrete frequency, 26
Discrete-time signals

by impulse sampling, 202
Fourier transform of, 211, 221, 226,

229
Fourier transform pairs, 219

ideally sampled, 202
nonperiodic

windowing of, 244
periodic convolution theorem, 227

Discrete-time sinusoid, 21
Fourier transform of, 226
nonperiodic, 23
periodic, 22, 23
periodicity of, 22

DIT (decimation-in-time) FFT
mixed-radix, 315
radix-2, 315

E
Euclid�s algorithm, 355
Euler�s identity, 7, 14

in deriving the DFT, 28, 111
used in examples, 14, 16, 84

Euler� Fourier formulas, 48
used in examples, 52

Even functions, 51
Fourier coef� cients

of cosine terms, 51, 54

F
Fejer kernel, 96

properties of, 97
FFT (Fast Fourier Transform)

Bluestein�s, 382
Cooley�T ukey, 305
large prime length, 375
mixed-radix, 305

three-factor example, 307
prime factor, 341
radix-2, 315, 319

Filter, analog
frequency response of, 293
impulse response of, 292
magnitude response of, 293
phase response of, 293
transfer function of, 293
zero-phase-shift, 293

Finite Fourier series
as least-squares approximation, 61

Fourier integral, 157
Fourier series, 23, 45

band-limited, 27

INDEX 395

complex exponential modes, 60
complex-valued functions, 60
constant (or DC) term, 48
convergence of, 79
Dirichlet�s theorem, 45
discrete convolution, 193
examples, 48, 53

convergence of, 50
half-range expansions, 53
in other variables, 61
of even functions, 51, 54, 55
of nonharmonic component, 128
of odd functions, 51, 52, 54, 55
orthogonal projections, 63
periodic convolution, 192
pointwise convergence, 85
rate of convergence, 87
truncated, 61

Fourier transform, 157
alternate form, 177
band-limited, 158

periodic extension, 159
convolution theorems, 191
cosine contents, 164
examples, 167, 175, 217
impulse sampling of, 244
of a sequence, 211

alternate forms, 214
DFT interpretation, 232
duality results, 226

of discrete-time sinusoid, 226
of impulse function, 188
of impulse train, 198
of Kronecker delta sequence, 218
of periodic sequence, 229, 244
properties, 171, 215

utilities of, 175
sine contents, 164

Fourier transform pairs, 165, 167, 175, 219,
221, 244

involving Kronecker delta, 217
involving unit impulse, 188

Frequency contents
band-limited, 27
distortion by leakage, 128
Fourier coef� cients, 46

as least-squares solution, 63
Fourier transform, 157, 159

Frequency leakage, 126, 128, 131
Frequency, analog, 4

aliased by sampling, 32
angular, 5, 26
fundamental, 12
wavenumber, 25

Frequency, digital, 21, 26
angular, 21

Frequency-domain plots, 6
complex exponential, 8
Fourier transform, 157
polar coordinates, 9
rectangular coordinates, 8

Frequency-domain windows, 100, 102
for Fejer kernel, 101
for Lanczos smoothing, 102

Frequency-grid spacing, 30
reciprocity relation, 30

Function contents, 3
frequency-domain, 4, 5

bandwidth, 25
time-domain, 3

periodic, 5

G
Gaussian function, 167
Generalized function, 195
Generalized Poisson sum, 199
Gibbs phenomenon, 50, 63, 89

Cesaro sum smoothing, 95
Dirichlet kernel perspective, 91
�lter ing viewpoint, 294
Fourier series of square wave, 89
Lanczos smoothing, 99
overshoot, 91
undershoot, 91

H
Half-range expansions, 53

as even functions, 54
as odd functions, 54
examples, 53, 58

Hamming window, 250
magnitude spectrum, 252

396 INDEX

I
Ideally sampled signal, 202
IDFT (Inverse DFT)

alternate form, 39, 42
de� nition, 38
deriving the formulas, 109
sample size, 42

IFFT (Inverse FFT), 306
Impulse function, 185

convolution with, 194
Fourier transform of, 188

Impulse sampling, 202
Impulse train, 195, 240

Fourier transform of, 198
weighted, 202

Index mapping, 305
by permutation, 363
column-major, 306
CRT, 344, 365
relevant number theory, 353
row-major, 312
Ruritanian, 343, 366
three-factor example, 307

Inner product, 63
de� ned, 64
expressed in norms, 66

Inner product linear space, 65
Inverse Fourier transform, 157, 159
Inverse Poisson sums, 205

J
Jump discontinuity, 46, 51

examples, 49, 57, 58
normalized, 47
one-sided limits, 46
sampling function with, 104

K
Kronecker delta sequence, 217, 218

Fourier transform of, 218
Kronecker product

de� ned, 322
factorization

of DFT matrix, 331, 334
of permuted DFT matrix, 350

properties, 329

L
L�H�ospital�s rule, 16, 18, 87, 91, 160, 161
Lanczos smoothing, 99
Least-squares approximation, 75

of periodic functions, 61
Linear convolution, 285, 383
Linear convolution, discrete

by sectioned DFT, 273, 283
converting to cyclic, 280
converting to periodic, 275
of two � nite sequences, 267

with steps illustrated, 269
Linear space, 63

examples, 63, 64

M
Magnitude spectrum

of Bartlett window, 248
of Blackman window, 253
of Hamming window, 252
of rectangular window, 246
of triangular window, 248
of von Hann window, 250

Minkowski inequality, 71
used in examples, 71

Mixed-radix FFT
decimation-in-frequency, 317
decimation-in-time, 315
recursive equation approach, 313, 318
sparse matrix formulation, 321, 333
three-factor example, 307
unordered DIF, 337
unordered DIT, 335

Mutually prime factors, 354

N
Negative frequency, 21, 120
Neutral variable θ, 26
Nonharmonic component, 128, 129

aliased DFT coef�cients , 129
Normed linear space, 65

least-squares approximation, 75
orthogonal sequence, 66

examples, 66, 67
orthonormal sequence, 66

examples, 67, 68
Notch FIR �lter , 294

INDEX 397

Nyquist frequency, 30, 35
Nyquist interval, 30, 35, 103, 119, 158
Nyquist sampling rate, 30, 159, 161, 203

O
Odd functions, 51

Fourier coef� cients
of sine terms, 52, 54

One-sided derivatives, 48
One-sided limits, 46
Orthogonal projections, 63
Orthogonal sequences, 66, 67
Orthogonality

de� ned, 63
examples, 65

Orthonormal sequences, 66�68
Overshoot, 91

P
Pairwise prime factors, 341
Parallelogram theorem, 65
Parseval�s theorem, 67
Periodic convolution theorem, 192

for discrete-time signals, 227
Periodic convolution, discrete, 273

de� nition, 273
equivalent cyclic convolution, 275
with steps illustrated, 276

Periodic extension, 46, 50
Periodic sequence, 230

convolution of, 273
discrete-time sinusoid, 22
Fourier transform of, 229, 244

Periodic signals, 45
Dirichlet�s theorem, 45
Fourier series expansion, 45
jump discontinuity, 46

normalized, 47
least-squares approximation, 61

Periodicity
commensurate frequencies, 12
of sequences, 22

Phase reversal, 21, 120
Piecewise continuous function, 46
Piecewise smooth function, 48, 85, 87
Pointwise convergence, 48, 82

nonuniform, 89

of Fourier series, 85
Poisson sum formula, 195
Prime factor FFT, 341

in-place and in-order, 368, 371
matrix formulation, 348, 350

Projections
de� ned, 72
into subspace, 72

R
Radix-2 FFT

decimation-in-frequency, 319
decimation-in-time, 315

Reciprocity relation, 30
Rectangular window, 239

improper truncation, 243
magnitude spectrum, 246

mainlobe, 246
normalized, 246
sidelobes, 246

of � nite length, 241, 242
spectral properties of, 246

Regular convolution, discrete
by sectioned DFT, 273
of two � nite sequences, 267

with steps illustrated, 269
Relative primality, 354
Riemann integrable, 47
Riemann integral

properties of, 82
Riemann�s lemma, 77, 78

used in examples, 78, 79
Ruritanian index map, 343, 366

S
Sampled composite signals, 123

common period, 123
Sampling rate, 30, 239

determination of, 122, 123
fundamental interval, 30
Nyquist frequency, 30
Nyquist interval, 30

Sampling theorem, 160, 161, 207
Sawtooth function, 46
Scrambled input

for unordered FFT, 337
Sifting property

398 INDEX

of impulse function, 187, 188
Sinc function, 161, 168, 171, 176, 180�

182
de� nition, 160

Sine modes, 6, 25
Sinusoidal function, 11, 13

sampled sequence, 21, 22
Spatial variable, 25
Spectral analysis, 23
Spectral decomposition, 23
Spectral windows, 100, 102

for Fejer kernel, 101
for Lanczos smoothing, 102

Spike, 186

T
Temporal variable, 25
Time-domain plots, 5, 7�9
Time-grid spacing, 30

reciprocity relation, 30
Time-limited function, 50

almost time-limited, 179
periodic extension, 50
protracted, 50

Triangular window, 247
Fourier transform of, 248

normalized, 248
magnitude spectrum, 248

Twiddle factor, 314
exponent of, 314, 315

U
Uncertainty principle, 162
Undershoot, 91
Unit impulse function, 186

convolution with, 194
Fourier transform of, 188

V
von Hann window, 248

Fourier transform of, 249
normalized, 249

magnitude spectrum, 250

W
Wavelength, 25
Weighted impulse train, 202, 211
Window characteristics

a summary, 252
Windowed DFT

applications of, 252
Windowed sequence

DFT of, 239
zero padding of, 264

Windows, 239
Bartlett, 247
Blackman, 251
Hamming, 250
rectangular, 239, 241
triangular, 247
von Hann, 248

Z
Zero padding

the DFT, 141
the signal, 134, 264

Zero-phase-shift � lter, 293

