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Preface

Thetopicsin this book were selected to build a solid foundation for the application of Fourier
analysisin the many diverging and continuously evolving areasin the digital signal processing
enterprise. While Fourier transforms have long been used systematically in electrical engi-
neering, the wide variety of modern-day applications of the discrete Fourier transform (DFT)
on digital computers (made feasible by the fast Fourier transform (FFT) algorithms) motivates
peoplein all branches of the physical sciences, computational sciences and engineeringto learn
the DFT, the FFT agorithms, as well as the many applications that directly impact our life to-
day. To understand how the DFT can be deployed in any application area, one needs to have
the core knowledge of Fourier analysis, which connects the DFT to the continuous Fourier
transform, the Fourier series, and the all important sampling theorem. The tools offered by
Fourier analysis enable usto correctly deploy and interpret the DFT results.

This book presents the fundamentals of Fourier analysis and their deployment in signal
processing by way of the DFT and the FFT algorithmsin alogically careful manner so that the
text is self-contained and accessible to senior undergraduate students, graduate students, and
researchers and professionals in mathematical science, numerical analysis, computer science,
physics, and the various disciplines in engineering and applied science. The contents of this
book are divided into two parts and fourteen chapters with the following features, and the cited
topics can be selected and combined in a number of suggested waysto suit one sinterest or the
need of arelated course:

e From the very beginning of the text alarge number of graphical illustrations and worked
examples are provided to help explain the many concepts and relationships; a detailed table
of contents makes explicit the logical arrangement of topics in each chapter, each section, and
each subsection.

e Readers of this book are not required to have prior knowledge of Fourier analysis or
signal processing. To provide background, the basic concepts of signals and signal sampling
together with a practical introduction to the DFT are presented in Chapters 1 and 2, while the
mathematical derivation of the DFT is deferred to Chapter 4.

e The coverage of the Fourier seriesin Chapter 3 (Sections3.1  3.8) is self-contained, and
its relationship to the DFT is explained in Section 3.11. Section 3.9 on orthogonal projections
and Section 3.10 on the convergence of Fourier series (including a detailed study of the Gibbs
phenomenon) are more mathematical, and they can be skipped in the rst reading.

e The DFT isformally derived in Chapter 4, and athorough discussion of the relationships
between the DFT spectra and sampled signals under various circumstances is presented with
supporting numerical results and graphical illustrations. In Section 4.7 | provide instructional
MATLAB®?! codes for computing the DFT formulas per se, while the fast algorithms for

IMATLAB is aregistered trademark of The MathWorks, Inc.
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computing the DFT are deferred to Part |1 of the book.

e The continuous Fourier transform is introduced in Chapter 5. The concepts and results
from Chapters 1 through 3 are used here to derive the sampling theorem and the Fourier trans-
form pair. Worked examples of the Fourier transform pair are then given and the properties of
Fourier transform are derived. The computing of Fourier transform from discrete-time sam-
plesisinvestigated, and the relationship between sampled Fourier transform and Fourier series
coef cientsisalso established in this chapter.

e Chapter 6 is built on the material previously developed in Chapters 3 and 5. The topics
covered in Chapter 6 includethe Dirac deltafunction, the convol ution theorems concerning the
Fourier transform, and the periodic and discrete convol ution theorems concerning the Fourier
series. | then show how these mathematical tools interplay to model the sampling process and
devel op the sampling theorem directly.

e With the foundations laid in Chapters 1 through 6, the Fourier transform of an ideally
sampled signal is now formally de n ed (in mathematical terms) in Chapter 7, which provides
thetheoretical basisfor appropriately constructing and deploying digital signal processing tools
and correctly interpreting the processed results in Chapters 8 through 10.

e In Chapter 8 the data-weighting window functions are introduced, the analysis of the
possibly distorted DFT spectra of windowed sequences is pursued, and the various scenarios
and consequencesrelated to frequency detection are demonstrated graphically using numerical
examples.

e Chapter 9 covers discrete convolution algorithms, including the linear convolution algo-
rithm, the periodic (and the equivalent circular or cyclic) convolution algorithm, and their im-
plementation viathe DFT (computed by the FFT). The relationship between the chirp Fourier
transform and the cyclic convolution is also established in this chapter.

e The application of the DFT in digital Itering and ltersisthe topic of Chapter 10. The
Gibbs phenomenon is also revisited in this chapter from a  Itering viewpoint.

e Since the FFTs are the fast algorithms for computing the DFT and the associated con-
volution, the Fourier analysis and digital Itering of sampled signalsin Part | of the book are
based solely on the DFTs, and Part 11 of the book is devoted to covering the FFTs exclusively.
While Part Il of this book is self-contained, the material in Chapters 11 through 13 is more
advanced than the previous book:

Eleanor Chu and Alan George, Inside the FFT Black Box: Serial and Parallel
Fast Fourier Transform Algorithms, CRC Press, 2000.

e In Chapter 11 the many ways to organize the mixed-radix DFT computation through
index mapping are explored. This approach alows one to study the large family of mixed-
radix FFT algorithms in a systematic manner, including the radix-2 special case. While this
chapter can beread on its own, it also pavesthe way for the more specialized prime factor FFT
agorithms covered in Chapter 13.

e |n Chapter 12 a connection is established between the multi-factor mixed-radix FFT
algorithms and the Kronecker product factorization of the DFT matrix. This processresultsin
a sparse matrix formulation of the mixed-radix FFT algorithm.

e In Chapter 13 the family of prime factor FFT algorithms is presented. To cover the
mathematical theory behind the prime factor algorithm, the relevant concepts from elementary
number theory concerning the propertiesof integersareintroduced, and the Chinese Remainder
Theorem (CRT) is proved, because CRT and CRT-related index maps are responsible for the
number-theoretic splitting of the DFT matrix, which givesrise to the prime factor algorithm.
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e Chapter 14 provides full details of the mathematics behind Bluestein s FFT, which isa
(deceptively simple) fast algorithm for computing the DFT of arbitrary length and is partic-
ularly useful when the length is a large prime number. The MATLAB® implementation of
Bluestein sFFT isgiven, and numerical and timing results are reported.
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Chapter 1

Analytical and Graphical
Representation of Function
Contents

Our objective in this chapter is to introduce the fundamental concepts and graphical tools for
analyzing time-domain and frequency-domain function contents. Our initial discussion will
be restricted to linear combinations of explicitly given sine and cosine functions, and we will
show how the various representations of their frequency contents are connected to the Fourier
series representation of periodic functionsin general.

1.1 Time and Frequency Contents of a Function

Let us consider afamiliar trigonometric function z(¢) = 5 cos(2nt). By plotting x(t) versust
over theinterval 0 < ¢ < 4, one obtains the following diagram.

Figure 1.1 A time-domain plot of x(t) = 5 cos(2nt) versust.

10

Function x(t)

D‘,S ‘l 15 2 25
Time Variable t

The graph is the time-domain representation of x(¢). We observe that when ¢ varies from
0to 1, theangle § = 27t goesfrom O radiansto 27 radians, and the cosine function compl etes

3



4 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

one cycle. The same cycle repeats for each following timeintervals: ¢ € [1,2], ¢ € [2,3], and
so on. Thetimeit takesfor a periodic function x(¢) to complete one cycleis called the period,
and it isdenoted by T'. Inthis case, we haveT' = 1 unit of time (appropriate units may be used
to suit the application in hand), and z (¢t + T') = z(¢) for ¢t > 0.

While the function z(¢) is fully speci ed in its analytical form, the graph of x(t) reveals
how the numerical function values change with time. Since a graph is plotted from a table
of pre-computed function values, the cont ents of the graph are the numbers in the table.
However, compared to reading a large table of data, reading the graph is a much more conve-
nient and effectiveway to s ee thetrend or pattern represented by the data, the approximate
locations of minimum, maximum, or zero function values. With this understanding, the time-
domain (or time) content of x(¢) (in this simple case) is the graph which plots z(t) versus
t.

For asingle sinusoidal function like z:(t) = 5 cos(27t), one can easily tell from its time-
domain graph that it goes through one cycle (or 27 radians) per unit time, so its frequency is
f = 1. Itis aso apparent from the same graph that the amplitude of z(¢) = 5 cos(2nt) is
A = 5. However, strictly for our future needs, let us formally represent the frequency-domain
(or freguency) content of x(¢) in Figure 1.1 by atwo-tuple (f, A) = (1, 5) in the amplitude-
versus-frequency stem plot given below. The usefulness of the frequency-domain plot will
be apparent in the next section.

Figure 1.2 A frequency-domainplot of x(t) = 5 cos(27t).
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1.2 The Frequency-Domain Plots as Graphical Tools

We next consider afunction synthesized from alinear combination of several cosinefunctions
each with a different amplitude as well as a different frequency. For example, let

x(t) = z1(t) + 22(t) + z3(%)
= Ay cos(2m f1t) — Ag cos(2m fot) + As cos(27 f3t)
= b cos(2mt) — 7 cos(4nt) + 11.5 cos(6mt).
We see that the rst component function x1(t) = 5cos(2nt) can be written as z1(t) =

Ay cos(27 f1t) with amplitude A; = 5, and frequency f; = 1. Similarly, the second compo-
nent function x4 (t) = —7 cos(4t) can be written as x5 (t) = Az cos(27 fot) with amplitude
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Ao = —7 and frequency fo = 2. For x3(t) = 11.5 cos(67t), we have A5 = 11.5 and f3 = 3.
The function x;(¢) was fully explained in the last section. In the case of z5(t), the cosine
function completes one cycle when itsangle = 4xrt goesfrom O radiansto 2 radians, which
implies that ¢ changes from 0 to 0.5 units. So the period of z2(¢) isT» = 0.5 units, and its

frequency is fo = T% = 2 cycles per unit time. The expression in the form

xi(t) = Ay cos(2m fit)

thus explicitly indicates that x(¢) repeats fi cycles per unit time. Now, we can see that the
time unit used to express f, will be canceled out when f; is multiplied by ¢ units of time.
Therefore, 8 = 27 fi.t remains dimension-less, and the same holds regardless of whether the
time is measured in seconds, minutes, hours, days, months, or years. Note that the equivalent
expression x(t) = Ay cos(wit) isaso commonly used, where wy, = 2 f, radians per unit
time iscalled theangular frequency.

In the time domain, a graph of the composite z(¢) can be obtained by adding the three
graphs representing x1 (t), z2(t), and xz3(t) as shown below. The time-domain plot of ()
reveals a periodic composite function with a common period T = 1: the graph of x(¢) for
t € [0, 1] isseen to repest four timesin Figure 1.3.

Figure 1.3 Time-domain plots of x(¢) and its components.

20 x, (t) = 5cos(2nt) 20 X, () = ~7cos(4nt) 20 X,(t) = 11.5cos(6nt
10 10 10
-10 -10 -10
-20 -20 -20

0 2 4 0 2 4 0 2 4

20 X(t) = 5cos(2nt) — 7cos(4nt) + 11.5cos(6mt) i

In the frequency domain, suppose that the two-tuple (f%, Ax) represents the frequency
content of x(¢), the collection {(f1, A1), (f2, A2), (f3, A3)} de nesthe frequency content of
x(t) = x1(t) + z2(t) + x3(t). Note that when z(¢) is composite, we speak of the individual
frequencies and amplitudes of its components and they collectively represent the frequency



6 CHAPTER 1. REPRESENTATION OF FUNCTION CONTENTS

content of z(t). The frequency plot of z(t) is obtained by superimposing the three component
stem plots as shown in Figure 1.4.

Figure 1.4 Thetime and frequency-domain plots of composite z(t).
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Now, with the time-domain plot and the frequency-domain plot of x(¢) both available, we
see that when z(t) is composite, the frequency content of z(¢) can no longer be deciphered
from the time-domain plot of x(¢) versust one cannot visually decompose the graph of x(t)
into its component graphs. The reverseis also true: the time-domain plot shows the behavior
of z(t), which cannot be inferred from the frequency plot alone. Therefore, the time-domain
and the frequency-domain plots are both needed, and they carry different but complementary
information about the function z(t).

1.3 ldentifying the Cosine and Sine Modes

In general, afunction may have both sine and cosine components, and the two modes must be
explicitly identi ed in expressing the frequency content. For the previousexample, thefunction
z(t) = ZZj Ay, cos 27 fi.t has three cosine components, so each two-tuple in its frequency
content {(f1, 41), (f2, A2), (f3, As)} implicitly represents the amplitude and the frequency
of a pure cosine mode, and they are shown together in a single frequency plot. However, the
function y(t) below consists of two cosine and three sine components,

y(t) = 5.3 cos(4nt) — 3.2sin(67t) — 2.5 cos(14nt) — 2.1 sin(4nt) + 9.5 sin(8xt),

so the subset of two-tuples {(2,5.3), (7, —2.5)} and its stem plot represent its pure cosine
mode, whereas the other subset of two-tuples{(2, —2.1), (3, —3.2), (4,9.5)} and a separate
stem plot represent its pure sine mode. When we alow zero amplitude and use the same
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range of frequenciesin both modes, we obtain the following expression:

n

(1.1) y(t) = > Agcos(2m fit) + By sin(2m fit).
k=1

The frequency content of y(t) can now be conveniently represented by a set of three-tuples
{(f1,A1, B1), (f2,A2,B2),...,(fn, An, Bn) }, with the understanding that A, is the ampli-
tude of a pure cosine mode at frequency fi, and By, is the amplitude of a pure sine mode at
fr. We still need two separate stem plots: one plots A, versus fi, and the other one plots
By, versus fi.. The time-domain and frequency-domain plots of the sum of eleven cosine and
eleven sine component functionsare shown in Figure 1.5, wherefor 1 < k < 11, f = k, with
amplitudes0 < Ay <2 and 0 < By < 3 randomly generated. The time-domain plot of z(t)
again reveals a periodic composite function with a common period 7' = 1; the graph of x(t)

fort € [0, 1] is seen to repeat four timesin Figure 1.5.

Figure 1.5 An example: the sum of 11 cosine and 11 sine components.
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1.4 Using Complex Exponential Modes

By using complex arithmetics, Euler sformulae’? = cos 6 + j sin 6, where j = /—1, and the

resulting identities
el +e=19 ed? — e=19

‘9:7 1 9:7
cos 5 , sin 5 ,
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we can express y(t) in terms of complex exponential modes as shown below.

(1.2)

t) = Z Ay cos(2m fit) + By sin(27 fit)
k=1

n J27 frt —j2m fit J2mfrt _ o—j2m fit
Z Ay c Te + By, c .e
2 27

(Ak_.]Bk> 327'rfkt+ (Ak+jBk>e—j27rfkt
2

:H

A i B
ZXke””fkt + X el I, (Note Xan= TR f = —fk)
k_

X0+ Z X2t x et St (Note: theterm X, = 0 is added)
k=1

n
Z XkejZﬂfkt.

k=—n

When the complex number X, is expressed in rectangular coordinates as
(Re(X1x),Im(X4x)), the frequency contents of y(¢) are commonly expressed by two sets
of two-tuples: (fir, Re(X1x)) and (fik,!m(X4iy)). The example in Figure 1.5 is shown
again in Figure 1.6 using the exponential mode. When comparing the two gures, note that
Re(Xik) = Ak/2 and Im(Xik) = :FBk/Q.

Figure 1.6 Time plot and complex exponential-mode frequency plots.
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Notethat in order to simplify the termsin the summation, we have added the term X, = 0,
andfor1 < k < n,wehavede ned
Ay — jBy A+ jBy

p o Nk =T

In the present context, since the negative frequencies are simply the consegquence of applying
trigonometric identities in our derivation of an alternative mathematical formula, they do not
change the original problem. For example, if one uses the identity cos(6x) = cos(—0x), when
0 = 2w fit, —0 = 2w (— fi)t occurs, and it causesthe presence of negativefrequency — fi.
(Note that a nonzero X, = Xoe/?"fot term at f, = 0 models a DC (direct current) term in
electrical circuit applications.)

Alternatively we may expressthe complex amplitude X 4, using polar coordinates, namely,

(13) Xy = s fek=—fr, ad w_j = —wp = 27 fj.

Xk = |Xk|ej¢k = |Xk| (COS(bk —I—jsingbk),

(1.4)
X = [ Xogle’?* = | X_k| (cos ok + jsing_y),
where
A2 1 B2 , _
X an| = % with each ¢, chosen to satisfy both
Ap, FB

CoS i) = \/m, sin gy, = \/m
Note that each angle ¢, is unique in the quadrant determined by the rectangular coordinates
(Ak, FBy) of the complex number 2X},. In Figure 1.7, the frequency plots show | X 1| and
¢+ versus fii. In the next section we show that ¢, may also be interpreted as the phase
shift angle.

1.5 Using Cosine Modes with Phase or Time Shifts

Instead of separating the pure cosine and pure sine modes, we may use a pure cosine mode
combined with phase shift angles, whichisrepresented by asingle set of three-tuples( fx, ¢x, D)
asde ned below.

y(t) = Z Ay, cos(2m fit) + By sin(27 fit)

~ Ay By, .
2 2 < S
g A7 + B; < : 2 cos(27 fit) + 2 3 bln(2ﬂ'7kt)>

(15) k=1 :
= Z Dy (cos ¢y, cos(27 fiit) + sin ¢y, sin(27 fit))

where

S . A .- B
Dk — \/m’ with ¢k SatISfylng both cos st = Fi and S11 ¢k = F:
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Figure 1.7 Time plot and complex exponential-mode frequency plots.
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Therefore, each component function y(¢) may aways be interpreted as a pure cosine mode
shifted by a phase angle of ¢;, radians.

The phase shifts may beinterpreted as t ime shifts by rewriting Equation (1.5) as

y(t) =Y Dicos(2mfit — o)
k=1

S ¢
(1.6) = ,; Dy, cos (27rfk <t - 271_]}]6))

- ng cos (2#;]~C (t— 27rq(5;k))) : ( = Tik)

When it is known that the fundamental frequency f; = % and that fr, = kfy =
1 < k < n, Equation (1.6) is commonly presented with time shifts ¢;, de ned below.

k
7 for

@7 y(t) = ka cos (27r% (t — tk)> , Wheret, = O

= 2m ()

Since 2| Xy| = v/A? + B}, whichisequal to | Dy| in Equations (1.6) and (1.7), we imme-
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diately obtain the following relationship.

- j —j2m A | B
y(t) = ZXkeJ%rfkt +X71i2 fkt’ where X, ), = M7 = —

2
k=1
(1.8) = Z 2| X1 | cos(27 fut — br)
k=1
- k . k i
= 2| X| cos (27r— (t — tk)) i fr ==, andt, = .
kZ:l T T 2 (£)

Remark 1 In the literature any function of the form
(1.9 f(t) = Dy sin(27 fit + or.),

where Dy, fi and ¢, arereal constants, issaid to be sinusoidal. Using the trigonometric
identity
cos(9 — %71’) = cosf cos %W + sin f sin %W =sinf

with § = 27 fi.t + ¢4, we can also express (1.9) as a cosine function:
f(t) = Dy sin(27 fxt + ¢r) = Dy cos(27rfkt + ¢r — %W)
Hence, asinusoidal function can be written in two formswhich differ by %w in the phase

angle:

(1.10) Dy sin(27 fut + ¢r) = Dy cos(2m fit + ¢r), Where dp = ¢y — %w.

In particular, both sin(2 ft) and cos(27 fxt) are sinusoidal functionsby thisde nition.
Remark 2 Any component function of the form
(1.11) gi(t) = Ag sin(2r fit) + By, cos(27 fit)

is said to be a sinusoidal component, because we have shown at the beginning of
this section that it can be expressed as g (t) = Dy, cos (2 fit — ¢, With Dy, and ¢y,
determined by Ay and Bj.

Remark 3 The easiest way to add two or more sinusoidal functions of the same frequency is
provided by form (1.11). For example, given f(t) = 5sin(1.2¢)+2 cos(1.2t) and g(t) =
sin(1.2t) + cos(1.2t), we obtain the sum by adding the corresponding coef cients:

h(t) = f(t) + g(t) = 6sin(1.2t) + 3 cos(1.2¢).

Therefore, the sum of two or more sinusoidal functions of frequency f% isagain asinu-
soidal function of frequency fx.

Remark 4 Be aware that sinusoidal functions may be given in disguised forms: e.g., f(t) =
sin(1.1t) cos(1.1¢) is the disguised form of the sinusoidal f(t) = 1 sin(2.2t); g(t) =
1 — 2sin® t isthe disguised form of the sinusoidal g(t) = cos 2t.
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1.6 Periodicity and Commensurate Frequencies

Recall that when we present the frequency-domain plots for speci ¢ examples of

y(t) = Z Ay cos(27 fit) + By sin(27 fit),
k=1

we have let f;, = k cycles per unit time, and we plot the amplitudes A, and By, versus k. In
such examples we automatically have uniform spacing with A f = frr1 — fr = 1, and we
have fi, = kf1 with fi = 1 being the fundamental frequency. Since the time period T' of
composite y(t) is the shortest duration over which each sine or cosine component completes
an integer number of cycles, we determine 7" by the LCM (least common multiple) of the
individual periods. From f;, = kf; and T}, = 1/ f, weobtain Ty = kTy,, so T isthe LCM of
the individual periods. Accordingly, the time period T' of the composite y(t) is the reciprocal
of the fundamental frequency fi. Note that f; isthe GCD (greatest common divisor) of the
individual frequencies.

In general, fr # k, and we need to distinguish periodic y(¢) from non-periodic y(t) by

examining its frequency contents. The conditions and results are given below.

1. The function y(t) is said to be a commensurate sum if the ratio of any two individual

periods (or frequencies) is a rational fraction ratio of integers with common factors
canceled out.

Example 1.1 Thefunction
y(t) = 4.5 cos (2m fat) + 7.2 cos (2 fgt) = 4.5 cos (1.27t) + 7.2 cos (1.87t)

is acommensurate sum, because f, = 0.6 Hz, fg = 0.9 Hz, and theratio f./fs = 2/3
isarational fraction.

. A commensurate y(t) is periodic with its fundamental frequency being the GCD of the

individual frequencies and its common period being the LCM of the individual periods.

Example 1.2 We continuewith Example 1.1: the fundamental frequency of thefunction
y(t) = 4.5cos(1.2nt) + 7.2 cos (1.87t) is f, = GCD(0.6, 0.9) = 0.3 Hz; and the
fundamental period isT, = 1/f, = 3% seconds. We get the same result from 7, =
LCM (55, 55) = LCM (3, &) = 31, Itcanbeeasily veri edthat y(t + T,) = y(t).

Example 1.3 When f, = k/T, the fundamental frequency is f; = 1/T, and the com-
posite function

2wkt 4 Busi 2wkt
oy 2Tkt
T kST

y(t) = Z Ay, cos
k=1
is commensurate and periodic with common period T, i.e.,, y(t + T') = y(t). Since we
have uniform spacing A f = fr+1 — fx = 1/T, we may still plot A, and By, versus k
with the understanding that % is the index of equispaced f}; of course, one may plot Ay
and By, versusthe valuesof f if that isdesired. (Notethat f, = k/T = kif T'=1.)
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3. A non-commensurate y(t) is not periodic, although all its components are periodic. For
example, the function
y(t) = sin(27t) + 5 sin(2v/37t)

is not periodic because f; = 1 and f, = /3 are not commensurate.

1.7 Review of Results and Techniques

In the preceding sections we show that a sum of sinusoidal modes can be expressed in a num-
ber of ways. While the various formulas are mathematically equivalent, one form could be
more convenient than another depending on the manipulations required for a particular appli-
cation. Also, it is not uncommon that while one formis more suitable for describing a physical
problem, another form is more desirable for a computational purpose. These formulas are
summarized below.

Form 1 Using pure cosine and sine modes

(1.12) y(t) = Ak cos(2m fyt) + By sin(2m fit).
k=1

If the angular frequency wy = 2 f}, isused, we obtain

(1.13) y(t) = Ag cos(wit) + By sin(wgt).

k=1
A common case: when y(t) = y(t+T') with f, = k/T, thisfact isexplicitly recognized
by expressing

(1.14) y(t) = Ay, cos 2mkt + By, sin 27T—kt
T T
k=1
Form 2 Using complex exponential modes
(1.15) y(t) = Y Xpel? it
k=—n

Form 3 Using cosine modes with phase shifts

(1.16) y(t) = Dy cos(2mfit — r.).
k=1
Form 4 Using cosine modes with time shifts

n

(1.17) y(t) = Dy cos(2m fi (t — tr)).
k=1
Form 5 Using complex exponential modes with phases

n

(1.18) y(t) = Y (IXple??r)er? /et

k=—n
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A reminder: Thede nitions f;, = T% and wy, = 27 f;, may be used to express y(¢) in terms of
T}, (individua period) or wy, (individual angular frequency) inall forms. Also, when f, = k/T,
this fact is commonly recognized wherever fj isused.

To convert one form to another, one may use the relationship between the coef cients as
summarized bel ow.

Relation 1 Den e Xy = 0 when Ay and By aremissing. For 1 < k < n,

_ Ay F jBy

Xig 5 ;

and f_j = — f-

Relation 2

Xon| = VA2 + B?

5 , andthe phaseangle ¢4, satises both

COS ip = L _ FBr
VAL + B} VA + B}
A reminder: ¢y is unique in the quadrant determined by the rectangular coordinates

(Ag, —By,) of the complex number 2X}; ¢_y is uniquein the quadrant determined by
the rectangular coordinates (A, By) of the complex number 2X _.

and sin ¢4 =

Relation3 For1 < k < n,

Dy = \/A? + B} = 2| X4|, tx = ﬂv where ¢y, = ¢_j..
27 fx

Relation 4 For1 < k <n,

A =X+ X_ = 2Re(Xk); By = ](Xk — X_k) = —2Im(Xk)

We aso identify the mathematical techniques used in deriving the various results in this
section:

Technique 1 Euler sidentity in threeforms:

_ ] O _ =30
el = cosf + jsinf, cosh = i, and sinf = i
2 27
Examples of future use:
e Prove S et = Sm("i*;” (Chapter 3, Section 3.10.2, page 84)
he—n Sin 3
e Prove > e dg = 2m. (Chapter 3, Section 3.10.2, page 85)
T k=—n
T o 1 0
e Prove / w d6 = 2. (Chapter 3, Section 3.10.2, page 85)
—r sin 35

2

e Prove

fo ,
L / ei2nft gp — SM2TSel - opoter 5, Example 5.4, page 171)
2fc —fe 27cht
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Technique 2 Trigonometric identities and their alternate forms:

cos(a =+ ) = cosacos § F sin asin 3, sin(a + ) = sinacos § & cos asin 3,
cosacosff = cos(a + f) ; cos(a — ) ; sinacos f = sin(a + f) 'g sin(a — f3) 7
sin avsin § = cos(a — ) ; cos(a + f3) . cosasinf = sin(a + G) ; sin(a — ) .

Examples of future use:
e Letting o = 8, weimmediately have the useful identities

cos 2 = cos? o — sin? a, sin2a = 2sinacosq;

14 cos2a . 9 1 —cos2a

2
cos” a = sin a =
2 ’ 2

e Letting o = m# and 5 = n#b, it is straightforward to apply the identities given
above to prove the following results for future use.

. 0, ifm+#n;
(1.19) / cosmfcosnfdf =, ifm=mn#0;
o 27, ifm=n=0.
- 0, ifm#mn;
(1.20) / sinmf@sinnfdd = ¢ 7w, ifm=n#0;

0, ifm=n=0.

(1.22) / cosm@ sinnf df = 0.

—T

1.7.1 Practicing the techniques

To practice the techniquesin nontrivial settings, we show how to manipul ate some trigonomet-
ric series encountered in Fourier analysisin the examples that follow.

Example 1.4 Derivethefollowing identity:

sin® né

sinf ’

(1.22) z": sin(2¢ —1)0 =
=1

and show that this identity is valid at # = 0 by the limit convention. (When this convention is
used, the value of a function at a point where a denominator vanishes is understood to be the
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limit, provided thislimitis nite.)
o sing Y " sin(20 - 1)0
=1
= sin? A + sinfsin 36 + sinfsin 50 + - - - + sin Hsin(2n — 1)6
1—cos26 cos20 —cos4f  cos4f — cos66 cos(2n — 2)6 — cos(2n)6
+ ot

T2 2 i 2 o 2
_ 1 cos26 , cos 20 cos46 R cos(2n — 2)0 n cos(2n —2)6  cos(2n)f
2 2 2 2 2 2 2
1-— 2n6 .
= # (only the rst term and the last term remain)
= sin®né. (recall sin®a = 1(1 — cos2a))
n .2
0
Y sin(2e - 19 = 7

sin 6

When 6 = 0, since the right side is in the indeterminate form 0/0, we apply L Hospital srule
to determine the limit:
sin? nd . 2nsinncosné

im — = lim =2nsin0 = 0.
6—0 sin@ 6—0 cos

Hence the two sides are equal at & = 0 by the limit convention.

Example 1.5 Using Euler sidentitye?® = cos® + jsin 6, the nite sum of ageometric series
inz=e%#£1,ie,

(1.23) i 2t =

£=0

1— Z77,+1
11—z
and the complex arithmetic identity

(1.29) c+jd (c+jd)(a—jb) ac+bd  ad—bc
' atib  (atjb)a—jb) a2+ ‘et

determine the closed-form sums of the following cosine and sine series:

n

(1.253) Zcos€9:1+cos9+~--+cosn0 =7
£=0
(1.25b) Z sinff = sinf +sin20 + - - - 4+ sinnf =7
=1

By letting z = ¢’ in the left side of (1.23), we identify the cosine series (1.25a) and the sine
series (1.25b) as the real and imaginary parts:

ize = ieﬂe icosf@—i—jsin[@ = icosw—i—jisinéﬁ. (. sin0=0)

£=0 =0 £=0 =0 /=1
By letting z = €77 in theright side of (1.23), we express

L—2ntt 10 {1 —cos(n+ 1)} — jsin(n + 1)0
1.26 = T = =U+av
(1.26) 1_ 2 1 — edf (1 —cosf) — jsinf i
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Accordingly, thereal part U represents the cosine series, and the imaginary part V' represents
the sine series. To expressU and V' in (1.26), we use identity (1.24) with ¢ = 1 — cos(n + 1)6,
d=—sin(n+1)8,a =1—cosf,andb = —sin6:

{1 —cos(n+1)8}(1 — cosf) + sin(n + 1)#sinf

U
(1 —cosf)? +sin 6

~ 1 —cos(n+1)f — cosf + {cos(n +1)0 cos@ + sin(n + 1)@sin 6}

- — 2cosf + {cos? 8 4 sin
(1.27) 1—2cosf 20 20

~ 1—cos(n+1)f§ —cosf + cos((n+1)0 —0)

B 1—2cosf+1

_ 1 —cosf +cosnf —cos(n+1)0

B 2 —2cosf ’

—(1 —cos8)sin(n +1)0 + {1 — cos(n + 1)8; sin
Vv 0 0 0 0

B (1 —cosf)? +sin 6

~ {sin(n +1)0 cos 6 — cos(n +1)fsin 0} — sin(n + 1)0 + sin
(1.28) B 1—2cosf + {cos? 6 +sin* 6}

B sin((n + 1) — 6) — sin(n + 1)0 + sin g

N 1—2cosf+1

_sin® +sinnf —sin(n + 1)0

2 —2cosf '
We have thus obtained
- 1 —cosf +cosnfl — cos(n+ 1)
(1.29) Z; coslf = Yy ;
i sin 0 + sinnf — sin(n + 1)6

1.30 0 = .
(1.30) ;sm 2 —2cosf

Example 1.6 Derive the trigonometric identity
sin(n + 1)6

1 )
2sin 50

1 n
1.31 — s 00 =
(1.31) 5 + ; cos (0

and show that it isvalid at & = 0 by the limit convention.

Beginning with the identity (1.29), we obtain

J— 1 —cosf +cosnfl —cos(n+1)§ 1
§+;COS€9_ 2 —2cosf 2

_ 2sin? %6‘+COS((7L+%) —%9)—cos((n+%)6‘+%6‘) _l
4sin” 16 2
_ 2in? %9—!— 2sin(n—|— %)Gsinéﬂ B 1
4 sin? %6‘ 2
B sin %9+sin(n+%)6‘ 1
a 2sin 16 2

sin(n + %)0

1
2sin 50
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At 6 = 0, because cos €0 = cos0 = 1 for 1 < ¢ < nintheleft side, thesumisn + 1. Here
again the right side is in the indeterminate form 0/0, we apply L Hospital s rule to determine
the limit: . . )
sin(n + 3)0 + 3)cos(n+ 3)0
im 51“(7 12) — lim (n 2)‘3051(” 2) —n
9—0  2sin 50 6—0 cos 50

N~

Hence the two sides are equal at & = 0 by the limit convention.

Example 1.7 Show that

n

2 1
os( m+ 1)¢m

1.32 =1.
(1.32) 2 —
If welet 0 = (2241) in the geometric series (1.23), the numerator in the right side can be
further simpli ed :

iejfe _ 1— ej(n—&-l)e

1 —ed®
=0
2 .
— = 2m+1 Jj(n+1)6 _ -1

(133) 1—C050—jsin9 ( ( n+1 )Tr ¢ )

2(1 —cos@+jbin0)
(1 —cosf)? + sin? @

2 —2cosd ) 2sind
{1—2c059+1]+ [1—2(:0304—1}

Recall from Example 1.5 that the real part of the series (1.33) represents the cosine series, we
have thus proved the desired result:

—2cost

@2m+1)m
2—20056‘

If 0 =
o n+1

, then ZCO&ZG =
=0

Example 1.8 Show that, if the nonzero integer m is not amultiple of n + 1, we have

(1.34) Z coS (2m)én =0.

Weagain let § = (%) in the geometric series (1.23), we have

n 06 1— ej(n+l)0
; C T T e
(135) 0 m j(n+1)0
T 1t (0= (Z)m o =1
=0.

Example 1.9 Show that the following alternative expressions for the nite sum of the sine
series can be obtained from identity (1.30) in Example 1.5.

n 19 _ cos g
(1.36) 3 sintp = £52 ‘?051(” )0,
= 2sin 50
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n+1 A
e )9 sin 560

1
sin 50

(1.37) S sin g = sin(
=1

To derive the two mathematically equivalent results, we continue from (1.30):

n

Z sin 00 sin 0 + sinnf — sin(n + 1)6

o 2 — 2cosf
_ 2sin 30 cos 30 +sin ((n+ 3)0 — 36) —sin ((n+ 3)0 + 36)
- 4 sin? %0
_ 2sin 30 cos 30 — 2 cos(n + 3)6 sin 360
- 4 sin? %9
<10 _ cos 1
_ cos 30 §Obl(n +3)0 (thisisthe desired resut (1.36))
2sin 50
con(2 = 3)0—eos(252 4 )0
o 2 sin %9
in(2t1)0sin 20
_ w (thisis the desired result (1.37))
sin 50

1.8 Expressing Single Component Signals

Since many puzzling phenomena we encounter in analyzing or processing composite signals
can be easily investigated through single-mode signals, they are indispensable tools in our
continued study of signal sampling and transformations, and it pays to be very familiar (and
comfortable) with expressing a single-mode signal in its various forms. Although we can
formally put such asignal in one of the standard forms (with a single nonzero coef cient) and
apply the full-force conversion formulas, it is much easier to forgo the formalities and work
with the given signal directly, as demonstrated by the following examples.

Example 1.10 f(t) = cos(27f.t) = cos(807t) isa40-Hertz sinusoidal signal, its amplitude
isA =10, itsperiodisT = 1/f, = 1/40 = 0.025 seconds, and it has zero phase. We express
f(t) in the complex exponential modes by applying Euler sformuladirectly:

f(t) = cos(80mt) = = (&30 + 7789} = 0.5 77807 4 (.57507F,

N~

Thedifferencebetween f(t) given aboveand ¢(t) = sin(80xt) liesin the phase angle, because
thelatter can be rewritten asashifted cosinewave, namely, g(t) = cos(807t—m/2). The phase
can also be recognized directly from expressing g(¢) in the complex exponential modes:

1. . . .
g(t) — sin(807rt) — 2_]_(6]807715 _ 673807rt) _ (0.5_7.)67]807# + (_0'5]')6]80711.

= (05677 (0562

The coef cients +0.5;5 each has nonzero imaginary part, which re ects anonzero phasein the
signal. The polar expression +; = e*77/2 reveals the phase explicitly.
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Example 1.11 For h(t) = 4 cos(7nt + ), we have

h(t) = 4cos(Trt + o) = %(ej(”t“") + eI (Tt Ha))
_ (2e—ja)e—j77rt + (2€ja)€j7ﬂt.

Observe that when the phase a # 0,7, the coef cients 2e*7® = 2(cosa + jsina) have
nonzero imaginary part.

For u(t) = 4sin(7nt+3), we may apply Euler sformuladirectly to the given sine function
to obtain

4 .
u(t) = 4sin(7rt + B) = % (e/(TmHB) =i (TrtHB))
J

= (2je77)e I 4 (—2je?P) el
— (9¢—i(B—7/2)) p—iTnt J(B—7/2)) piTrt
( e )e + (26 )e .

The same expression can also be obtained if we use the result aready available for u(t) =
4cos(7Tm + o) witha = 8 — /2.

Example 1.12 For v(t) = 3 cos(157t) cos(357t), be awarethat it hides two cosine modes. To
bring them out, we use the trigonometric identity for cos a.cos 3 (given under Technique 2 in
the previous section) to obtain

v(t) = 3 cos(157t) cos(35mt) = 1.5(cos(15 + 35)mt + cos(15 — 35)mt)
= 1.5(cos 507t + cos 207t)

= 1.5e77%07t | 1 59207t | 1 5i20mt 4 1 5eIB0TE,

The two cosine modes may also be disguised as s(t) = 3 sin(157t) sin(357t), and they can
again be obtained using the trigonometric identity for sin o sin 5 (given under Technique 2 in
the previous section):

s(t) = 3sin(15mt) sin(357t) = 1.5(cos(15 — 35)7t — cos(15 + 35)mt)
= 1.5(cos 207t — cos 507t

= —1.5e7 70T 4 1.5e 77297 4+ 1.5¢7207" — 156770,

1.9 General Form of a Sinusoid in Signal Application

When a cyclic physical phenomenon is described by a cosine curve, the general form used in
many applications is the cosine mode with phase shift angle (or phase in short)

(1.38) x(t) = Dy cos(27 fot — da),

where the amplitude D,,, frequency f,,, and phase ¢, (in radians) provide useful information
about the physical problem at hand. For example, suppose that it is justi able to model the
variation of monthly precipitation in each appropriately identi ed geographic region by a co-
sine curve with period T, = 1/f, = 12 months, then the amplitude of each tted cosine
curve predicts the maximum precipitation for each region, and the phase (converted to time
shift) predicts the date of maximum precipitation for each region. Graphically, the time shift
to, (computed from the phase ¢,,) is the actual distance between the origin and the crest of the
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cosine curve when the horizontal axis is time, because z(t) = D, when 27 f,t — ¢, = 0 is
satised byt =ty = @0 /27 fa.

Note that when a negative frequency f, < 0 appearsin the general form, it isinterpreted
as the result of phase reversal as shown below.

x(t) = Dg cos(2m fot — dq)
=D, cos(—27rfat — da) (- fa =—fa>0)
= D, cos(—(27rfat + ¢a))
= D¢, cos(27 fal + ¢a) (" cos(—0) = cos )

= Do cos (27 fat — (—¢a))-

For example, to obtain the time-domain plot of x(¢) = 2.5 cos(—40nt — 7/6), we simply plot
x(t) = 2.5 cos(40mt — ¢) with ¢ = —x /6 (reversed from 7/6) in the usual manner.

1.9.1 Expressing sequences of discrete-time samples

When the sinusoid z(t) = D, cos(27 fot — ¢ ) IS sampled at intervals of At (measured in
chosen time units), we obtain the discrete-time sinusoid

(1.39) xp = x(UAt) = Dq cos(2mfol Nt — ¢g), €=0,1,2,...

Observe that the sequence of discrete-time samples {xq, z1, 22, ... } can aso be represented
by the three-tuple { fo At, ¢, D, }, Where the product of the analog frequency f., (cycles per
unit time) and the sampling interval At (elapsed time between consecutive samples) de nes
the digital (or discrete) frequency

F. = fo/A\t (cyclesper sample).
Therefore, a discrete-time sinusoid has the general form
(1.40) ¢ = Dy cos(2nF ol — @), £=0,1,2,...

Since f, = F,/At, thedigital frequency can always be converted back to the anal og frequency
as desired. Furthermore, because

Fo = foNt = lfo[(mAt) =mfq <iAt) ,
m m

an m-fold increase (or decrease) in At amounts to an m-fold decrease (or increase) in the
analog frequency, i.e.,

_ F, 1 (F,\ _F, (P,
fﬂ—mm—m@)’ Jr= ﬂgm—m(m)'

Consequently, by simply adjusting At at thetime of output, the same set of digital samplesmay
be converted to analog signals with different frequencies. Thiswill provide further e xibility
in the sampling and processing of signals.

Corresponding to the (analog) angular frequency w, = 2« f, (radians per second), we
have the digital (or discrete) angular frequency W, = 2xTF, (radians per sample); hence, we
may also express the two general forms as

(1.41) 2(t) = Dq cos(wat — b ),
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and

(1.42) 2y = Dy cos(Wol — ¢o), £=0,1,2,...

1.9.2 Periodicity of sinusoidal sequences

While the period of the sinusoid z:(t) = D, cos(27 fot — @) isdwaysT = 1/ f,,, we cannot
say the same for its sampled sequence for two reasons:

1. The discrete-time sample sequence may or may not be periodic depending on the sam-
pling interval At;

2. If the discrete-time sample sequence is periodic, its period varies with the sampling
interval At.

To nd out whether adiscrete-time sinusoid is periodic and to determine the period (measured
by the number of samples), we make use of the mathematical expression for the /th sample,
namely,

¢ = Dy cos(2nFol — ¢o), £=0,1,2,...,

and we recdll that F,, = f,/A\t. We now relate the discrete-time samples represented by the
sequence {x, } to the period of its envelope function

x(t) = Dy cos(27 fot — do)
through the digital frequency F,:

1. If we can express

K
Foz: ozAt:_a
/ N

where K and N are integers (with no common factor), then we have
N = Dg cos(27K — ¢,,),

and zy is positioned exactly at the point where its envelope function z(¢) completes K
cycles, and we may conclude that the discrete-time sample sequence {x,} is periodic
with period T = N samplesm eaningthat 2,y = z,for0 </ < N-—1,and zy = x¢
isthe rst sample of the next period.

2. The sequence {x,} is not periodic if we cannot express its digital frequency F as a
rational fraction.

We demonstrate the different cases by several examples below.
Example 1.13 The discrete-time sinusoid x, = cos(0.0257¢ — 7/6) can be written as
xp = cos(2nFol — w/6)

withF, = 0.025/2 = 0.0125 = 1/80, so the given sequence is periodic with period N = 80
(samples). In this case, we have K = 1, so the N samples are equally spaced over a single
period of its envel ope function.
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Example 1.14 The discrete-time sinusoid g, = cos(0.77¢ + 7/8) can be written as
ge = cos(2wF L + 7/8)

with F, = 0.7/2 = 0.35 = 7/20, so the given sequence is periodic with period N = 20
(samples). In this case, we have K = 7, so the N equispaced samples span seven periods of its
envelope function.

Example 1.15 The discrete-time sinusoid y, = cos(v/37¢) is not periodic, because when we
express
ye = cos(2nFgl),

we haveF 3 = 1/3/2, whichisnot arational fraction.

Example 1.16 The discrete-time sinusoid z; = cos(2¢ + 7/6) is not periodic, because when
We express
zp = cos(2nF £ + 7/6),

we haveF., = 1/m, which isnot arational fraction.

Sampling and reconstruction of signalswill be formally treated in Chapters 2, 5 and 6.

1.10 Fourier Series: A Topic to Come

In this chapter we limit our discussion to functions consisting of explicitly given sines and
cosines, because their frequency contents are precisely de ned and easy to understand. To
extend the denitions and results to an arbitrary function f(t), we must seek to represent
f(t) asasum of sinusoidal modes this processis called Spectral Decomposition or Spectral
Analysis. The Fourier series refersto such a representation with frequencies speci ed at f, =
k/T cycles per unit time for k = 0,1,2,...,00. The unknowns to be determined are the
amplitudes (or coef cients) A and By so that

> 2kt 2kt
1. = A 5 By, si .
(1.43) f@) kZ:O k COS — + By sin T

If we are successful, the Fourier series of f(t) is given by the commensurate sum in the right-
hand side, andwehave f(t+T) = f(t). Thatis, T isthecommonperiodof f(¢)and f; = 1/T
is the fundamental frequency of f(¢). Notethat f(¢) completesone cycle over any interval of
length 7", including the commonly used [—T7/2, T/2].

Depending on the application context, the Fourier series of function f(¢) may appear in
variants of the following forms:

1. Using pure cosine and sine modes with variablet,

o0

A 2wkt 2
(1.44) f@) = 70 + ;Ak cos 7;]{ + By sin Wkt.

T

Note that f(t) has a nonzero DC term, namely, Ay /2, for which we have the following
remarks:
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Remark 1. For & = 0, we have cos0 = 1 and sin0 = 0; hence, the constant term
in (1.43) isgivenby (Ag cos0 + Bpsin0) = Ay.

Remark 2. By conventionthe constant (DC) term in the Fourier series (1.44) is denoted
by %Ao instead of Ay sothat one mathematical formulade nes A;, for al k, in-
cluding &k = 0. The analytical formulaswhich de ne A, and By will be presented
when we study the theory of Fourier seriesin Chapter 3.

A common variant uses 7' = 2L with spatial variable z,

Ao

> mkx k
5 +ZAkC05T+Bk51nH

(1.45) f(z) = T
k=1

Notethat f(z 4+ 2L) = f(x), and acommonly chosen interval of length 2L is[—L, L].

. Using cosine modes with phase shifts,

(1.46) f(t)=Do+Y Dy cos(ZWT’” _ a}k).
k=1

Theindividual terms Dy, cos( 22k — 1) arecalledthe harmonics of f(t). Notethat
the spacing between the harmonic frequenciesisA f = fri1— fi = % Hence, periodic
analog signals are said to have discrete spectra, and the spacing in the frequency domain
isthe reciprocal of the period in the time domain.

. Using complex exponential modes with variable ¢,

(1.47) ft) = i X, ed2mR/ T

k=—o0

Notethat X, = Ag/2 (see above).

. Using pure cosine and sine modes with dimension-lessvariable § = 2t /T radians,

(1.48) g(0) = AO + Z Ay, cos kO + By sin k6.

k=1

Since t variesfrom0to T, § = 2nt/T varies from 0 to 2x, we have g(6 + 27) =
g(0). Note that g(6) completes one cycle over any interval of length 27, including the
commonly used [—, 7].

. Using complex exponential modes with dimension-lessvariable § = 2t /T radians,

(1.49) g(6) = i Xp,elk?,

k=—o0

. In Chapter 5, we will learn that the frequency contents of a nonperiodic function z(t)

are de ned by a continuous-frequency function X (f), and we will also encounter the
Fourier series representation of the periodically extended X (f), which appears in the
two forms given below. A full derivation of the continuous-frequency function X (f)
and its Fourier series (when it exists) will be given in Chapter 5.
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Using pure cosine and sine modes with variable f (which represents the continuously
varying frequency) and bandwidth F', that isto say, f € [-F/2, F/2],

2k f
i

+ by, sin

(1.50) X(f)= i ay, cos 271;f
k=0

Using complex exponential modes with variable f and bandwidth F,

(1.51) X(f)= Y cxe?>™HIF,

k=—o0
Instead of using the variable f € [-F/2, F/2], a dimension-less variable
6 = 2xf/F € [—m, 7] may aso be used in the frequency domain. Corresponding
to the two forms of X (f) given above, we have

(1.52) G(0) = Z ay, cos kO + by, sin k6,
k=0

and

(1.53) GO)= Y cxe’™, wheref € [, ).
k=—o0

Observethat becausethe Fourier series expressionin 8 may be used for both time-domain func-
tion z(t) and frequency-domainfunction X ( f), the dimension-lessvariable ¢ is also known as
aneutral variable. Since the Fourier series expression is signi can tly smpli ed by using the
neutral variable g, it is often the variable of choicein mathematical study of Fourier series.

Thetheory and techniquesfor deriving the Fourier series representation of a given function
will be covered in Chapter 3.

1.11 Terminology

Analog signals Signals continuousin time and amplitude are called analog signals.

Temporal and spatial variables The temporal variable t measures time in chosen units; the
gpatial variable - measures distance in chosen units.

Period and wavelength The period T" satises f(t + 1) = f(t); thewavelength 2L satises
g(x +2L) = g(x).

Frequency and wave number The (rotational) frequency is de ned by % (cycles per unit
time); the wave number isde ned by % (wave numbers per unit length).

Sine and cosine modes A pure sine wave with a xed frequency fj is called a sine mode
and it isdenoted by sin (27 fit); similarly, a cosine mode is denoted by cos(27 ft).

Phase or phase shift It refersto the phaseangle ¢;, (expressed in radians) in the shifted cosine
mode cos(27 fit — ¢r) Or cos(27 frx — P.).
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Time and space shifts Thetime shift refersto ¢y in cos(27rf;C (t— tk)); the space shift refers
to . incos (27 fi(z — wy)).

Angular frequency Itisde ned by w = 2« f (radians per unit time or unit length), where f
. 1
refersto the rotational frequency T or the wave number oL de ned above.

Neutral variables Inthetimedomain, aneutra variabled = 2xt/T (radians) variesfrom 0 to
27 when thetime variable ¢t goesfrom 0 to 7" (units of time); in the frequency domain, a
neutral variable § = 27 f / F' (radians) varies from — to = when the frequency variable
f goesfrom —F/2 to F'/2 (cycles per unit time). The neutral variable 6 is dimension-
less, and it is always expressed in radians.

Digital or discrete frequency The digital (rotational) frequency F measures cycles per sam-
ple, and the digital angular frequency W measures radians per sample.
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Chapter 2

Sampling and Reconstruction of
Functions—Part |

In Chapter 1 we study the time and frequency contents of functions formed by combining
explicitly given sines and cosines. In the real world we need to process signals which are
available only as a sequence of samplescollected at equally spaced intervals, and we will begin
the discussion on recovering frequency contents from discrete-time samplesin this chapter.

2.1 DFT and Band-Limited Periodic Signal

Suppose that the unknown signal z(t) is periodic and it has Fourier series representation

= 2kt
(2.1 —l—ZAk cos —&-Bks 7;

Sincex(t + T') = x(t), we only need to sample the function over asingle period. While there
is no limit on the variable ¢ (in the sense that «(¢) is de n ed everywherein the in nite time
domain), the range (or bandwidth) of frequencies may or may not be limited depending on
whether there are finite or infinite number of termsin its Fourier series. Let us begin with the
case when the Fourier seriescoef cients Ay = B, = 0fork > n. Thatis, z(¢) isband-limited
(up to the maximum frequency f,, = n/T), and it is represented by a nite Fourier series of
N = 2n+1 terms, namely,

- 27r7"
2.2 A, B,
(2.2 —|— Z cos —|— sin T

To determine the frequency contents of x(¢), we may solve for the N = 2n+ 1 unknown
coef cients A, and B,. by setting up asystem of N linear equationsin N unknowns, provided
that we are given N values of z(¢). When the samples of z(t¢) are equally spaced over the
period [0, 7], we have z; = x(t;) witht, = ¢At = ¢ (%) for 0 < ¢ < N—1, and theresulting
systemis given by

= 2mrl
2. A, B, =0,1,...,N—1.
(2.3 +Z cos + sin —— N , £=0

27
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If we change the variable from ¢ to 0 = 22, then 6, = 22 = ¢ (2Z), and we obtain the
alternate form
AO n )
(2.4) Te= o + ZAT cos(rfy) + Bysin(ré), £=0,1,...,N—1.
r=1

For N = 2n+1 = 7, the mapping of {¢o,t1,...,tx_1} t0 {60,01,...,05_1} iSShown in
Figure2.1.

Figure 2.1 Changing variablefrom¢ € [0,T] to 8 = 2#t/T € [0, 2x].

Mapping t e [0, T)to ek € [0, 2m),
k=0,1,.., N-1:

By using Euler sformula

jroy —jrly jrle _ —jrby
cos(rb;) = %, sin(rfy) = %, wherej = v—1,
J
we obtain the system in complex exponential modes
(2.5) Ty = Z ergf, wherew, = e/2™/N ¢ =0,1,... N—1.

r=—m"n

Noting that w® = 1 and w¥*" = W™, if we relabel X_, w5 by Xy_,w " for —n <
—r < —1, weobtain

N-1
(2.6) xg:Zergé, wy=e?N 1=0,1,..., N—1,
r=0

which leads to the DFT (discrete Fourier transform) formula (2.7) given below, by which we
can transform the sequence of discrete samples {xg, x1,...,x~_, } t0 the sequence of coef -
cients { Xo, X1, ..., Xny—_1} without solving a system of equations. (The DFT formulas and
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their derivation will be covered in full detail in Chapter 4.)

N-1
1
(2.7) XTZNZJ:M;”Z, forr=0,1,...,N — 1.
=0

In Figure 2.2, we give two examples of equally spaced N = 2n+1 samples and the computed
DFT coef cientsth e computed X, s are relabeled for —n < r < n as given originaly by
Formula (2.5). Since X arethe coef cients of the complex exponential modes e*727+t/T
the corresponding frequencies + f;, = +k/T are marked on the frequency grid. (Note that the
X4, SinFigure2.2 are all real-valued, because we have constructed signals z1 (¢) and z»(t)
to have only cosine modes.)

Figure 2.2 Equally-spaced samples and computed DFT coef cients.

? Period T = 3.3 Time Grid (At = T/N = 0.66)
‘;{(1) N =5, At =0.66 | | | | | |

0 11 22 33 0 T=33
1 t
Frequency Grid (Af = 1/T)

RENEAEY R

Tirle 40 s
0 f f=2/T

2 2
-f, 0 f,

Time Grid (At =T/N = 0.3)

0 T=33

Period T = 3.3
N=11,At=0.3

0 11 22 33
2 1
Y Frequency Grid (Af = 1/T)

+k

l?TTH?HTT? _|f|||||||||fI=5/T

0
5 5

We defer the matrix formulation of the DFT until Chapter 4. It turns out that because of the
special propertiesof the DFT matrix, the DFT coef cient X,. can be computed moreef ciently
using various fast Fourier transform agorithms (commonly known as the FFT). Interested
readers are referred to our earlier book [13] and/or Part 11 of this book for the design, analysis,
and implementation of alarge collection of the FFT algorithms.

Withthe DFT coef cien t X, computed from (2.7), we can reconstruct the signal z(t) using
the complex exponential modes:

it(t) _ Z )(Tej%rrt/T7
where X _,. = X, for —n < —r < —1 by reversing the relabeling operation. By applying
the relations we developed in Chapter 1, the DC term and the amplitudes of the sine and cosine
modes are immediately available from the computed X,. values as shown below.
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1. TheDC term % = Xo;
2. Notingthat N =2n+1and X, = X_, for1 <r < n, weexpress
Ar = Xo + Xnor, Br=j(X; — Xn—y),
forr=1,2,...,n

With the values of A, and B, available, we can reconstruct the signal z(¢) using the pure
cosine and sine modes:
Ay

" 2kt 2kt
z(t) = 5 +ZAkcos 7; + By sin 7;

The process described above reveals a relationship between the number of samples and the
number of complex exponential or real sinusoidal modes the N = 2n-+1 samples allow us
to determine the coef cient X,. for exactly N = 2n+ 1 complex exponential modes, from
which we can recover the n cosine modes, n sine modes, and the DC term. This relationship
is precise for the band-limited periodic function if we know the maximum frequency present
in thesignal. In our example, the frequencies f, = k/T range from f; = 1/T, which is the
fundamental frequency of the signal, to the maximum f,, = n/T',withn = 2andn = 5 inthe
two examplesillustrated in Figure 2.2, in which we also show uniform spacing A f = 1/7 on
the frequency grid, together with uniform spacing At = T/N on the time grid. The sampling
rate R isden ed to be 1/ At, which measures the number of samples per unit time.
Thefollowing relations can now be easily established from the de n itions:

Relation 1 (Reciprocity relation) The grid spacing A f in the frequency domain and the grid
spacing At arerelated inversely by the equation:

1T 1

Relation 2 (Maximum frequency and sampling rate/interval)

-z <3 ()

1
R=— >2f,.
A2

This relation reveals that the maximum frequency we can possibly discover from the
samplesis one half of the sampling rate R = 1/A¢. In the context of sampling theorem
(to be presented in Chapter 5), the maximum frequency f,, so determined is formally
referred to as the Nyquist frequency, andwehave R = 1/At = [2f,,]. Asillustrated in
Figure 2.2, the range of frequencies [— f,,, f»] (corresponding to those shown in com-
plex exponential mode) is called the fundamental interval or the Nyquist interval (with
bandwidth F' = 2f,,).

3
—_

fn:nAf:

NIs
=
>
po

or

Relation 3 (Sample spacing and shortest period)

1/1 T,
At < =
<fn> 2
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Since a mode at the maximum frequency f,, has the shortest period T;, = 1/ f,,, when
samples are spaced by At < %Tn, at least two samples per cycle are available for
detecting the mode at this (known) frequency.

Digital Frequency and Relations 1-3 Recall that the product of analog frequency f, and
sampling interval /At de nesthe digital frequency
k k

k
Fr = frlit = ?At = N—AtAt = (cycles per sample).
Thus we have the uniform spacing AF = 1/N on the digital frequency grid. The
maximum digital frequency is

3

==
N |

and we obtain the Nyquist interval [-F,,, F,,] C [—3, 3]. The relationship between
analog and digita frequency gridsisillustrated by examplesin Figure 2.3.

Figure 2.3 Analog frequency grids and corresponding digital frequency grids.

Analog Frequency Grid: Af = 1/T (T = 3.3 = NAt, N = 5)

=2/T -UT 0 uT 2iT

Digital Frequency Grid: AF = AfAt = 1/N (N = 2n+1 = 5)

-2/N -1/N 0 1/N 2/N = 2/5

Analog Frequency Grid: Af = 1/T (T = 7.26 = NAt, N = 11)

-5/T -4/T -3T -2IT -UT 0 T 2/t 3T 41 ST

Digital Frequency Grid: AF = AfAt = 1/N (N = 2n+1 = 11)

-5/N 0 5/N = 5/11

Note that after At is absorbed into F;, we can only refer to the /th sample x4 in the
discrete-time domain, so the spacing is A¢ = 1, and the reciprocity relation

1
AFAL = N

issatised . To drive homethislast point, we only need to evaluate

A n
z(t) = it + Z Ay cos 27 frt + By sin 27 fit

2
k=1
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a t = (At and express the value of the /th sample using IF;, instead of f; as shown
below.

Ty = @ + Z Ay cos 27 (Fg ) + By, sin 2m(Fy, ) L.

2
k=1
Accordingly, the data spacing in the discrete-time domainis A¢ = 1 (with period T =
N) when the spacing in the frequency domain is measured by digital frequency instead
of analog frequency.

Finally, since Al =1and2 < Fi,therelation JAVAES isalso satised .

n n

We will consider the implications of these relations on signalswhich are either non-periodic or
not band-limited (or both) in Chapter 5.

2.2 Frequencies Aliased by Sampling

In this section we study the sampling process in a less precise setting. We begin with the
simplest case: suppose we are given two samples x; and =; which are spaced T'/2 units apart
within an interval of 7" units, and we are required to determine a single-frequency component
wave z(t) which interpolates the two discrete samples. We learn from Chapter 1 that we may
express & (t) in the following forms:

E(t) = accos(2n ft) + Bsin(2n ft) = v cos(2mft — ¢).

Note that we cannot apply the solution process developed in the last section to this (seemingly
simple) special case without knowing the frequency (or period) of Z(t), because, as shownin
Figure 2.4, multiple functions of different periods pass through the same two points spaced
T'/2 units apart within an interval of 7' = 2 units. To emphasize this potential problem in the
current setting, we repeat its source three times (in three ways):

1. We do not know the period of Z(t);
2. We do not know the frequency f of Z(t);
3. We do not know how many cycles z(t) has completed over theinterval T'.

Mathematically, the function z(¢) interpolating the two samplesis no longer uniqueif the
frequency f is not speci ed. However, if we are required to have (at least) two samples per
cycle, wewill accept the Z(¢) which completes one cycle over theinterval T,ie, the frequency
we can resolvefor &(t) is f = #/T = 1/T.

When we deal with discrete samples taken from a composite signal, the so-called aliased
frequencies are eguivalent in the sense that they contribute the same numerical values at the
sample points. For example, asillustrated in Figure 2.5, the signa

y(0) = cos(0) + 2 cos(360) + 3 cos(50)

cannot be distinguished from
x(0) = 6 cos(0)

based on the two values sampled at §; = 0 and 6, = 7, because y(0) = z(0) = 6 and
y(w) = z(r) = —6. Consequently, if the samples actually come from y(8), we would never
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Figure 2.4 The function interpolating two samplesis not unique.

The function interpolating two data points is not unique:

2 2
riod\T /7, Peviod 1\= 2/
0 0
-2 -2
0 1 2 0 1 2

Period T=2

y(8) = cos(B) + 2cos(36) + 3cos(56)

X(8) = 6cos(0)
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Figure 2.6 The aliasing of frequencies outside the Nyquist interval.

y(6)=c0s6+2c0s36+3c0s50 || y(6) in frequency domain

15 v, !

aliasing
due to sampling only y(0) and y(m)

_ i
X(8)=6c0s6 X_=3 X,=0.5+1+1.5=3
T 2 |

0 1 15 15

_2 1 1
0.5 0.5

-4
-6 _fl fl

Nyquist interval: [—fl, fl]
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n d out by taking only two samples over one period of y(6). This consequenceis shown in
Figure 2.6.

In genera, if a signa contains (higher) frequencies outside the Nyquist interval, they
would be aliased to (lower) frequenciesinside the Nyquist interval. Recall from the last sec-
tion that when we are given N = 2n+1 equally spaced samples over one period (7)) of a
composite signal, the maximum frequency we can possibly resolve is the Nyquist frequency
fn < 1/(2A¢) = N/(2T), and there are two samples available over the (shortest) period
T, = 1/ f,, whichis shown in Figure 2.7. Our solution was precise because there were no

IN

Figure 2.7 Sampling rate and Nyquist frequency.

The component with the shortest periods T5 =T/5

13 N = 2n+1 = 14 points over fiye periods
05r-
ok
-0.5r
-1F — -
0 T5=T/5 2T5 3T5 4T5 5T5=T

The component with the longest period T

N:=2n+1 =11 points in one period

0 0.2T 0.4T 0.6T 0.8T T

other (higher) frequencies present in the signal. When this is not the case, suppose that the
Fourier series of x(t) has morethan N = 2n + 1 terms, then the Nyquist frequency (which
is determined by the current sampling rate) is not the highest frequency present in the signal.
Instead, the Nyquist frequency now represents the cutoff frequency. When this happens, be-
cause the (higher) frequencies outside the Nyquist interval cannot be resolved at the chosen
sampling rate, their numerical values at the sample points would appear as contributions from
the equivalent (lower) frequenciesinside the Nyquist interval: a high frequency appears as (is
aliased into) a low frequency, and the affected DFT coef cient is said to contain an aiasing
error.

Relevant later sections: A precise accounting of the aliased frequenciesin the DFT co-
ef cients will be given in Section 3.11, and we shall verify the aliasing effect by concrete
examplesin Section 4.4.
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2.3 Connection: Anti-Aliasing Filter

When the original signal contains frequencies outside the Nyquist interval, their contribution
to the sample values would appear as a contribution from lower frequenciesin the signal re-
produced from the samples. Therefore, while the reproduced signal agrees with the original
signal at discrete sample points in the time domain, they do not agree with each other in the
frequency domain: the reproduced signal has potentially fewer modes and their amplitudesare
potentialy different. For example, the kth coef cient computed by the DFT includes the con-
tribution not only from the original kth mode, but from all of the aliased modes as well. These
differences cause distortion in the reproduced signal  the fewer aliased frequencies, the better
the original signal is preserved.

Of course, aliasing of signalswill not occur if the highest frequency present in the sampled
signal can be limited to the Nyquist frequency, which is determined by a suitable choice of
the sampling rate. To ensure this, a low-pass pre- Iter or anti-aliasing Iter may be used to
band-limit the original signal before the samples are collected. The cutoff frequency of the
anti-aliasing Iter can be set according to the sampling rate, so in theory no component with
frequencies higher than the Nyquist frequency remainsin the Itered signal, and no aliasing
will occur in the reconstructed signal.

Signal Itering is atopic covered in Chapter 10.

2.4 Alternate Notations and Formulas

Since Fourier analysis and its wide-ranging applications span across numerous areas over a
long time in history, there exists a very large body of technical terms and formulas, and they
are expressed using widely varying notationsin the literature. In this section we revisit some
familiar terms and formulasin this context.

In Table 2.1 we list the symbols we chose to adopt in this book in the second column,
and we give examples of alternate symbolsin the third column. Since the de nitions of these
terms are inter-related, we need to be consistent in our choice of notations to make their roles
clear, transparent, and easily applicable in deriving future results. As revealed in Table 2.1,
thereisacertain degree of inconsistency in the terminology and symbols used in the literature,
which should not cause too much dif culty oncethey are explicitly recognized and dealt with.
At times we do have the need for an aternate notation for example, we may use a single
letter £ to replace the (more meaningful) expression 2 f,,,... when the same term is repeated
in multiple places during along mathematical proof or derivation inthisexample, confusion
can be avoided if F' = 2,4, is explicitly de n ed before it is used and readers are reminded
of its meaning at appropriate places.

In the context of signal sampling, it is convenient sometimesto assume unit period (7" = 1)
or unit spacing (At = 1). In either case, the period T', thetime-grid spacing At, the frequency-
grid spacing A f, and the Nyquist frequency f.... Will each take on a constant numerical
value or it will be de ned by sample size N only. We obtain two sets of values under the two
assumptions, and they are given in Table 2.2. Note that we cannot alter At independently of
A f because their product must satisfy the reciprocity relation: A fAt = 1/N. Based on this
relation, we may convert the two sets of values to and from each other by scaling At and A f
in the following manner: when At is scaled by factor N, the inverse factor 1/N is used to
scale A f, so their product remains unchanged after the conversion. (Notethat 7' = N At and
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Table 2.1 Alternate symbols and alternate de nitions/assumptions.

Den ition/symbol

Alternate symbol

Name used as consistently as (alternate de n ition/
possiblein this text implicit assumption)

A single period (temporal) [0, T], [-T/2, T/2] [T, T)

A single period (spatial) [-L, L] [0, L], [-L/2, L/2]

Period (length) T,2L 2T, L

Samples per period N = 2n+1 (odd) N =2n

N = 2n+2 (even)

Sampled signal {wo, @1, a1} un, z[n), {£(k)}
Sampleinterval (period) Nt =T/N ts, T Ax, 1/(2fmaz)
Sample point te =LAt nAt,nT,n (.- At =1)
Samplevalue xp = x(ty) z[n] = z(nT), f(k)
Sampling rate (frequency) R=1/At=N/T N(-T=1),2fmax
Fundamental frequency fi=40f=1/T fo, Aw
Nyquist frequency fn=n/T < N/(2T), fer frns Wmaz Fy 8,
fmar:F/z N/2 (Tzl), Q/2
Nyquist interval [—fn, fnls [—F/2, F/2) [-F, F],[-Q/2, Q/2]
[_fmaaca fmaac] [—Q, Q]’ [_fma fm]

Nyquist rate (bandwidth)

2fmaw < 1/At

2 F, 2F, Q, 29

fmaz = [1/(2At)] follow immediately.)

Table 2.2 Constants resulting from assuming unit period or unit spacing.

Symbolic Unit period Unit spacing
name (assumeT = 1) (assume At = 1)
T 1 N
At 1/N 1
Af 1 1/N
fma$ N/2 1/2

From our discussion on digital frequency and relations 1—3n Section 2.1, we recall that
F., = fo/At; we thus have the equality F, = f, when At = 1, which gives both the same
numerical values, but their de ni ng relationship dictates that F,, is measured by cycles per
sample, and f,, ismeasuredby cyclesper unittime. For example, whenthetimeismeasured
by seconds, we have theresultsin Table 2.3.

Although the results derived using analog frequency with unit time spacing
(At = 1) will not be different from those derived using the digital frequency, the explicit
incorporation of At in the latter s de n ition provides direct means to interpret and apply the
results for values of At other than unity. Therefore in suitable contexts we may use the more
convenient digital frequency in the analysis and processing of signals without loss of general-
ity.
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Table 2.3 Using analog frequency versus digital frequency.

Symbolic Using analog f,, Symbolic Using digital F,,
name (assume At = 1 sec) name (for arbitrary At)
T N seconds T N samples

At 1 second yAV4 1 sample
Af 1/N Hertz AF 1/N cycles/sample
. 1/2 Hertz F, 1/2 cycles/sample

2.5 Sampling Period and Alternate Forms of DFT

In the beginning of this chapter we introduced the discrete Fourier transform (DFT) as an in-
terpolating formulawhich computesthe unknown coef cientsof a nite Fourier seriesdirectly
fromits sampled values. Asaquick recap, recall that in Section 2.1 we obtained the DFT from
sampling aband-limited signal =(t) represented by a nite Fourier seriesof N = 2n-+1 terms,
namely,

B Ay n 2mrt . 27t

x(t) = - +ZATCOS T —|—BrsmT,
r=1

and we stated that since (¢ + T') = t, we only needed to sample the function over a single
period. From interpolating the N equally spaced samplesz, = x(¢At) for0 < ¢ < N—1,we
obtained the discrete Fourier transform (DFT) given by Equation (2.7), namely,

N-1

1 —r 27

X, = N ngwN ¢ wherewy = />N r=0,1,...,N—1.
£=0
The corresponding i nverse DFT (or IDFT) was given by Equation (2.6), namely,
N-1 .
Ty = Z erff, wherew, = e/>™/N ¢ =0,1,...,N — 1.
r=0

In this setting, the N samples {x¢, 21, ..., zy_, } cover the period [0, T, and the actual sam-
plingtimebeginsatt = 0 andendsatt = T — At = T — T/N, because the rst sample of the
next period [T, 27') will haveto betaken at ¢ = T'. Correspondingto {xo, z1,...,zx_,}, the
DFT and IDFT have (discrete) period of N (samples), which isreected by 2, ny = z, and
Xppn=X,for0<r /<N —1.

Now, since a function x(t) with period T is den ed over (—oo, co) by periodic exten-
sion, the sampling period may begin and end anywhere. (Recall that the period of a cosine
function cos(6) is 2w, which can begin at arbitrary 6 and ends at 6 + 27, including, but
not limited to, the standard choice of [0, 27] or [—m, 7].) This observation coupled with
the fact that x4y = z¢ and X, 1, = X, alows us to obtain the set of N samples cor-
responding to any period from the N samples collected over [0, T]. In particular, we con-
sider the symmetric period [—17/2, T/2]; while the samples for interval [0, 7/2] are naturally
taken from xg, x1, . . ., x,, the next sample z,,,1 becomesthe rst sample of the following
period; hence, it is also the rst sample in the current period [—7/2, T/2]. Following this
argument, if the sample set {zg, z1, 2, ..., 26} covers the period [0, T'], the rearranged set
{4, x5, %6, T0, 1, T2, 23} COversthe period [—7/2, T/2], which is conventionally labeled as
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{z_3,2_9,2_1,20,21,22,23}. Note that the labeling convention abides by the periodicity
relation: T_3 = T_347 = T4, T2 = T_247 = ITs, and r_1 = T_147 = T, because
N = 2n + 1 = 7 isthe period of the sampled sequence. One hidden technical point is that
while the samples remain equispaced with the same data spacing At = T/N, the actual sam-
pling time of z_,, is —7/2 + At/2, and the last sample z,, istaken a 7/2 — At/2. (The
r st sample of the next period [T/2, 37/2] will beginat T/2 + At/2, and so on.) The actual
placement of samples is shown diagrammatically in Figures 2.8 and 2.9. If we change the
variablefrom¢ to § = 27t /T, the sampleswould be placed in the corresponding period [0, 27]
or [—m/2,7/2] as shown in Figure 2.10.

Figure 2.8 Taking N = 2n+1 samplesfrom asingle period [0, 7.

6%

1st period 2nd period 3rd period

N samples {Xo’ Xpo oo XN—l} in one period may be taken at
t= kat,k=0,1, .., N-1, where t,=0, and ty, =T AL

S A A PP

0 T T 2T 3T

ty,= T~ At

By changingthe sampleddatasetto {z_,,, ...,x_1, %o, z1, - . . , & } and following through
the derivation analogousto the process described in Section 4.2 of Chapter 4, we obtain another
commonly used form of the DFT, namely,

(2.8) X, = % Z xgw;M, wheren = %, wy = e2TIN - <p <.
l=—n

The corresponding IDFT is

(2.9 Ty = Z erff, wheren = %, Wy = ej%/N, —n</f<n.

r=—n

Note that the coef cients X,. (—n < r < n) computed by (2.8) directly satisfy

27mrt
T )

n ) A n 2 t
x(t) = Z X,e?2mrt/T — 70 + ZAT cos 7; + B, sin
r=1

r=—n

A
where =2 = Xo, and A, = X, + X, B, = j(X, — X_;)for1 <r <= 871
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Figure 2.9 Rearranging N = 2n+ 1 samples on the time grid.

N = 2n+1 = 7 samples {xO, X0 Xo Xgu X0 X Xe} are
taken at t € [0, T), where t= kAt, k=0, 1, ..., 6:

T-At
0 T/2 T
N4 \ |
N \ ; !
b bbb
N = 2n+1 = 7 samples {x_3, X g X_ s X Xp0 X x3} are

taken at t e (=T/2, T/2), where L= kAt, k=-3, ..., 3:

T/2-At/2—

—T/2 T/2

0
| N \|/
e SN |
-3 t—2 -1 0 t1 t2 t3

Figure 2.10 The placement of samples after changing variablet to 6 = 27t /T.

Mapping t € [0,T)to 6, € [0, 2m), Mapping t € (-T/2, T/2) to ek € (-m, m),
k=0,1,.. N-1: k=-n,...0,...n: o

/ AN
n-ABI2 = 04 N\
‘f’ \ \\
i 1
| — 60 =0
\ J o
. ,
b4 . /
. P
~
;&_-// 0,
-2
0 - T
. T X |
B 8 b 6 o o o 6., o, ©. o o 0 8
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2.6 Sample Size and Alternate Forms of DFT

We have so far linked the DFT sample size IV to the number of unknown Fourier coef cients
we are seeking, and we have used N = 2m+1 by assuming that

= 2mrt
—|—ZA cos —|—B sin 7;

Now, if we change the sample size from the odd number N = 2m +1 to the even number
N = 2m, we must show that the resulting linear system hasonly N = 2m unknowns i.e.,
we must prove that one of the terms in the right-hand side vanishes. This is indeed the case as
shown bel ow.

Corresponding to the even sample size N = 2m, we have z, = x(t,) with ¢, = (At =
(L) for0 < ¢ < 2m — 1, and the resulting 2m linear equations are given by

i 2mrl
+ZA cos —I—B sin 27;; £=0,1,...,2m — 1.

Observe that the sine mode corresponding to » = m in theright-hand sideis

27rm/l

sin = sindm = 0 for every ¢,

therefore, the term involving B,,, vanishes from the right-hand side. By letting m = n+1 and
N = 2n+2, weobtain

A 2T 1) 14 2mrl
:r:g=70+An+1c05(nT++ZA cos 7; + B, sin 7;, {=0,1,...,N — 1.

Therefore, we are effectively taking the 2n 42 discrete-time samples from

o Ao 2r(n+ 1)t 27rt ) 27th
(2.10) x(t)—7+An+1 COS# ZA co8 — + B, sin —— T

which has2n + 2 coef cientsto be determined. The DFT derived from interpolating the 2n+2
sampled values of z(t) using (2.10) is given below, with its derivation provided in Chapter 4.

2n+1

N-—
1 ~, - 7r
(2.12) sz2n+2§:l‘gwl\,é }: ‘o =0,1,---,N —1.
=0 £=0

Thisformulais of the same form as the DFT of odd length de ned by (2.7) except that N =
2n+ 2 anditis tting adifferent trigonometric polynomial z(¢). The corresponding IDFT is

2n+1
(2.12) Z X, = Z Xt 0=0,1,--- N —1.

The N = 2n+2 coef cients of z(t) can now be obtained from the computed X, by applying
the following rules:
Ao

1. ——XO,AN— N,
2 2
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2. A =X, + Xnor, By =X, — Xn_p), forr=1,2,..., & —1.

Using even sample size with the sampling period [—7/2, T/2], the following DFT/IDFT
formulas may be obtained. (The direct conversion between Formulas (2.11) and (2.13) is
presented in Section 4.2 of Chapter 4.)

1 n+1 1 5
. ~  —rl S — N N
(2.13) X, = o 12 Ty = Z Twy", —5 +1<r <3
l=—n =—4+1
n+1 %
(2.14) =Y Xwi= > Xwi, —Y+1<e<i
r=—n r:—%—&-l

The N = 2n+2 coef cients of z(t) can now be obtained from the computed X, by applying
the following rules:

1 @:Xo;Aﬂ:Xﬂ;
2 2 2

2. A =X, +X_,, B, =j(X, - X_,),forr=1,2,..., 5 -1

Note that when the sample size is an even number N = 2n+ 2, the sampling time for x
remainsat ¢t = 0, the last sample 5,11 in the period [0, T] istakenat T — At = T — T/N
as before; however, the rst sample z_,, and the last sample ., in the period [-7/2, T/2]
aretaken from¢ = —T7/2 + At and¢ = T/2. The actual placement of samplesis shown
diagrammatically in Figures 2.11, 2.12, and 2.13.
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Figure 2.11 Rearranging N = 2n+2 samples on the time grid.

N = 2n+2 = 8 samples {Xo’ X0 Xo Xgu Xy Xy X x7} are
taken at tk € [0, T), where tk =kAt, k=0,1, ..., 7:

T-At

0 T2 T

\/ | |

V4NN ANV VAl
tO tl t2 t3 t4 t5 t6 t7

N = 2n+2 = 8 samples {x_3, X 50 X_g X X
taken at tk e (-T/2, T/2], where tk = kAt, k= -3, ..., 4:

X, X35 x4} are

=T/2+At
_TIZW 0 T2
R ATATATL %
Lyt ot 6t 4

Figure 2.12 The placement of samples after changing variablet to 8 = 2rt/T.

Mapping tk e (-T/2, T/2] to ek € (-m, 7,

Mapping toe [0,T)to 6, € [0, 2m),

k=-n,..0,.., n+1:

k=0,1,..,N-1:
u S
0. - 0. ~_ 8
3/5 » \1 3/ D/ \8\\1
/ /
/ \ / \
/// \\\ // \
— ol AO=2n/N | _ A8 =2n/N |
T= ¢ = =0 209 =0
&% (N=2n+2=8) /) 8,=0 4 ({i (N=2n+2=8) /,‘ 0
\ / \ /
\\ ’// \ ,
\ S/ \ ./
0 e = omene “mHAD =0 7
~— o — 7 T———— 1
0 0_
0 6 2 W 2 T
% R * % %
% 8 % Y% s 9 s 9 0, 0, 0, & 6 b, 6 9,
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Figure 2.13 Teking N = 2n+2 samples from the period [0, 2] or [—, ].

N = 12 samples { X X oenr X11} taken in one period [0, 2m).

6

0 T 2n

N =12 samples { X_gr X_govoos Xe} taken in one period (-r, m].

4

X
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Chapter 3

The Fourier Series

In Chapters 1 and 2 we have been dealing with periodic signals described by a sum of sinesand
cosines, whereas in general asignal may be described by a mathematical function f(¢) which
does not represent a sum of sinusoidal termsin its present form. For example, given below is
the time-domain description of a periodic triangular wave.

F(E+2) = f(2).

f@%_{t+L —1<t<0,

—t+1, 0<t<I;

In such cases, the frequency contents of f(¢) are revealed by a continuous Fourier series,
which must be derived for each individual function using the theory and techniques to be
covered in this chapter. The Fourier series may be expressed in the various forms introduced
in Chapter 1, and we are ssimply taking the next step in this chapter to determineits coef cien ts
analytically. Sincewe haveinitiated the discussion on sampling and reconstruction of functions
in Chapter 2, it is not out of place to remark at the outset that the DFT coef cients, which are
de ned viathe discrete-time samples of f(t), are expected to deviate from the coef cients of
the corresponding terms in the Fourier series of f(t), because the DFT coef cients include
contributions from all aliased frequencies. The phenomenon of aliasing was brie y discussed
in Sections 2.2 and 2.3, and it will be further explored in this chapter.

3.1 Formal Expansions

To expand ageneral periodic function f(¢) into aformal Fourier series (whichisalso known as
aharmonically related trigonometric series), we employ the well-known theorem of Dirichlet,
which also gives the suf cien t conditionsfor the existence of Fourier series.

Theorem 3.1 (Dirichlet stheorem) If f(¢) isareal-valued function de ned on (—oo, oo) and
it satises the Dirichlet conditions:

(&) f(t) isbounded on any bounded closed subinterval [a, b] of (—oo, o0);

45
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(b) f(¢) hasonly a nite number of maximaand minimaon any interval [a, b];

(c) f(t) has on [a, b] a most a nite number of discontinuities, each of which is a jump
discontinuity;

(d) f(t)isperiodicwithperiod T th atis, f(t+T) = f(t);

then for every t at which f is continuous, we have

204 iAk cos

2
+Bk %kt, where

2 [T/? 2
(3.1) Ak:—/ Ftyeos T k=012,
T/2
T/2 9
3.2) 7/ sin ”kt 2.
T/2

Furthermore, for every t,, at which f has ajump discontinuity, the Fourier series convergesto
the average of itsright- and left-hand limits. That is,

21kt
+ Bp sin il

, Where

fUED+ ) Ay = 2mkt,,
soel el = 20N A cos
5 5 + 2 L COS

f(@h) = lim f(t), and f (t) = lim f(2).

t—>t t—ty

Remark 3.2 If f(t) has a jump discontinuity at ¢,, Theorem 3.1 does not require f(t) to
be de ned at t,. For example, the sawtooth function shown below may be de ned by the
periodic extension of f(t) = ¢ for either ¢t € (0,T] or ¢t € (0,T). Inthe former case, we have
f(£kT) = T; inthelatter case, f(+kT) isnot den ed, but one-sided limits exist at the jump
discontinuities and Dirichlet stheorem is satised .

A

T,

=27 -T 0 T 2T

Remark 3.3 Graphically, the function f(¢) on any bounded closed interval [a, b] (referred to
in Theorem 3.1) may be represented by disjoint arcs of different curves, each dened by a
different formula. In mathematical terms, afunction f(¢) is said to be piecewise continuousin
aninterval a <t < bif thereexistn pointsa = t; < to < t3 < --- < t, =bsuchthat f(t)is
continuousin each interval t, < ¢ < t;41 and has n ite one-sided limits f (¢;) and f (t,;)
at the endpoints of each such interval (¢ =1,2,...,n — 1).

A piecewise continuous f (t):



3.1. FORMAL EXPANSIONS 47

Remark 3.4 For the correct use of mathematical theorems, it is important to know whether a
function is continuous on an open interval or a closed interval. We recall that a function g,(¢)
is said to be continuous throughout a closed interval [t¢, t,1] provided that it is continuousin
the openinterval (ty, t,11) andalso gg (t¢) = g¢ (t)) and g (tes1) = ge (t,. ;).

From elementary calculuswerecall that if g, (¢) iscontinuousontheclosedinterval [ty, t41],
it must be bounded and (Riemann) integrable on [t¢, t¢+1].

Sincewe may de ne ¢,(t) to agree with a piecewise continuous f(¢) over the closed inter-
val [ts, te41] except possibly at the endpoints, we have

/t ;M F(tydt = /t ;M gu(t) dt.

Hence, the piecewise continuous f (¢) isintegrableon [a, b]:

/f t)dt = Z/tm t)dt = Z/tm

Remark 3.5 Although the coef cient formulas (3.1) and (3.2) are valid for any integrable
function f(t), the Fourier series constructed using so-obtained Ay, and By, (k = 0,1,...,00)
may diverge for some values of ¢ or it may fail to convergeto f(¢) for in nitely many values
of t.

Whileit is arelatively simple task to derive the expressions (3.1) and (3.2) for the coef -
cients A, and By, (k= 0,1, ..., 00) if we can assume that the Fourier seriesis convergent and
it convergesto an integrable function f(¢), thereis no obvious way to ascertain whether such
assumption isvalid for an arbitrary harmonically related trigonometric series.

Remark 3.6 A function f is said to have been normalized at points of jump discontinuity if
F6) < L(ft+) + f(t7)) for every t. Since f(t.) = f(tF) = f(t7) if t. is apoint of
conti nU|ty the normalized function agrees with the original f(¢) at ¢.. Furthermore, changing
the value of f(¢) at points of jump discontinuity does not change the value of its integral over
the interval, nor any of the integralsde ning its Fourier coef cients. According to Dirichlet s
theorem, the Fourier series expansion of a normalized f(¢) converges to itself for every t.
Therefore, whenever we equate f(¢) to its Fourier series expansion by writing

= 2mkt
+ZA;€COS —l—Bks 7;

(when not otherwise quali ed ) in thefuture, weimplicitly assumethat f(t) satises Dirichlet s
conditionsand that f(¢) has been normalized at points of jump discontinuity.

Examples of normalized functions:
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Remark 3.7 The constant term in the Fourier series expansion is conventionally written as
%Ao, so that Ay can be obtained from the general formula (3.1) for A, by setting £ = 0.
Formulas (3.1) and (3.2) are known as the Euler or Euler Fourier formulas.

Remark 3.8 For aproof of Dirichlet stheorem, see Philip Franklin sarticle A Smple Discus-
sion of the Representation of Functionsby Fourier Seriesin Selected Paperson Calculus, pp.
357 361, Mathematical Association of America, 1969.

Inthis chapter we shall prove the same pointwise convergenceresults (thetopic pointwise
convergence is covered in Section 3.10.2) for the Fourier series of any piecewise continuous
function f under the further assumption that it has nite one-sided derivatives

fltet+n) = f(t) f(te) = fte—h)
h h

f () = lim

P =\ 1.
h—0 andf (tg ) - %112)

at those pointswhere f itself is discontinuousand f’ does not exist.
Since the conditions prescribed for f’ would be met automatically if both f and f’ are
piecewise continuous on [a, b] th e function f is then said to be piecewise smooth on [a, b],

the pointwise convergence of the Fourier series for piecewise smooth functions is guaranteed
by the same proof.

3.1.1 Examples

Since the Fourier series coef cients A, and By are den ed by integrals involving f(¢) in
Dirichlet s theorem, the analytical formulas for them are available only when the integration
can be done analytically and explicitly. An exampleis given bel ow.

Example 3.9 Find the Fourier series for the given function

{2’ TN g0 =50

t, 0<t<2

We note that f(¢) satises the conditions of Dirichlet stheorem and that it has ajump discon-
tinuity at ¢ = 0 on [—2, 2] because f(0~) = 2 and f(0") = 0. (Recall that f(¢) needs not be
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de ned at the jump discontinuity, which is the case here.) We nd the coef cients according
to Dirichlet stheorem: For k = 0, we obtain

1 /0 1 2
Aoz—/ 2dt+—/ tdt = 3.
2 -2 2 0
Fork=1,2,...,weobtain

1[0 krt 1 [ kt
Ak:f/ 2cosidt+7/ tcos%dt
- 0

2 _ krt]® 1] 4 kmt 2t kot
= |-—sin—— - —— 4+ —sin——
km 2 | 5 2 [k*m? 2 km 2 |,

2 1/ 4
== 2(cosk7r—1)—|—§ (k—smlmr—O)

™

2

=12 5 (coskm — 1),

and

1 [0 krt 1 [? krt
Bsz/ 2sinidt+f/tsin%dt
0

2/, 2 2

2 ket A4 ket 2t ket]?

| km 2 | 5, 2 |k%n? 2 km 2 1o
2 2 1 /-4

:_E+HCOS]€W+§<ECOS]W_O>

__2

 km

For every ¢ at which f(t) is continuous, we now have

3 = [2(coskm—1)  knt —2\ . knt
flit)y= +Z[ 2 cos — —l—(kﬂ_>51n 2]

2 k=1
3 4 mt 4 3t 4 5nt
T 122 Y T Ty T e Ty T
2 Tt 2 . 2nt 2 . 3mt
— —8sln— — —sln—— — ~— sl —— —
T 2 2 2 3T 2
3 4 & 1 2k — )7t 2 =1 . knt
T Elmoy ;R

We can aso verify that the Fourier series indeed convergesto the normalized function value at
the jump discontinuity at ¢ = 0. Note that the Fourier series takes on a much simpler form at
t = 0 because all cosine and sine functions are replaced by cos0 = 1 and sin0 = 0, and the
desired relation

_FO)HfO0F) 8 4~ ]
b= 2 2 7r2,;(2k—1)2

can be easily veri ed by substituting the numerical value of thein n ite series, namely,

o0

pt (2k —1)* 32 52 8’

which we shall provein Example 3.15.
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The convergence of the N-term Fourier series is shown in Figure 3.1, where we plot the
Fourier seriesfor N =8, 16, 32, 64. Since this particular example involves zero coef cients,
we clarify how we count the NV terms. as an example, for N = 8, the eight Fourier series
coef cients used are: %AO, Ay, As =0, A3, Ay = 0, By, Bs, and Bs. Accordingly, for
N=2(n+1)=8, 16, 32, 64, the N-term Fourier series uses one DC term, n+1 cosine terms
(including zero and nonzero terms), and n sine terms. We examine further the graphs of the

Figure 3.1 lllustrating the convergence of the NV-term Fourier series.

8—-term Fourier series

32—-term Fourier series

25

2

4 1sk

1k

4 osf

2 A A

N-term Fourier series near a jump discontinuity in Figure 3.2, where we illustrate the Gibbs
effect (to be studied in Section 3.10.4) for N =64 and N =128.

Figure 3.2 The behavior of the V-term Fourier series near ajump discontinuity.

25 T T T T T T T 25

N = 64 N =128

4 15f

4 osf

3.2 Time-Limited Functions

If g(t) isonly den ed for a niteinterval [—7/2, T/2], we can construct a periodic function
f(t) by repeating ¢(t) for each period T" over (—oo, +00), whichiscalled aprotracted version
(or a periodic extension) of ¢(t). Because g(t) agrees with f(t) for t € [—T/2, T/2], the
Fourier series of f(¢) may be used to represent ¢(¢) in this interval. Note that Dirichlet s
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theorem appliesfor every ¢, so the Fourier series convergesto the average of the left- and right-
hand limits (of the periodic extension f(¢)) at jump discontinuities, whether they occur inside
or at the ends of the interval on which the time-limited g(¢) isde n ed.

As an example, recall Example 3.9: if we dene the time-limited ¢g(t) = f(¢) fort €
[—2, 2] in that example, then the Fourier series we obtain for periodic f(¢) represents g(t) for
te-2,2].

3.3 Even and Odd Functions

When Dirichlet stheoremis applied to the even and odd functionsde ned below, their respec-
tive Fourier series has only cosine or sineterms. The coef cients of the cosine or sinetermsin
each case are given in the two theorems following De n ition 3.10.

Definition 3.10 A function f(¢) isevenif and only if f(—¢) = f(¢) for dl ¢, and it is odd if
andonly if f(—t) = —f(¢) for all ¢.

By de n ition, the graph of an even function is symmetric with respect to the y axisif we plot
y = f(t) versus t; whereas the graph of an odd function is symmetric with respect to the
origin. For example, f(t) = |¢| for ¢ € [-2, 2] isan evenfunction; f(¢t) = ¢ for¢ € [-2, 2] is
an odd function; the function f(¢) in Example 3.9 is neither even nor odd.

Even Odd Neither even nor odd

Noting that the cosine terms are themselves even functions, and the sine terms are themselves
odd functions, it comes as no surprise that the expansion of an even function contains only
cosine terms, whereas the expansion of an odd function contains only sine terms.

Theorem 3.11 If f(¢) isan even function satisfying the conditions of Dirichlet stheorem, the
coef cientsin the Fourier seriesof f(t) are given by the formulas

4 (T2 2kt
Ap = — t
(3.3) k=7 ) (£) cos

By=0, k=1,2,...

dt, k=0,1,2,...
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Proof: Using the Euler Fourier formula(3.1), we obtain

2 [T/ 2kt
Ak:f/ f(t) cos T dt

~T/2
2| 0 okt T/2 okt
=% _/T/2 f(t) cos T dt + | f(t) cos dt]
2 [ 0 2mk(—s) /2 2rkt B
=7 -— T/2f(—s)cosTds+/0 f(t) cos dt] (lett = —s)
[ T/2 T/2
= % f(s)cos 27rks ds + f(t)co th dt] ( f(=s) = f(S))
0 0
T/2
— —/ R (lets = 1)

Using the Euler Fourier formula(3.2), we obtain

T/2 2 kt
—/ t) sin Ul dt

T/2
2 [ /0 _ 2mkt T/2 _ 2mkt
=7 /_T/2 f(t)sin T dt—l—/o f(t)sin T dt
2 0 k(—s) T/ okt
9 T/2 (—s) T/2 2kt
=7 /0 f(s)sin ds+/0 f(t)Sn—dfl (o f(=s) = f(s))
/ /
:3 _ Tzf( ) sin 5 d +/T2f(t)sm27rktdt] (. sin(—0) = —sin6)
T | Jo 0
=0.

Theorem 3.12 If f(¢) isan odd function satisfying the conditions of Dirichlet s theorem, the
coef cientsin the Fourier seriesof f(¢) are given by the formulas

A, =0, k=0,1,2,...
(3.9 4 [T/2 2k

t
Be=7 | f(t)sinT”dt, k=1,2,...

Proof: (Similar to the proof for Theorem 3.11.)
Theorem 3.13 If f(¢) is an arbitrary function den ed over an interval which is symmetric

with respect to the origin, it can always be written as the sum of an even function and an odd
function.

Proof: By dening

(3:5) even(t) = M Godd(t) = fO) - f(=1)
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we have
Jeven(t) = geven(—t), Godd(t) = —Godd(—1),
and
f(t) = geven(t) + Goda(?)
asdesired. m

3.4 Half-Range Expansions

Given atime-limited function f(t) de ned over theinterval [0, 7], we may construct either

Geven(t) = {f(t)7 telo. 172 , where T/2 =T,
f(=t), te[-T/2,0)

or

 rw, telo, 12 -
Godd(t) = {—f(—t)7 teLT/2.0)’ where T/2 =T

Noting that for ¢ € [0, T/2] = [0, T],

f(t) = geven(t) = gOdd(t)a

we may use either the cosine series of the even function geven(t) Or the sine series of the odd
function gega(t) to represent the half-range time-limited function f(¢) over [0, f].

Observe that there are (in n itely many) other choices of g(¢) which satisfy Dirichlet con-
ditions and agree with f(¢ ) over [0, T] eg ., one may smply extend the den ition of f(¢)
over the entire interval [T, T. However, When g(t) does not possess the even/odd symme-
try properties, the labor of expandlng g(t) is doubled because its Fourier series contains both
cosine and sine terms.

Example 3.14 Given atime-limited function f(t) =t — t*> fort € (0,1),

A

I

o
N[
—

obtain the following three Fourier series expansions of f(¢) by treating it as part of an even
function, an odd function, and a general function.

1 c052k7rt
i Z :
8 bln(2k - 1)7Tt
42 S N smer = )T
[y =t=t S k1)
1 4 & coskmt 2 — sin k7t
————E —1)k ——E —)P
3 72 (=1) k2 T (=1) k

E
Il
—

k=1
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To obtain the expansion containing only cosine terms, we interpret f(¢) for 0 < t < 1 as part
of an even function and express f () as

21kt Ay |
T :7+ZAkCOS7rkt, (-T/2=1)

f(t):t—t2:%+zz4kcos
k=1

with coef cien ts given by Theorem 3.11:

4 (T2 2mkt ! 2(1 k
Ak:—/ (t—12) co Tdt_z/ (t = #2) cos mht dt — — 20T COSET) sy,
0 0

T k272
4 [T/2 1
Ao = —/ (t—tQ)COSOdt:2/ (t—t*)dt = -
T 0 0
. e 4 ..
Because cos km = (—1)¥, the coef cients A, = 0if kisodd, and A;, = =) if kiseven.
™
We thus have
FE) =t -2 = 1 4 (cos2mt n cos4mt n cos 67t T cos2kmt
N 6 w2 4 16 36 4k2
1 1 o= cos2knt
6 w2 D e

To obtain the expansion containing only sine terms, we interpret f(¢) for 0 < ¢ < 1 as part of
an odd function and express f(t) as

oo

fit)y=t—t*= ZBkbln :ZBkbmﬂ*kt L T/2=1)

= k=1
with coef cien tsgiven by Theorem 3.12:

T/2 1
By = é/ (t_tQ) sin 2kt dt:2/ (t—tz) sin wkt dt =
T Jo T 0

2kt

4(1 — cos k)

S k=L

Because cos km = (—1)*, the coef cients B, = 0 if k iseven, and B;, = % if kisodd.
Vs
We thus have

8 (sinmt sin3nt  sindwt sin(2k — 1)7t

_p_42_°
JH=t-t w3\ 1 27 125 (2k —1)3

sin(2k — 1)7t
_WBXZ: (2k —1)3

To obtain the third expansion, we use the de n ition f(t) = t — 2 for —1 < ¢ < 1, and apply
Dirichlet stheorem to obtain the coef cientsin

ft) = 20y Z Ay cos

2wkt
+B,C sin 7TT , whereT/2 = 1 ashefore.

Using Formulas (3.1) and (3.2), we obtain

o [T/2 okt ! 4
A = —/ (t — t*) cos 7;]{: dt:/ (t—tz)coswktdtz—icosmr, kE>1;
T

T J 12 1 k272
o [T/2 1 9

AO:—/ (t—t2)cos0dt:/ (t—t*)dt = —=;
T ) 1/ ~1 3

9 [T/2 2kt ! 2cosk
Bk:_/ (t —t*) sin T gt = / (t — %) sinmwktdt = — o k>
T 1/ T -1 b
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HALF-RANGE EXPANSIONS
ing that cos km = (—1)*, we obtain

1 4 cosmt cos2wt  cos3mt

g2t 2 _ ..

JH)=t-t 3 w2 ( 1 4 o T )
z sinwt  sin2nt  sin 3wt n
s 1 2 3
1 4 LCoskmt 2 & L Sinkmt
=——— — -1 - — 1) —-.

3 72 k:l( ) k2 T ];( ) k

We remark that although the three series represent the same function f(t) = ¢t — t2 for 0 <
t < 1, they convergeto f(¢) at different rates (see Figures 3.3, 3.4, 3.5, 3.6, 3.7), which we
will investigate further when we study the convergence of Fourier seriesin Section 3.10 of this
chapter.

Figure 3.3 The converging Fourier series of an even function.
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Figure 3.4 The converging Fourier series of an odd function.
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Figure 3.5 Dening f(t) = t — t> for thefull range: —1 <t < 1.
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Figure 3.6 The converging Fourier series of f(¢) with jump discontinuities.
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Figure 3.7 The converging Fourier series of f(¢) with jump discontinuities.
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Example 3.15 Using the Fourier series expansionsfrom Example 3.14 to establish the follow-
ing numerical results:

(3.6) gé-—H~+%+i+%+ =§
(39) g(%)g =ttt =’2Li
(3.10) géﬁz;ﬂ—;+; %+%+m:£

In Example 3.14 we have shown that for the even function

t—t2, O0<t<l1
gl(t) = 2 9
—t—t?, —1<t<0

the Fourier series expansion is given by

gi(t) =

1 o= cos2knt
T2 Z k2
k=1

(=2
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Since the even function g, (¢) is continuous at ¢ = 0, the Fourier series convergesto g;(0) =
—0 — 02 = 0, and we have

1 o1
— =Y 5 (- whent =0, cos2knt = 1for every k)

It follows that i 1 77—2
k67
To obtain identity (3.7), we evaluate both ¢, (¢) and its Fourier seriesexpansionat ¢t = 0.5,
where g4 (¢) is continuous, and we now have

and we obtain the desired identity (3.6).

91(0.5) =

1)k+1 w2 g2 g2
ItfoIIowsthatZ _r T _T
Pt 4 6 12

We obtain the next |dentity (3.8) by summing the rst two results, (3.6) and (3.7), yielding

1 1 1 1 w2 72 2
iR TETE T T

2 {1 + s+t =+ =+
which gives us (3.8). Similarly, we can obtain identity (3.9) by subtracting (3.7) from (3.6),
yielding

+ S+ =+

{ 1 1 1 1 } 2 g2 71'2
2 T T Ty

and the desired result follows immediately.

To show that the last identity (3.10) is true, recall that we have also obtained in Exam-
ple 3.14 the Fourier series expansion for the odd function

t—t?, O0<t<l1
g2(t): 2 9
t+t4, —1<t<0

and the result was
sin(2k — 1)7t
92( ‘ﬁﬁ§: (2k —1)3

We again evaluate both g»(t) and its Fourier series at ¢t = 0.5, where go(t) is continuous.
Noting that at ¢ = 0.5, sin(2k — 1)t = (—1)*~! forall k > 1, we obtain

8 o (—1)F!
0.5) = — s
92! 7T3; (2k —1)3°

and identity (3.10) follows.
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3.5 Fourier Series Using Complex Exponential Modes

In Chapter 1 we show that a Fourier series can also be expressed using complex exponential
modes, i.e.,

= 2mkt
+ZA;€COS —l—Bks 7;

(3.11)
_ Z o ej27rkt/T’
k=—o00
where )
Coz%, Cikzm fork > 1.

Using Equations (3.1) and (3.2) from Dirichlet stheorem to evaluate Ay and By,
for k > 1, we obtain

A i B
Cip = 1HE2] k
12 (772 2rkt 2mkt
2|2 ) ( cos dt
5 T/T/Qf()(cos T FJsin— )
T/2 ‘ .
=_ / t) eFI2mkt/T gy (- eF9 = cosa T jsina)
T/2

Note that because

Ap 1
“=75=3

T/2 T/2
%/ f(t) cos()dt] = %/ f(t)e®at,

—-T/2 —T/2

asingle formulaexpressed as

1 [T/2 _
(3.12) Cp = — / f(t) e 2R/ T gy
T J 72

alowsusto obtain Cj, foral k € (—o0, ).

3.6 Complex-Valued Functions

If u(t) = g(t) + jh(t), then the Fourier series of u(¢) can be obtained by nding the Fourier
series of the real-valued ¢(¢) and thereal-valued h(t) separately. That is, if

= 2kt
—l—ZAkcos —|—Bk L,

T
= 2mkt
70+kz_1UkCOS —|—Vksm 7;

then we have

oo

A+ iU 2kt
0TJ O-I—ZA/C—I-]U;C ) cos
k=1

2
u(t) = + (By + jVi) sin T
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3.7 Fourier Series in Other Variables

Asindicated in Chapter 1, when the variable of function f(¢) with period T is changed from
t to 6 = 2xt/T, we obtain the periodic function g(8) = ¢g(6 + 2m) and its Fourier seriesin
terms of cos k6 and sin k6 or e79:
g(0) = Ao + iA cos k6 + By, sin k6
2 e k k

o0
= E Crel*?.

k=—o0

(3.13)

Noting that when ¢ varies from —7/2 to T/2, 6 varies from —r to m, and that § = 2xt/T
implies dt = %d& in Equations (3.1) and (3.2), we obtain the Fourier coef cients of g(6)
from Dirichlet stheorem:

1 s

(3.19) A = — / g(0)coskfdf, k=0,1,2,...
T™J—x

(3.15) By = l/ g(0)sinkfdf, k=1,2,....
™ —T

To express Cy, we change the variable in Equation (3.12) to obtain

1

(3.16) Cp=—
2w

/ g(0)e % do, k=...,-1,0,1,...

3.8 Truncated Fourier Series and Least Squares

Since we can only make use of a nite Fourier series in many applications, it is of practical
and theoretical importance to understand how the relationship between a given function x(t)
and its Fourier series changes when the latter is truncated after a nite number of terms. To
investigate the mathematical connection, we assume that a real-valued function x(t) of period
T is approximated by the following trigonometric polynomial of N = 2n + 1 terms, i.e.,

n

A 2kt 2kt
x(t) = ,N(t)=7O+ZAkcos 7; + By sin W
k=1

T

t

Using the mathematically equivalent alternate form expressed in variable 8 = 27t /T, we may
assumethat ¢(0) of period 27 isapproximated by the same trigonometric polynomial expressed
asgn(0):

A n
9(0) = gu(0) = > + > Ay coskf + By sin kf.

2
k=1

It turns out that when the N coef cients are chosen to be the Fourier coef cients de ned
according to Dirichlet s Theorem, the discrepancy between the function g(¢) and the nite
series g (6) is minimized in the least-squares sense. To prove such direct connection to the
least-squares problem, we treat the real coef c ients as unknown variables of the multivariate
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function (which measures the mean square error of the t)

®(Ag, Ay, By,..., Ap, By) = /_ﬂ [9(0) — G (0)]° db

We remark that we have chosen the alternate form in variable  to simplify the notation some-

what. Tominimize®(Ay, 41, By, . .., Ay, By,) by standard methodsof calculus, we determine
A, and B,. by requiring that the following N = 2n + 1 conditions are satis ed:

(3.17) o ,
g(0) — 70 — ; (A cos kf + By sin k@)] de.

0P 0P
(3.18) oA =0,r=0,1,2,...,n, and 8. =0,r=1,2,...,n.
Forr=1,2,...,n,wethusaobtain
o " _ O0gn ()
1) == [ 200 -0 255 ar
" Ay .
= —2/ g(0) — 5 = (Aj coskf + By sinkf) | cosrf df = 0,
- k=1
0® " _ Ogn(0)
e20) o= [ 200 o0 S5 as
" A . .
= —2/ g(0) — 5 (Aj coskf + By sinkf) | sinrf df = 0.
- k=1

To evauate the integral in (3.19), we make use of the integrated results given by (1.19) and
(1.21) on page 15:

. 0, ifk#£r .
/ coskfcosrfdf =qx, ifk=r+#0, and / sin k@ cosrf df = 0,
- 21, ifk=7r=0 -

and we obtain
(3.21) / g(0) cosrb df = Ar/ cos? 0 df = wA,,

Solving for A, in (3.21), we have

(3.22) A, = l/ g(@)cosrfdd, r=1,2,... n.
™ —T

Similarly, we evaluate the integral in (3.20) using the identities (which were given by (1.20)
and (1.21) on page 15)

. 0, ifk#r .
/ sinkfsinrfdfd = ¢ n, ifk=r+#0, and / coskfsinrf df = 0,
- 0, ifk=r=0 -
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and we obtain

(3.23) / g(0)sinrf df = Br/ sin®rf df = 7 B,.

—T

Solving for B, in (3.23), we have

(3.24) B, = l/ g(@)sinrfdf, r=1,2,...,n.
L
For r = 0, werequire
0P g . Ogn(0)
T Ap = ) 1
= —2/ g(0) — o (Ay coskf + By, sin k6) 5 do =0,
- k=1
whichissimpli ed to
T AO s
(3.25) / g(0)do = 7/ do = mAy.

Solving for Ay in (3.25), we have

Ag =+ / g(0)do = / 9(0) cos 0 db,
T™J)_x ™) _x
which can be obtained directly from Equation (3.22) by allowing r = 0 there.

Since Formulas(3.22) and (3.24) are mathematically equivalent to Formulas(3.1) and (3.2)
in Dirichlet stheorem, we have re-derived the Fourier coef cientsby nding them asthe solu-
tion to aleast-squares problem.

3.9 Orthogonal Projections and Fourier Series

Orthogonal projections are of fundamental importance in the theory of Fourier series and in
many other branches of mathematics. In this section we shall review relevant concepts and
results from linear algebra before we apply them to solve the least-squares problem from the
preceding section in a more general setting (without involving calculus). We then proceed to
study the convergence of Fourier series as well as the Gibbs phenomenonin the next section.

We begin with the de nition which alows us to address the orthogonality of both real-
valued and complex-valued functions. (The terms used in the den ition are explained in the
remarksthat follow.)

Definition 3.16 If f and g are elements of a linear space V' equipped with an inner product
(,),wesay f and g are orthogonal elements of V' whenever (f, g) = 0.

Remark 3.17 A classof functions, all having the samedomain, issaidtoforma linear space
if (i) the sum of any two member functions of the class is also a member; (ii) every scalar
multiple of amember function is also a member.

Given below are examples of linear spaces with each being a class of functionsde ned on
thered line.
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(a) All periodic functionswith period T'.
(b) All functionswith the property f(1) =
(c) All functionspossessing at most a nite number of discontinuities.

(d) All functionswith the property f(2.5) = f(5).

Remark 3.18 The class of all functions de ned and continuous in the interval
a <t < bisalinear space, and it is commonly denoted as C|a, b]; the class of all func-
tions possessing continuous derivatives of order n in theinterval ¢ < t < b isaso alinear
space, and it is denoted as C™[a, b]. (Note that only one-sided derivatives are required at the
end points, becausethe behavior of the function outsidethedomaina < ¢t < b doesnot concern
us.)

Remark 3.19 An inner product in alinear space is a function of pairs of elements of the
space. That is, for each pair f and g in the linear space there is scalar (f, g) satisfying the
following axioms:

Axiom 1. fy>0forevery f,and (f, f) = 0if and only if f isthe zero element.

Axiom 2. (f, g) = (g, f) for every pair f and g.

{f,
(

Axiom 3. (af + Bg, h) = a(f, h) + 3 (g, h).
(f, ag+Bh) =a(f, g) +B(f, h).

In general, the functions f and g may be rea-valued or complex-valued; hence, the scalar
(f, g) may bereal or complex, so arethe scalar constants« and 3. Asusual, the overbar means
complex conjugate, which can be omitted when we are only dealing with elementsin real linear
spaces. Note that (f, f) must be real for al f (real or complex) because (f, f) = (f, f)
according to axiom 2. Note also that axiom 4 is true whether it is explicitly given asan axiom,
becauseitisimplied by axioms 2 and 3:

Axiom 4.

(f. ag+ Bh) = {ag + Bh, f) (by axiom 2)
=a(g, f) +B(h, f)  (byaxiom3)
=al(g, f)+06 (h, )
=alf,g9)+0B(f,h)  (byaxiom2)

Remark 3.20 For f, g € C|a, b], aninner product satisfying the four axiomsis

b [
(3.26) (f, g) = / F(t) gD dt

If g(t) = wu(t) + ju(t), where u(t) and v(t) are real-valued, then its complex conjugate is

g(t) = u(t) — jo(t); for real-valued g(t), we simply have g(t) = g(t).

Remark 3.21 If the linear space V' is equipped with an inner product, then for every f € V,
we have (f, f) > 0, and its norm may be de ned by

(3:27) (FAISRVAV A R
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Hence, an inner product linear space is also called a normed linear space (i.e., a space with a
measure associated with it). Using the inner product given by (3.26), we can directly de ne
the norm by expressing

b b
(3.28) 12 = / F(t) T dt = / O dt.

Notethat |f(¢)|?= f2(t) if f(t) isreal-valued. We can also use the norm || f — ¢|| to measure
the difference between two functions.

Remark 3.22 Theresults given by (1.19), (1.20), and (1.21) on page 15 may be used to show
that the following pairs of sinusoidal functions are orthogonal over [—, =|:

(cosk97cosr6‘>:/ coskf cosr@dd =0, ifk#r, k>0,r>0;

(3.29) (sin k), sinrd) = / sinkf sinr@df =0, ifk#£r, k>1,r>1;

™

(cos kb, sinrf) = / coskf sinr6df =0, foralk >0, andalr > 1.

—T

Remark 3.23 Since f(0) = cosk# isan even function and ¢(6) = sin k6 is an odd function,
by Theorems 3.11 and 3.12 on pages 51 and 52 we have

/ cos kB cosrfdf = 2 / cos k6 cosrf do,

(3.30) .

/ sin k6 sinrf df = 2 / sin k6 sinr6 do,
-7 0

and they allow theinner products (cos k6, cos r6) and (sin k6, sin r6) de ned over theinterval
[0, 7] to share the results from (3.29). That is,

(cos kA, cos ) “:"‘f/ cosk® cosrfdf =0, ifk#r, k>0, r>0;
(3.31) o

(sin k6, sinr@)d:ef/ sink@ sinr0dd =0, ifk#£r, k>1,r> 1.
0

Hence, the pairs of sinusoidal functionsin (3.31) are also orthogonal over [0, 7].

Theorem 3.24 (Pythagorean theorem) If (f, g) = 0, then || f + g/|> = |IfII> + llg]|*.

Proof:
If+gl>=(f+9, f+9)
=, f+g9 +{g f+9) (by axiom 3)
={f, £)+(f. 9) + (9. [) + (9, 9) (by axiom 4)
= IfII?+ (£, 9) + (£, ) + llg|? (by axiom 2)
= [I£11*+ llgl*. (. (f, g)=0)

Theorem 3.25 (Parallelogram theorem) || f + g||*> + || f — gl|* = 2| f1|* + 2||9/|>-
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Proof: Since we have already obtained the expression

1f + g1 = I£11* + (f, 9) + {f. 9) + gl

in the proof of Theorem 3.24, we have, by similar steps,

If=gl>=IfI?=(f. 9) = {f, ) + gl

and the result follows. [ |

Theorem 3.26 The inner product (f, g) can be written entirely in terms of the norm in the
following form:

4
=lZ "llf+iFgl?, wherej = V=1
4 ’ )

(3.32) <
=i[||f+g|\2—|\f 91> + il f + gl = dllf —dall?] -

Proof: We prove this result by reducing the right side to (f, g). Note that we have already
obtained the inner product expressions for the rst two terms in the proofs of Theorems 3.24
and 3.25, which give us the partial result:

(333 If+gl? = IIf = glI* = 2{f, g) +2{g, f)-

We proceed to nd the inner product expression for the third term:

i(f +3g, f+3g)

[(f, )+ {f. 99) + (g, ) + (g, j9)]
i[(f, 1)+ 3 9) +3lg, £+ 79, 9)]
(o )Y+ (f9) =g, f) + (g, 9)-

By similar steps we obtain the inner product expression for the fourth term:;

ilf + gl =

Jllf = igll* = i{f, £) = {f, 9) + g, £) +ilg, jg)]-
The partial result involving the last two termsis
(3.34) llf+3gl® =3I f = dgl® = 2(f, 9) — 2(g, f).

We then obtain, on summing (3.33) and (3.34) as well as including the factor % on both sides
of the equation, the desired resullt. |

Definition 3.27 A sequence ¢1, ¢2, ¢3, ... of elements of a normed linear space V' is said to
be orthogonal if (¢x, ¢.) = 0 whenever k #£ r and ||¢x || # 0 for every k. A sequenceis said
to be orthonormal if it is orthogonal and || ¢y || = 1 for every k.

Remark 3.28 Thisde n ition appliesto both finite or infinite sequences.

Remark 3.29 Theinner product results from (3.29) show that each of the following sequences
is orthogonal over [—, =]
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(@) 1, cosh, cos26, ..., cosnb, ...
(b) sinf, sin26, ..., sinnd, ...

() 1, cosf, sinb, ..., cosnb, sinnb, ....
Theorem 3.30 (Parseval stheorem) If f(6) isareal-valued periodic function represented by

Ao

k.
5 +2Akcosk0+Bkslnk9— Z Che’

k=1 k=—o0

f0) =

then the power content of f(#) inthe period 27 is de n ed as the mean-square value

1 [ A 1 =
(3.35) %/ Poyde="2+ S Bi= Y ok
- k=1

k=—00

Proof: Using the inner product properties given by (3.29) and the integrated results given
by (1.19) and (1.20) on page 15, we obtain

27r/_7,f de_%/

A 1 2 .2
g d9+%Z[A /ﬂrcos k9d9+Bk/:1n k@dﬁ}

2

A
do

20 +2Akcosk9+Bksmk9

o k=1
A2 1S
FREP I R (by (1.19) and (1_20))
> A A2+BQ
= D IG. ( 002707 |C_k|*+ |C]* = k2 k)
k=—o0

[
Remark 3.31 Theinner product results from (3.31) show that each of the following sequences
is orthogonal over [0, ]:
(@) 1, cosh, cos20, ..., cosnb, ...

(b) sinf, sin20, ..., sinnd, ....
Remark 3.32 From identities (1.19) and (1.20) on page 15, we have

2T iszO.

|| cos k6|2 = (cos kb, cos k) = / cos? k6 df = ) ;
—r 7 ifk>0

(3.36)
|| sin k6||* = (sin k6, sin k@) = / sinkfdf =7, ifk#0.

Using the computed norms to scale the corresponding elements in each orthogonal sequence,
we obtain the orthonormal sequencesde ned on theinterval [—, 7

(a) 0s 6, % cos26, ... cosnd,

"

a|~
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(b) —=sind, sm 20, \/177 sinnd, ...

©) = To COSG sin 6, ..,fcosn6‘7fsmn9

’ f
Example 3.33 Show that the complex trigonometric sequencede ned by the periodic function
br = \/%ej’“’ for k € (—o0, 0o0) isan orthonormal sequence.

Proof: We apply the inner product integral (3.26) over the interval [a, b] = [—, 7], which
correspondsto the longest period of ¢, because e7#(9+27/k) — ¢ik9 for every k.

LT eitk=00|" (b— 8
F - = k0 o= b0 g — —r _ sin(k —Om _ .
ork # L, (¢r, de) 5 /_7r eIk o—ith g e . 0

For k = £, we have ||¢¢||® = (b, ¢¢) = 2—/ ee=1%qp = 2i/ do = 1.

™

3.9.1 The Cauchy-Schwarz inequality

Since the version of Cauchy—Schwrz inequality used in the real vector spaces involves only
real-valued dot products, we should point out that complications do arise when we must now
work with complex inner product spaces, because ( f, g) need not be areal number. Thisfactis
re ected by thedifferent requirementsin the proof aswell asthe necessity of using the modulus
(absolute value) of (f, ¢) in the left side of the inequality given by Theorem 3.34. Further
complication occurs when we use the inner product de ned by (3.26) on piecewise continuous
functions, because it becomes necessary to relax the de nition of the inner product (and hence
the norm) to permit (g, g) = 0 (and hence||g|| = 0), even though g is not identically zero. We
then have what is called a pseudo inner product. For example, if g(¢ ) =0 everywherein [a, b]
except at one point ¢ = ¢, and we let g(t,) = 1, then we have (g, ¢ f lg(t)]? = 0, but
g(t) isnot identically zero. We therefore present two proofs for Theorem 3.34: the rst proof
is simpler but it is not valid in its present form if the part requiring ¢ # zero function —=
(g, g) # 0 i sdropped from axiom (1); the second proof requires more work but it would still
be valid for pseudo inner products.

Theorem 3.34 The Cauchy—Schwrz inequality for every pair f and g from a complex inner
product space V' is given by

(337) 1 ol < A1 Mgl

The First Proof: If both f and ¢ areidentically zero, then the equality holds because (f, g) =
0, | fII? = 0,and||g||* = 0. We therefore assume that one element of the pair is not identically
zero, and we assume g # zero function without loss of generality. According to axiom (1),
(g, 9)% = ||g||* # 0, and we have, for every scalar ),

0<(f=Ag, f=Ag)={f, [ —2g9) = Ng, [ —Ag) (by axiom 3)
(3.38) =(f. /)= X/, 9) — Mg, f) + AN (g, g) (by axiom 4)
= IfI? = A/, 9y = AX(f, 9) + AN |lgl”>.  (by axiom 2)
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Thelast two terms on the right side may cancel each other if we set

N <f7 g>
A=l

The inequality from (3.38) isthus simpli ed to

{f, 9)(f, 9)
lgll*

sothat X | g|? = A(f, g).

[(f, 9)?

=I£1” - ,
9112

0 < [IFII* = X(f, g) = IIFII* ~

or equivalently,
0 < [IFIPgl* = 1{f, 9},

which yields the Cauchy—Schwrz inequality. |

The Second Proof: In this proof we consider two cases based on the value of the inner
product (f, g). If (f, g) = 0, the Cauchy—Schwrz inequality is valid, since the right side
of (3.37) cannot be negative. We consider next the case when {(f, g) # 0. By taking the same
initial stepsfrom the r st proof, we again arrive at the inequality

(3.39) 0<(f=Ag, f=Ag) = IFI7 = X(f. 9) = A(F, 9) + M) lgll>.

In order not to make any assumption about the value of ||g||> = (g, g), we avoid using any ex-
pression involving ||¢|| in the denominator. Suppose we now continue by letting A = v(f, g),
where v is an arbitrary real number so that A = 7 (f, g) = v (f, g), we shall obtain

0 < IFIIP = X{f, g) = A(f, g) + AX||g|?
(3.40) =£17 =~ {f. 9){f 9) =7 s 9){fs 9) +¥°(F. 9){f. 9)llgll®
= I£1? =2y f, 9P + 21 9 Pllgll®.

By expressing theright side as a quadratic expression in the arbitrary real number ~, we obtain
(3.41) ay?+by+c>0 forevery .

Becausethe quadratic formulahasreal coef cients , namely, a = |(f, ¢)|2||lgl|?, b = —2|{f, g)|?,
and ¢ = || f||?, and the formula represents a nonnegative number for all values of the real vari-
able ~, we conclude that the quadratic equation a~y? + by + ¢ = 0 cannot have two distinct real
roots v, and v», sinceif it did there would be values of ~ for which ay? + by + ¢ < 0, which
is acontradiction. Therefore, the discriminant 52 — 4ac cannot be positive (otherwise we have
two distinct real roots), and we must have

b® —dac = 4|(f, 9)I* = 4I{f, 9)PllglIF1I* < 0,

which yields
A(f, oIt < A o PllallPIANP

Since (f, g) # 0, we can divide both sidesby 4/(f, g)|? to obtain

1(f, o < I1F1P1lgl%,

which completes the proof. |
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Example 3.35 Use the Cauchy—Schwrz inequality to show that

b 2 b
(3.42) V |h(t)|dt] g(b—a)/ |h(t)| dt.

Proof: To derive this inequality, we apply Theorem 3.34 with the inner product de ned
by (3.26) on page 64 to the pair f(t) = |h(t)| and g(t) = 1, and we obtain

_ /ab‘h(t)‘dtzz [/ab|h(t)]dtr,
171Nl = l/m (0|0 |dt] V ]= v [

The desired result follows because |(f, ¢)|2 < || £112]l91>. n

Example 3.36 Usethe result in Examples 3.35 to show that

/abg(t) dt — /abu(t) dt

Proof: Since the result in Example 3.35 can also be expressed as

(3.43)

< \/mug(t) - V(t)H.

b
(3.44) / |h(t)| dt < Vb —allh(t)]],

by letting h(t) = g(t) — v(t) weimmediately have

r

The desired inequality follows because

/abg(t)dt—/abu(t)dt =

g(t) — V(t)‘ dt <Vb—a Hg(t) - z/(t)H.

/ (ot0) — vtt)) ar| < / b

g(t) — u(t)’ dt.

Example 3.37 Use the Cauchy—Schwrz inequality to show that

/2 w/2 /2
(3.45) / sin @ cos®"6 df < / sin? 6 cos2nf df / cos2n@ df.
0 0 0

Proof: By applying the inner product (3.26) to real functions f(#) and g(9), the inequality
given by Theorem 3.34 may be directly expressed as

bl < Wabﬁ(e)da/abgz(o)de

The desired result is obtained if welet f(0) = sin 6 cos™ § and g(6) = cos™ 6. [

(3.46)
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3.9.2 The Minkowski inequality

Theorem 3.38 The Minkowski inequality for every pair f and g from acomplex inner product
space V' is given by

(3.47) I1f +gll < 1171+ lgll-

Proof: Since the inner product {f, g) is assumed to be acomplex scalar z = a + jb, we shall
make use of the property z + Z = 2a < 2|z| in the proof. In addition, we also need the
Cauchy—Schwrz inequality as shown bel ow.

If+gll>P=(f+g, f+9)

=(f, ) +{f, 9)+(f, 9)+ (9, 9) (by axioms3, 4, 2)
(3.48) <N AP+ 2[5 )l + llgll? (- z={f,g), 2 +7 < 2|2])
< IAI1Z =+ 20 fIHlgll + llg1l? (.- Cauchy—Schwarz inequality)
2
= (IF11+ llgll)™
We complete the proof by taking the positive square roots of both sides. |

Example 3.39 Use the Minkowski inequality to show that
@ If =gl < [If = Al + 1[I~ —gll
®) [1£1 = llgll < 115 = g1l

Proof: For part (a), we apply inequality (3.47)to ¢ = f — h and vy = h — g, and we obtain the
desired result:

If =gl = llo+ ol < Mgl + Il = [1f = bl + [k — gl
For part (b), we apply inequality (3.47)to ¢ = f — g and i) = g, and we obtain
1=+ ol < lgll + 1]l = If = gll + llgll;
which yields
(349 I =Nl < [1f = gll-
If we repeat the processwith ¢ = g — f and¢) = f, we shall have
(3.50) gl =11 < llg = £l =1If = gll-
To obtain the desired result, we simply combine (3.49) and (3.50) into asingle inequality, i.e.,

£ (I = llglh < IIf = gll, orequivaently, [[If]l—llgll| < IIf - gl-
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3.9.3 Projections

Definition 3.40 Let ¢ bean element of anormed linear space V with ||¢|| = 1. Forany f € V
the projection of f in the direction of ¢ isdenoted by proj (f : ¢) with theden ition

118

(351) proi(f : ¢) € (f, ¢)o.

Theorem 3.41 Theelement f isascalar multiple of ¢ if and only if proj(f : ¢) = f.
Proof: If f = a¢ for some scalar «, then we have
proj(f : ¢) = (a, 96 = ale, d)p = alpllPd=ap=f. (¢l =1)

Conversely, if proj(f : ¢) = f, thenby (3.51) wehave (f, ¢) ¢ = f,i.e., f isascaar multiple
of ¢. [ |
Theorem 3.42 If b = f—proj(f : ¢), thentheinner product (v, ¢) = 0, and ¢ isorthogonal
10 ¢.

Proof: By (3.51) we have proj(f : ¢) = A¢ for A = (f, ¢). Accordingly,

(1, @) =(f = Ao, §)
= (f, ¢) = Ao, 9) (by axiom 3)
= (f, o) = (f, &) lI9lI* (A=(f 9)
= 0. (" ¢l = 1 by den ition 3.40)

Definition 3.43 Let V denote a normed linear space, and let €2,, denote a subspace spanned
by an orthonormal sequence ¢+, ¢2, ..., ¢, INV. Theprojection of f € V into the subspace
Q,, isden ed by

(352) Proj(f: Qu) = D> _Proj(f: o) = > Aede, Whered, = (f, ¢r).

/=1 =1

Example 3.44 Let Q9,41 bethe subspace spanned by the orthonormal sequence

\/%7, %cos@, %sin@, . fcosnﬁ, fsmnH

Recall that these 2n + 1 elements were shown to have unit norm and be mutually orthogonal
with the inner product de ned by the de nite integral over any interval of length 27, namely,

(). 90) = [ 70) 5@ do

—T

Using the inner product property from axiom (4),

proj (f : ﬁg) = <f, %@#g = %(f, 9)9,
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we express the truncated Fourier series of a periodic function f(#) with period 27 as a projec-
tion into the subspace (22,11 according to de n ition 3.43. That is,

S2n+1 = proj(f : QQ7L+1)

>q

1 1 "
e59) = o - Z , cos k@) coskf + (f(0), sin k@) sin ko
. 71— k=1

n

—AO + Z Ay cos kb + By sin k6,

where
1 1 ("
(3.54) Ar = =(f(0), coskb) = ~ f(@) coskOdd, k=0,1,2,...,n;
™ iy —
1 ) 1 [" .
(3.55) Br = —{(f(0), sinkf) = — f(@)sink0dd, k=1,2,...,n
™ T ) _x

Theorem 3.45 proj(f : Q,,) = fif andonlyif f € Q,,.

Proof: If proj(f : Q,) = f, then by (3.52) f is alinear combination of ¢;, ¢o, ..., ¢n
from the orthonormal sequence which spans €2,,, hence f € Q,. Conversdly, if f € Q,,
then we may express f = > _7'_, a ¢y, Where the oy, s are scalars, and the ¢, s are from the
orthonormal sequence spanning €2,,, wethushave (i, ¢¢) = 0if k # £ and (¢, ¢¢) = 1. To
obtain proj(f : €,,) according to (3.52), we compute each coef cient A\, de ned by the inner
product { f, ¢¢), namely,

= (f. ¢¢) <Z Pk, ¢i> = ok, de) = ar(de, d) = au.
k=1

We thus have

proj(f : Q2y) ZM(M > g =f
=1

|
Example 3.46 Foreachg = Y";_, auey in Theorem 3.45, show that (g, g) = >_,_, |ae|*.
Proof: . . .
<Z e, > >, >—Za€<¢éazak¢k>
=1 =1 =1
Z ar(de, or) Zaea_e<¢e, Gr) = Z|O¢e|2-
=1 k=1 =1 /=1
|

Theorem 3.45 shows that for every f € (2, we can express it as a linear combination of
the elements from the ort honormal basis of €2,, conveniently, because such an expression is
given by proj(f : €, ) which explicitly de n es each coef cien t to be the inner product of f
and an element from the orthonormal sequence.
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Example 3.47 Let Qont1 again bethe subspace spanned by the orthonormal sequence

\/7, f cos 6, f sinf, ..., f cosnb, f sinnf. From Theorem 3.45, if f € Qopy1,
then f = proj(f : anH). Usmg the result for proj (f : Q2,1 directly from Example 3.44,
we now have

1 n
F0) = 540 + > " Ajcoskf + By sin ko,
k=1

with A, and B, de ned by (3.54) and (3.55); hence, the right side represents a Fourier series
of N = 2n + 1 terms. Note that if we want to apply the result from Example 3.46 to obtain
lf ()12 = (f(8), f(F)), we must use the coef cients with respect to the orthonormal basis.
Theresultis, therefore,

(f0), 10) = gw + > Akl 4 | B
k=1

Since (f(6) = [T f(o = ["_|f(6)|*d8, the same result is commonly ex-
pressed as

I 2. 1 5 2 2
W/_ﬂlf(@l 0 = GlA + 31T + B

Theorem 3.48 Let Q, be the subspace spanned by the orthonormal sequence
¢1, b2, ..., on. 1f Y = f—proj(f : Qy), theny isorthogonal to every element g, € Q.

Proof: By denition 3.40, proj (f : Q) = Y_4_; Aedw for Ay = (f, é). Therefore, for
{=1,2,...,N,wehave

(¥, pe) = < Zwk,@

[y be) — Z PYRCTGT)

(
=1
= ([, d0) — M{be, O¢) (. (Pr> de) =0, k #1)
(fs o) — Ao (. (e, de) = l|o)I> =1)
0 (o Xe = (f, b0))

To show that 1 is orthogonal to every gy € Q, We express gy = >, cucbe, and we show
that

7% gN = <¢7 Zaf¢/> Z ¢a a€¢/ ZOTF w st ( <¢7 ¢f> = O)
=1 =1 =1

3.9.4 Least-squares approximation

Theorem 3.45 also shows that if f & Qy, then f # proj(f : Q). Therefore, in general,
we can only approximate an arbitrary periodic function by a finite Fourier series. We show
next that if Q2 isasubspace of V, then for every f € V and every g, € Q, the difference
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|| f — gn|l isminimized when gy = proj(f : Q). In other words, we shall show that the best
least-squares approximation to f in the subspace Q2 isgiven by g, = proj(f : Q).

Theorem 3.49 If Q2 is a subspace of the normed linear space V' and 2 is spanned by the
orthonormal sequence ¢1, ¢o, ..., ¢x, thenforevery f € V, the element g, € Q for which
| f = gnlI* isaminimumis gy = proj(f : Q).

Proof: Suppose || f — gx||? isminimized by gx = Y1, axdr € Qy, Wherethe coef cients
ay, are unknowns to be determined. We proceed to evaluate the inner product de ning || f —
gn|I?, and we obtain

(f=gn, f=gn)={f, [) = {fs gn) — (9w, |
= A1 =D a(f, o) —
k=1

-~

+ <gN7 gN>

ar(on, )+ ol
k=1

NE

el
Il

1

ar(f, o)+ Y _laxl?

k=1

NE

= FI1P =D a(f, o) —
k=1

el
Il
—

=17 =D @A =Y anhe + > aran, where X, =(f, ¢x),
k=1 k=1 k=1

= 12+ 30 (Rehe = Tehs — ki + e ) — 30 Nk
k=1 k=1

RS (R — ) (v — ) = A

k=1 k=1
N N
=112+ 7 e — e = Sl
k=1 k=1

To minimize the right side, we focus on the only term involving the unknown «y s, i.e., the
term Zﬁzl |)\k — Qg |2. Because thisterm cannot be negative, its minimum valueis zero, which
is reached by setting oy, = A\ for k = 1,2,..., N. Therefore, we minimize || f — gy||? by

choosing
N

gn = Y okbr = Mdk = > _(f, dr)dr = proj(f : ),
f=1 =1

k=1
which renders

(f=gw [ =gx) = IFIP =D Il = [IF1IP = llgwll?, where X, = (f, o).
k=1

Corollary 3.50 For element f in Theorem 3.49, g, = proj(f : Q) isthe best least-squares
approximation of f in the subspace 2, and the resulting (minimum) error is given by

0 < [If —gnll* = II£1* = lgnl*.

Proof: Thisresult was obtained in the proof of Theorem 3.49 when we set o, = A\ to enable
gn = Proj(f : Qu). [ |
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Corollary 3.51 If Q, is asubspace of the normed linear space V' and Q2 is spanned by the
orthonormal sequence ¢1, ¢o, ..., ¢y, thenfor every f in V', we have

1£12 = STIE 60l
k=1

Proof: Since || f||> > |lg~||? is an immediate result from Corollary 3.50, and ||gx||? =
S a1 1{f, ¢x)|? was shown in the proof of Theorem 3.49, the desired result follows. [

Example 3.52 Let N = 2n + 1 and let Q, be the subspace spanned by the orthonormal se-

quenceﬁ, fcose, fsm9 e, fcosnﬁ, fsmnﬁ In Example 3.44 we have shown
that
(3.56) gn(0) = proj(f : Q) = %Ao + ) A coskd + By sin ko,

with A; and B;, de ned by (3.54) and (3.55). As mentioned before, the right side represents
atruncated Fourier series of f(6). From Theorem 3.49, the N-term Fourier series of f(0) is
its best least-squares approximation in €2,. Using Corollary 3.50 and the result from Exam-
ple 3.47, the error between f () and its truncated Fourier series g (6) isgiven by

0 < [1£(8) = gn(O)II* = IF(O)I* — llgn (O)]

(3.57) fr n
F(©)2d6 — | Z1Aol? + 7 Y| Al + [Bf?
- k=1
the same result can be represented by the inequality
1 1 "
(358) — [ 1FO)2d0 > |0 + Y | Ak + | Bl
- k=1

which is referred to by some authors as Bessel s inequality for nite sum. Observe that this
inequality is simply the result of applying Corollary 3.51,

[FiE= 8]
k=1

toaspeci c set of orthonormal functions.

Example 3.53 Find the Fourier series coef cients of g(6) and verify that Bessel s inequality
(for nite sums) holdsfor the rst few terms.

1 0<o<nrm
0) = ’ - T .
9(0) {—1, —rT<0<0

We rst observethat g(—6) = —g(6), so g(#) isan odd function, and its Fourier series coef -
cients are given by Theorem 3.12 as
2

A, =0, £k=0,1,2,...; Bk:—/ g(0)sinkfdf, k=1,2,....
™ Jo
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Since g(8) = 1 for 6 € [0, 7], we obtain

9 [T 2
Bk:f/ sink&d@z—( cosk@‘ ) 2 (1 — coskr).
0 km km

. o 4 ..
Noting that By, = 0 if k iseven, and By, = T if k& isodd, we have
™

S : 4/ . in 3¢ in(2r +1)0
9):ZBQT+151H(2T+1)9:(smﬁ—i—su; + e % )
r=0

To verify Bessel sinequality for a n ite sum of NV terms, we have on the left-hand side

l/ g%&)d&:l/ do =2;
T J)_r T J)_r

on the right-hand side we have the partial sum of N nonzeroterms, i.e.,
N— N-1
16 1 16 1 1 1
e 1 — .
2::0 2r+l = Z(2r+1) 7r2< Tgtos +(2N—1)2>

It can now beveri ed that

16 160 4144
S:—<2 So=—<2, S3=—-<2, ..., étc.
! PToon2 =7 P T ogpg2 =0
. . . 4
This example also shows that the nonzero Fourier coef cient Ba,41 = m — 0 as
71'

k=2r+1— oo.

3.9.5 Bessel’s inequality and Riemann’s lemma

Werevisit the Bessal sinequality (restricted for nite sum at the moment) given by (3.58), and
we express the same result as

_ 1 2 = 2 2
(3.59) Sn = 514l + ) AP + [Bil* < M,
k=1
where M = X [" | f(0)|?df is a constant for given f. Because So, Si, Sa, ... Sn, ... are
partial sums associated with the following in nite series of nonnegative terms:
1 o0
. —| Ap)? Arl? + |Bk|?
(360) 5140l +kZ:1| el + 1Bl

wehave Sy < 51 <5y <--- <5, <...,andwe have found the upper bound M such that
every S, < M; hence, this sequence of partial sums has alimit, and

lim S, < M.

n—oo

We have now obtained the full- ed ged Bessel sinequality:

(3.61) lim 5, = |A |2+Z|Ak|2+|f-%|2 |f( )[2db;
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which is, again, aspecial case of the general resullt:

ZI , o) < IIFIIP,

which isvalid for any orthonormal sequenceqbl, D2y oy Dy v e

Example 3.54 We continue with Example 3.53, and we may now verify that the full- edged
Bessel sinequality holds because

16 1 16 (72
Am Sy = ;)B?TH (2412 w2 (?) =%
where the numerical result for the sum of thein n ite series was established by identity (3.8) in

Example 3.15.

To further analyze the in nite series, we recall the following: (i) an in nite seriesis said
to be convergent if and only if the sequence of its partial sums has a limit; (ii) the terms of
a convergent in nite series must tend to zero. Since the in nite series (3.60) was shown to
satisfy the condition set out in (i) for convergence, we must have

Jim |Ax|? =0, and Jim |Bi|? =0,

whichimpliesthat both A5, and By, tendto Oask — oco. Whentheresultsare given speci cally
for the Fourier coef cients, they commonly appear in the following form:

(3.62) hm Ap = hm —/ f(0) cos k6 do = 0;
(3.63) hm By = hm —/ f(0)sink6 do = 0.
We remark that because A, = <f, ) With ¢, = —= cos ko), and By, = 17T (f, ) with

Yy = % sin ke,theabovereaJItsappIytom nlteseneswnh coef cien ts A, = (f, ¢x) when-
ever g1, ¢a, ¢3, ... are mutualy orthonormal. (The zero limit is not affected by absorbing
an additional constant factor % into the Fourier coef cients A, and Bj.) The latter result is
known as Riemann slemma, which isformally given as Lemma 3.55.

Lemma 3.55 (Riemann slemma) For agiven function f with [ | f(#)|?d6 < oo, and for a
given sequence of orthonormal functions ¢+, ¢, @3, ...,

Example 3.56 Assumingthat [ |g(6)|?d6 < oo, use Riemann slemmato provethat

(3.64) lim 1 /W g(0)sin(k + 5)6df = 0.

k—oo T _x

Proof: At rst we write out the integral in such aform that Riemann slemmamay be applied.

l/ g(0)sin(k+ )60 db = l/ g(0) (smkﬁcosg + cos kf sin 9) do

™ T —T

= l/ [9(9) sin g} cos k@ df + l/ [9(6‘) cos g] sin k6 do

L —— TJ—m
1 T i

1
— U(0) coskfdb + — / V(0) sin k6 do,
T T

—Tr —Tr



3.10. CONVERGENCE OF THE FOURIER SERIES

79

where U (6) = g(6) sin & and V(6) = g(0) cos £. By Riemann slemma, the two integrals on
theright side tend to zero:
1 1
klirrgog/ U(8) cos k6 do = ﬁklin;o<U(6‘)7ﬁcosk9> =0
N : . I
klingo = /_7T V(0)sin k6 do = 7 klin;o<V(9), N smk6‘> =

Hence, theintegral on theleft side must also tend to zero as k — oo, and we obtain the desired
result. |

Example 3.57 Assuming that fo lg(0)]?dd < oo, use Riemann slemmato prove that

lim —
k—oo T

(3.65) ! /ﬂg(ﬁ) sin(k + £)0df = 0.
0

Proof: By taking the same initial stepsin Example 3.56 we rewrite

1 [" 1 [" 1 ["
/ g(@)sin(k+%)9d9:f/ U(G)cosk@d@%—f/ V(6) sin k6 df),
0 ™ Jo ™ Jo

™

where U(0) = ¢(0) bln Z2,and V(0) = g(0)cos g Applying Riemann s lemma with the
orthonormal cosine or sme sequences de ned via the inner products given by (3.31) over the
interval [0, 7], the two integrals on the right side tend to zero:

.17 1
kllj{)lo ;/ U(0) cos k6 df = E 1LI{)10<U(9) ﬁ cos k9> =0,
I / V(0)sinkdf = —— 1i (v s ko)

im — ) sin = —— lim , —= sin =

The desired result follows.

3.10 Convergence of the Fourier Series

3.10.1 Starting with a concrete example

Recall Example 3.14 from Section 3.4, in which we show that the function f(¢) = t — ¢?
(0 < t < 1) hasthree expansions:

1 c052k7rt
6 2 Z ;
8 — bln(2k - l)ﬂ't
42 S N smer = )T
ft)y=t—t 7r3; 2k -1
1 4 LCoSkmt 2 o e sinkmt
- - = — - — 1) —.
3w ;( ) k2 T ;( ) k

Strictly speaking, the rst expansion isthe Fourier series of the periodic (even) function ¢, (¢),
—o0 < t < oo, whichisformally de ned as

t—t2,
—t — 12,

t e (0, 1]

te (1,0 g1t +2) =g1(t).

g1(t)
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The graph of ¢, (¢) is shown in Figure 3.8. Since ¢, (¢) is continuous at al points, Dirichlet s
theorem tells us that

oo

— Z Ay cos2kmt, with A, =

1 1
9 =75 R
k=1
is true everywhere. Because the size of the kth cosine term in the series is bounded by the
magnitude of its coef cient Ay, the partial sum (from a truncated Fourier series) approaches
g1(t) asfast asthe coef cient Ay tendsto 0. In this case, when & grows bigger (as more terms

are added), the coef cient A, — 0 asfastas1/k% — 0.

Figure 3.8 The graphs of periodic (even) g, (¢) and g1 (¢).

0.3

0.2F 4
0.1f —
0
g period of g (t) Corners |
-o2r 1 oceur 1
-1 *O‘.S *0.‘6 *O‘.4 *0.‘2 é 0.‘2 O‘.4 0.‘6 O‘.S 1
1
05F i
or 4
. LERN
s The derivative Jump discontinuities |
ofg,(t) occur
711 —018 —04‘6 —014 —04‘2 0 04‘2 014 04‘6 018 1
Observethat since
1-2t, te(0,1]
12 9 ) / /
gi(t) = gi(t+2)=g1(t)
—1-2t, te(=1,0] ’

the rst derivative of ¢ (¢) has jump discontinuitiesat ¢ = 0,+1,+2,..., and ¢;(¢) is said
to have corners at ¢ = 0,+1,+2,..., which are apparent in the graphs of ¢, (¢) and ¢ (¢)
shownin Figure 3.8

We consider next the second expansion, which is, strictly speaking, the Fourier series of
the periodic (odd) function go(t), —oco < t < oo, whichisformally dened as

_Jt=#* te(0,1] B
g2(t) = {t+t2, re (o0 g2(t +2) = ga().

The graph of g»(¢) isshownin Figure 3.9. Since g (t) isaso continuousat all points, Dirich-
let stheorem tells us that

sin(2r — 1)wt
g2( _WBZ (2r —1)3

is true everywhere. Because each sine mode is bounded by the size of its coef cient, the
partial sum (from a truncated Fourier series) approaches g-(t) as fast as the coef cient tends
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to 0. Inthis case, when k = 2r — 1 grows bigger (as more terms are added), the coef cient

By — 0 asfastas1/k® — 0. Since 1/k3 goesto zero faster than 1/k2, we conclude that the

second expansion convergesfaster thanthe rst expansion thereason (to be formally shown

in Section 3.10.3) being that g-(¢) has continuous rst derivative, whichisre ected by the fact

that no corners appear in the graph of g2 (¢) in Figure 3.9. Mathematically,

, 1-2t, te(0,1] , .
(t) = {H% te(o10 9a(t +2) = (1),

and g4 (¢) isindeed continuous everywhere.

Figure 3.9 The graphs of periodic (odd) g2(¢) and g4 (t).

0.3

o2 1 period of gz(t)

L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

The derivative
of g (1)

L L L L i L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Since both ¢, (¢) and g»(t) are everywhere continuous, their expansions converge to the
original functions at all points. However, this is no longer the case when we study the con-
vergence of the third expansion which is, strictly speaking, the Fourier series of the periodic
function gs(t), —oco < t < 0o, de nedas

gB(t) =1- tzv te (_17 1]5 g3(t+ 2) = g3(t)'

From the graph of gs(t) in Figure 3.10, we see that g3(¢) has jump discontinuities at ¢ =
+1,+3,+5,.... According to Dirichlet s theorem, while the third expansion still converges
to gs(t) at pomts of continuity, for every ¢, at which gs(t,) has a jump discontinuity, the
Fourier series converges to the average of its right- and left-hand limits. That is, at t, =
+1,43,45,...,

oo

4 i T cos kﬂ'z‘ 2 Z s kmta sin lmt
2 ™ '

Observe that for function gs(t), the average of the right- and left-hand limits is equal to the
constant —1 for al ¢, = +1,£3,45,.... Therefore, while the third expansion convergesto
theoriginal function gs(¢) at al pointsof continuity, the same expansion convergesto the value
of —1 at all points of jump discontinuity.

g3 (tD) + g3 (t;)
2

C,0|’—‘
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Figure 3.10 The graphs of three periods of g5 ().
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3 periods of gS(t)
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3.10.2 Pointwise convergence—a local property

Asremarked earlier, piecewise smooth functions satisfy Dirichlet conditions and we will study
the convergence of their Fourier series. Using the functions g1 (t), g2(t), and gs(¢) shown in
Figures 3.8, 3.9, and 3.10 as examples, we see that both corners and jump discontinuities
are permitted in a piecewise smooth functions; in addition, as we have remarked earlier, a
piecewise smooth function is not required to be de n ed at the points of jump discontinuities.

In the analysis we shall make use of the following properties of the Riemann integral from
the theory of calculus:

1. Every continuousfunction f is bounded and Riemann integrable on [a, b].
2. Every piecewise continuousfunction g on [a, b] isintegrable.
3. Let g and h beintegrablefunctionson [a, b] and let ¢ be area number, then
(@ cgisintegrableand [ cg(t) dt = ¢ [* g(t) dt.
(b) g+ hisintegrableand [’[g(t) + h(t)] dt = [* g(t)dt + [ h(t)dt.
(c) ghisintegrableon [a, b].
(d) ¢?isintegrableon [a, b].
() |g| isintegrableon [a, b], and | [ g(t) dt| < [|g(t)] dt.
(f) |g|? isintegrableon [a, b].
(g) changing the value of function g for a nite number of points does not change the

valueof [ g(t) dt.

We now proceed to prove that the Fourier series of a periodic piecewise smooth function
convergesto the normalized function value at every point. (Recall that ¢ is piecewise smooth
on [a, b] if both ¢ and its derivative ¢’ are piecewise continuous on [a, b].) Although the
analysis can be carried out using either variable ¢ (with period T') or variable § = 27t /T (with
period 27) and the Fourier series can be expressed in a number of mathematically equivalent
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forms, afunction g in variable # and a corresponding Fourier series expressed using complex
exponential modes would be most compact and convenient for the presentation here.

To begin the analysis, let g be an integrable function of period 27, we denote its truncated
Fourier series of N =2n+1 termsby

gN(H) = Z Ckejkea
k=—n

and we obtain the coef cientsfrom formula(3.16), i.e.,

1 (" ,
Ck / g@) e dp, —n<k<n.

T 2r

—T

In mathematical terms, our objectiveisto provethat for every 6, € [—, =],

[9n(80) —g(60)] =0

lim
N—oco

where g (6;) denotesthe rede ned normalized function value at every point ¢, i.e.,

g(0r) € w

Note that if 6, is a point of continuity, we have g(6,) = g(6, ), and the normalized function
preserves the values of the original function at all points of continuity. Therefore, the formula
we use to change the value of the original function at points of jump discontinuity may be used
to rede n ethe function value everywhere it will not affect the values of the original function
at points of continuity.

To achieve our objective, we need the results from the following two lemmas.

Lemma 3.58 Let ¢g(#) be an integrable function of period 2. Show that the partial sum of
the N =2n+1 terms from the truncated Fourier series of g() can be expressed in the integral
form

1 (7 sin(n + 2) A
(3.66) () = o / RS e ULy
2 J_ . sin 5
or equivalently,
T : 1 A
(3.67) 3(6) = 5- | ooyt
2 J_ . sin 2
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an(0) = Z Crelh? = 1 Z / g(T) e IF dT:| eIko (by den ition of C},)
n w+0 ) )

= Z / g(r)e I+ dT] e% (- g(r) has period 27)

/ (0 + ) e IO+ d/\} 0 (et = 0+ \)

-/7r g(0 + \) e IREHN) gik? d/\}

= — / g(0 + X) e~ IkA d/\}

i e—j“] dA.

k=—n

n b

1 s

— /_ a0+
To obtain the integral form (3.66), we are now required to show that

(3.68) Z e IkX = Sm(nit” (limit of the right side existsas A — 0)

J—— Sin 3

We note that the left side is a power series expressed in z = e~7*, and we could make use of
the following result:

n

(3.69) (z_% —z%) Xn: 2k = Xn: A Z PLAS TP —z"+%,

k=—n k=—n k=—n

which allows us to express the power series

1
z 2 —z . 1
E zk:ﬁ if 2 27&z.
2 z2

(S

Letting z = e=7*, —7 < X < 7, we obtain the desired result:

n

Z o—IkA —

k=—n

eI (n+3)X _ g=i(n+3)X B sin(n + 3) A
= b\

DY 5 X
el2 —e J2 s 5

(limitis2n + 1 as A — 0)

Note that we have used Euler sidentity, namely, e/® — e~ = 2j sin a, in the last step.
To convert (3.66) to the equivalent integral form (3.67), we change variable A in (3.66) to
= —\, and we obtain

P T —sin(n+3)p o _ _
gN(H)——ﬂ o Q(G—N)Tn%dﬂ (Fp==AA=—p, d\ = —dp)
1 [t sin(n+ 3)p
- % . 9(0 - :u) sin% d
1 [T sin(n—l— l)/\ .
=— [ g6 —-N——2=d\.  (changedummy variable ; back to \)

DY
o sin 5
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Lemma 3.59 The value of the function g(6) de ned for any point § = 6, can be expressed
as an integral consistent with the partial sum g, (6) from Lemma 3.58. Such an expression is
speci cally constructed as
1 (" sin(n + )\
9(0e) = 7/ 9(913)(.7,\2) dA.
™ J)_xn S111 b}
Proof: Since 6, is a parameter independent of )\, we are asked to prove

9(6:) = 9(60) [1 | “(”?)Aw} ,

2 J_» sin 5

which is equivalent to showing that

T o l)\
/ s+ )X 45 — o,

Sin 3

Thisresult can be easily obtained if we integrate both sides of equation (3.68), i.e,

/71' sin Tl—l— dA / Z eijk)\d)\

sm 5 =

:/ 1+Z(e‘jk)‘+ejm)1 d\

k=1

= / 1d\+ / lz 2 cos Ic)\l d\x  (by Euler sformula)

k=1
=2+ [/ 2 cos kA d)\] (integrate term by term)
ot i 4512 km

k=1
= 2. (sinkm =0, 1<k<n)

[
Using the integral representation of g (6,) and g(6,) from the last two lemmas, we can
now prove the pointwise convergence theorem.

Theorem 3.60 If g(9) isapieceNisesmooth function of period 27, its Fourier series converges
to the normalized function value g(6,) = % [g(6;) + g(6, )] at every point 6.

Proof: Our objectiveisto show that for every 6, € [—, =],
[ 90 +9(6)]
N {gN(ef) 2 =0
On substituting the integral forms from Lemmas 3.58 and 3.59 for g (6,) and g(6,), we may
express 1 [gN(eg) — 9(6‘@)] intwo forms:
1 [7 sin(n + 3)A
1l _ I _ N 2)7
870 4[ui00 —gt00] = 1 | o000+ 0 —g00] FEEE
- 1 [T sin(n + )\
@7 a0 - 900] = 5 [ [s60- %) - 0] i 2 g

Sin 3
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We then obtain, on summing (3.70) and (3.71),

" sin(n + 3
NORTEr- {{Q(W +3) —29(00) + (6 — V)] <7+A)A} &

Sin 3
(3.72) ’ | N
- % i {[9(94 + ) —29(60) + g(6, — /\)} %} ir

2

In the derivation above it is valid to express [* {F()\)} d\ = 2 [ {F()\)} dX because the
integrand F'(\) on the right side of (3.72) is an even function, i.e., F(\) = F(—\) for A €
[0, 7]. Since g(6,) = 1[9(6;) + 9(6, )] at any point 6, we substitute this into both sides
of (3.72), and we obtain

G (60) — M

*/ 9(e +X) = wﬁﬂ(%HgWe—M}W dA.
(38.73) 1 / 260+ 3) — g6 +>} Sm(::; A i

T o / (0 —A) —g(6, )}m(;%” dX.

2

To prove that the limit of the left side tendsto zeroas N = 2n + 1 — oo, we must show
that both of the integrals on the right side tend to zero asn — oco. We show next that the rst
integral tendsto zero. Because we can rewrite
1 (7 sin(n + )\
L= | |90+ ) - g(67)] snnt ) g

2 Jo sin §

_ 1 7" |:g(6‘e+)\) _9(6‘;)] [ ./\)\‘| sin(n—i—%))\ dX,

2 Jo A sin §

we shall let N
A sin

U(\) = T
2

and our objective now is to show that G(\) = U(A)V () isintegrable on [0, 7]. With this
result we can immediately apply the identity (3.65) from Example 3.57 (an application of

Riemann slemma) to obtain
lim f/ G(A bln(n+ )/\ dA=0

and it followsthat the integral I; tendsto zero asn — oo.
Since the product of two integrable functions is integrable, we examine U () and V()

separately. We see that U () isunde nedat A\ = 0; for U()\) to be piecewise continuous (and

thusintegrable on [0, 7] ), we need to show that it hasa n itelimitas A\ — 0. Thisisindeed

the case, because

90 +A) — g(6))

lim U(A) = lim
A—0+ A—0t

= 9/(9Z)a
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and we know that the piecewise smooth function g(#) hasa nite one-sided derivative every-
where.

For V() we encounter the same dif culty at A = 0, and we need to show that it has a
nitelimitas A — 0%. By L Hospital srule, we obtain

lim V() = lim = lim Y

D =2,
A—0 A—0 sin D) A—0 cos 5

s0 V() is piecewise continuous and thusintegrable on [0, 7].

The second integral in (3.73) can be shown to tend to zero in a similar manner. With both
integrals on the right side of (3.73) tending to zero, we obtain the desired result for every
O¢ € [—m, 7],

. _96) +9(6,)] _
RSO 2 =0
[

It is worth noting that we may use the same proof for the following theorem, where the

Fourier series may not converge at every point because we do not require g to be piecewise

smooth.

Theorem 3.61 If ¢(#) is an integrable function of period 2, its Fourier series converges to
2[9(6)) + g(6,)] at any point 6, where g has both aright-sided and a |ft-sided derivative.

Corollary 3.62 If g(6) is an integrable function of period 2, its Fourier series converges to
g(0,) at any point where g is differentiable.

Proof: If g isdifferentiable at ,, then
(i) g iscontinuousat 6, and we have g(6,) = g(6,) = g(6, );

(i) g satises Theorem 3.61, and its Fourier series convergesto 3 [g(6,) + g(6, )], which
must equal g(8,) based on the result from (i).
|

3.10.3 The rate of convergence—a global property

Given a piecewise smooth function g(6) of period 27, we have shown that its Fourier series
converges at every point 8, € [—m, 7] in Theorem 3.60. The pointwise convergence of the
Fourier seriesisalocal property, because the number of termsrequired for a partial sum to get
closed to alimit at a particular point varieswith the location of the point 6, i.e., thelocal rate
of convergence varies from point to point, which is the cause of the Gibbs phenomenon to be
discussed in the next subsection. In this subsection we study the convergence of the Fourier
series in the global sense; that is, we examine how fast the coef cients A, and Bj, tend to
zero as k — ooth is provides a way to measure how fast a converging series tends to its
limit knowing only that all basis functions cos k6 and sin k6 are bounded by unity in size. As
demonstrated by Example 3.14 in Sections 3.4 and 3.10.1, it is possible to obtain more than
one Fourier series expansion when a time-limited function is extended into different periodic
functions (even, odd, or neither), and what affected the convergence rate is the continuity of
the nth derivative (n > 0) of the extended function. This mathematical connection can now be
formally established as shown below.
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Let g(#) be a piecewise smooth function of period 27 (whether g(6) is given or it results
from a periodic extension does not affect our analysis.) We consider the formal Fourier series
expansion of g(6) given by

g(0) = Ao + iA cos k6 + By, sin k6
g B 2 k k )

with coef cien tsfrom (3.14) and (3.15), namely,

1 s

Ak:f/ g(@)coskfdf, k=0,1,2,...
™)
1 (" .

Bk:—/ g(0)sinkfdf, k=1,2,....
™ —Tr

Since both ¢(6) and ¢’(#) are presumed to be piecewise continuous, we obtain each coef-
cien t by evaluating the integral on theright side over M subintervals (pieces)

1 M O 1 M Om
a=t5 / g(0)cosk0dd, By="1 3 / 9(6) sin k6 do,
™ m=1" 0m-1 Q m=1"70m-1

where 0y = —m, O, = 7, and the other 6,,, s mark the ends of each subinterval (piece) where
the potential jump discontinuitiesin the function or in its derivative occur. Note that g(6) has
corners wherever ¢’(6) has jump discontinuities.

To apply the technique of integration by parts to the integral f;’ g(0) cos k6 db, we let
u = g(0), dv = cos k6 df, and we obtain

b b
1 b1
/ g(0) cos k6 df = uv‘z —vdu= % g(0)sinkf| — E/ sin k6 g'(0) do.

Using the above result witha = 6,,,_; and b = 6,,,, we obtain

1 & O 1 & o
_ = . o ! .
A = [lm Z g(0) 51nk9‘0m1] o Z /gm_1 g'(0) sin k6 d6.

m=1 m=1

By expanding the sum of the integrated terms, we have (for an example with M = 3)

Om 1 o .
I {9(91 )sin k61 — g(6) sin k6o

3
1
— 0) sin k0
o mZ:l g(0) sin
+ (65 ) sin ks — g(67) sin k6,

+ g(03 ) sin kO3 — g(05) sin kb

0 if g(0) is everywhere continuous,
2k < £ it g(0) hasjump discontinuities,

€
k
where ¢ is a constant independent of %, because g(6;%.) and g(6;,) do not vary with &, and
sin k@, is bounded by 1 in size. Notethat g(¢;) = g(7~), and g(0F) = g(—7") = g(= )

because g(¢) has a period of 27. When ¢(9) is everywhere continuous, we have g(65 ) =
9(6¢) and g(6;,) = g(6;%,) at al other end points, so the six integrated terms sum to zero. We
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can then repeat the integration by parts process to evaluate the new integral that remainsand
obtain

:——Z/ " 0) sin k0 do

m=1

[ Z g'(0) cos kG’ ] Z / ! ) cos k6 df.

m=1 m 1

By the same argument we will again have the integrated terms summed to zero if the rst
derivative ¢’(#) is everywhere continuous, and we are left with a new integral which now in-
volvesfactor 1/k2 and g” () in theintegrand. This process can be repeated until the integrated
terms involving the factor 1/k"*! and the nth derivative ¢(™) (6) cannot cancel out because
g™ () is discontinuous somewhere. A summary of our ndings follows.

If g(0) hasjump discontinuities, we expect the coef cients A, to be of order 1/k, because
the integrated terms involving the factor 1/ do not cancel out in the analysis. As aresult, as
k — oo, the coef cien ts Ay, approach zero at arate proportional to 1/k. On the other hand, if
g(#) is everywhere continuous, then the coef cients A, tend to zero at least as fast as 1/k2.
If, in addition, the rst derivative ¢’(6) is discontinuous somewhere, then A, s tend to zero at
arate proportional to 1/k2.

In general, if piecewise smooth g(6) andits r st n — 1 derivatives are everywhere continu-
ous, thenas k — oo, the coef cients Ay, tend to zero at least asfast as 1/k™*1. If, in addition,
the nth derivativeis discontinuous somewhere, then the A;, s tend to zero at arate proportional
to 1/k"*1. By essentially identical analysis the preceding statements are true for coef cien ts
By.

Now that we complete the analysis, it would be timely and useful to revisit Example 3.14
in Section 3.10.1, in which we examined and compared the different convergencerates of three
Fourier series.

3.10.4 The Gibbs phenomenon

We shall study the Gibbs phenomenon using Example 3.53 from Section 3.9.4, in which we
have shown that for the periodic squarewave function

1, 0<f<m
0) = - 0+ 2m) = g(0),
9(0) {_17 Cr<8<0 g( ) =9(0)

the partial sum of the rst V nonzero terms of its Fourier seriesis given by

sin 30 sin(2N — 1)9] 4 EN: sin(2k — 1)0

- 41 .
(3.74) gn(0) = - [Sln9+ 3 oN _ 1 — Y

T =1
Observe that g(6) has jump discontinuities of size 2 at § = 0,+x, +2m,..., and that the
graphsof g5(0), g7(6), go(0), and g11(0) in Figure 3.11 show undying ripples moving toward
(and staying) at these discontinuities. This peculiar effect is known as the Gibbs phenomenon
which we can neither reduce nor eliminate by including more terms from the Fourier series,
because it is caused by the nonuniform pointwise convergence of the (in nite) Fourier series
near the jump discontinuities.
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Figure 3.11 Gibbs phenomenonand nite Fourier series of the square wave.
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Since the sizes of the ripples are determined by the local maximaand minima (correspond-
ing to the peaksand valleysin the graph) of g (6), we proceedto nd theloca maxima/minima
by rst solving the nonlinear equation g}, () = 0, where

4 & a1 &

=y — = 2k —1)0 = = ~ _

g (0) = - Zcos(% 1)6 - lsma Zsm@cos(% 1)0]
k=1 k=1
(3.75) 4 l 1 EN: sin(2k)0 — sin(2k — 2)9]

7 |sing 2
k=1
_ 2sin(2N)6
71 sinf

On solving §4,(#) = 0 within the haf period (0, 7) we obtain zeros at 6, = rn/(2N), r =
1,2,..., 2N — 1. To estimate the local maximum or minimum values of g (6) at the 6, s as
N — oo, wemay expressit asan integral obtained directly fromitsderivative g’ (6) according
to the Fundamental Theorem of Calculus:

¥ sin(2N)A

dA.
sin A

0
(376)  Gu(0) = Gu(6) — G (0) = /O g dx =2 /0
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At = — ' r=1,2, , 2N — 1, wehave

2N’
T 2 [T/ CN) ¢in(2N)A
in (53) = = / =2
2N ™ Jo sin A\
2 (™ sinp 1 .
== _— d changevariable: 1 = 2N\
- /0 s (%) 23 (chang iz )
(377) _ 2/ SlIl,LL _N d
T Jo p sin (%) H
2 )|
== / sin A (A v) d. (change . to \)

As N — oo we have, by L Hospital srule,

sin (2?\,) . sinv . CcosV
X = lim = lim ——
2N

lim

N — oo

v—0 Vv v—0 1 ’

which allows us to obtain the limit value of (3.77):

@78 g (10) < 2 [EA [T, 2 T,
' v oN ) T T 0 A v 1 Jo A ’

where the numerical values of the sine-integral function,

6 .
(3.79) si(9) ¥ / S”;Adx,
0

can befound in standard mathematical tables. At 6, = «/(2N) for N = 100, wehavethe rst
local maximum

(1.8516) = 1.1788 > g(61).

=1|w

2
9100(01) = §100(0.016) ~ —Si (m) =~

Sinceg(6;) = 1 andthe jump sizeis 2 at the discontinuity at § = 0, the size of the overshoot
relative to the jumpismeasured by (1.1788 — 1) /2 = 9%, whichisbased on the limiting value
so it can not be further reduced or eliminated by letting N approach co. At 6, = 27 /(2N) for
N =100, we have the next local minimum

G100(02) = §100(0.0314) ~ %Si (2m) ~ %(1.4182) =0.90285 < g(fs).

Since g(62) = 1 and the jumpsize is 2 at the nearest discontinuity at § = 0, the size of the
undershoot relative to the jump is measured by (1 — 0.90285)/2 ~ 5%. Graphicaly, the
overshoots and undershoots of g, (#) are compressed/pinched into a spike (of the same mag-
nitude) at the nearest jump as N — oo. Mathematically, the pointwise convergence ensured
by Theorem 3.1 is not compromised because the nonin nitesimal overshoot occurs over an
interval whose length approacheszeroas N — oc.

3.10.5 The Dirichlet kernel perspective

In this subsection we shall try to understand the Gibbs phenomenon from a perspective which
can be applied to a wide range of functions, including but not limited to the square wave
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function studied exclusively in the last subsection. We begin by recalling Lemma 3.58, where
we proved that given an integrablefunction g(6) of period 27, we may expressthe N = (2n+1)-
term partial sum of its Fourier seriesin the integral form

T : 1 by
(3.80) 30) = 5 [ 90~ pSn Ay
2 J_ . sin §
By de n ing the Dirichlet integrating kernel
3.81 D,(\) = —JkX _ Sm(n72’
(381) () gj sl

(recall formula (3.68))

we may express (3.80) as
1

T2

(3.82) w0 =5 [ " 90— ) Da(N) d,

where both ¢(6) and D, (\) are periodic with period 27 th is property combined with the
change of variable allows us to derive one more useful expression for g (6):

- 1 g
35(6) = 5 [ 90 - NDalN) N
1 O+m
=5 g(p) Dn(0 — p) du (changevariable: ;1 = 6 — \)
T™Jo—n
= 2i g(p) Dn(0 — ) dp. (. g and D,, are periodic)
T™J -
We have thus proved that
(389 0(0) = 5= [ 9@ -NDaar= 5= [ gV D6~ N)dx
2 J_, 2 J_,

The Dirichlet kernel is an important tool in mathematical analysis and applicationswe shall
discuss rgtitsalternate formsand main propertiesbeforewe useit to explain the Gibbs effect.

1. The Dirichlet kernel in common use may be de ned by any one of the following formu-
las:
n ) .3 l )\
(3.84) Da(\) = Y e = M
h——n S11 b
When the same de n itions are expressed in terms of N =2n-+1 instead of n, we shall
use a different notation to avoid confusion:

e in(0.5N))
. D(N, \) = —jkx _ S(05NA)
(3.85) (N, A) Z € sin(0.5/\)

_ N-1
k=— 2

2. TheDirichlet kernel D,,()\) isperiodic and it is an even function as shown by the graphs
forn = 8,12, 16, 20 in Figure 3.12 below. Over the period (—m,7) the function
Dyn(A) has zeros at Ay, = £2rn/(2n+1) forr = 1, 2, ..., n. The area between
A1 = 27/(2n+1) and Ay = —27/(2n+1) is called the mainlobe of the kernel;
the sidelobes are areas between adjacent zeros on each side The graph of Dy, () for
n = 8 is shown with more detailsin Figure 3.13.
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Figure 3.12 The Dirichlet kernel D, () forn = 8, 12, 16, 20.
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Figure 3.13 One period of the Dirichlet kernel D,,(\) for n=8.
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. Because of the symmetry Dy, ()
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3. The height of the mainlobe is given by max D, (\) = D, (0) =2n+1, or equivalently,

D(N,0)=N. Thereisalso aloca maximum or minimum between every pair of adja-
cent Zeros, which occurs approximately at the midpoint
A = £(2r+1)r/(2n+1). The peak of the highest sidelobe (in absolute value) oc-
cursat A = £37/(2n+1) and its value is approximately (2n + 1)/(1.57), which is
obtained by taking the absolute value of the limit of D,,(\) a A = +£37/(2n + 1):

lim D

37\ . sin(+£1.57) F1 _ —(@2n+1)
"\2n+1)  noe ) +1.57\ [ +157x\ 157
2n+1 2n+1

where we have made use of the approximationsin 6 = 6 as 6 tendsto 0.

. Theratio of the highest sidelobe to the mainlobe is therefore 1/1.57. When this value

represents the signal-to-noise ratio in signal  Itering applications, it is customarily ex-
pressed in decibels (tenthsof abel), abbreviated dB, and it equals —13.5 dB = 201og;,(1/1.57)
according to the de n ition which equates +20 dB to a ten-fold increase or decrease in

the peak values:

decibel units = 20log,, |ratio).

Observe that the height (in absolute value) of the sidelobes is decreasing on either side,
and each negative sidelobe is followed by a positive sidelobe. At each endpoint of the
period from — to 7, we have D, (+7) = —1 (if nisodd) or 1 (if n is even).

. Recadll that in the proof of Lemma 3.59 we have shown that the total signed area

(3.86) / " Da(A)dr = / "DV, A d = 2r.

Observefrom the graphsthat the total arearepresented by the sidel obes must be negative,
because each negative areais larger than the next positive area. From this we may infer
that the area of the mainlobeis greater than 2.

= Dy (—)), the graph of D,, (6, — \) can be obtained
by centering the graph of D, () at 6.

We may now apply the Dirichlet kernel to the example from Section 3.10.4: recall that g(0) is
the square wave function with g(9) = 1 over (0, 7] and g(§) = —1 over (—, 0]. Since 100
terms of nonzero Bay1 correspondton = 200 and N = 2n + 1 = 401 (including termswith
zero Ay, and zero By, coef cien ts), we can now use the Dirichlet kernel Dog () to evaluate
the approximating partial sum G401 () at thejumpat 6 = 0:

3ur(0) = 5= [~ 90 Darn(0 — 1) a2, where D(~) = Da()

- 0
_ ! [/O (+1)D200(/\)d)\+/ (—=1) D2go(A) dA

27 .

:0’
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which is the (expected) midpoint between ¢g(0%) =1 and g(0~) = —1; the same formula can
also be used to evaluate 401 (¢) in the neighborhood (0, €] of thejump at 6 = 0:

- 1 ™
Gaor(0) = 5- / 9()) Danole — A) dA
1 4 0
:2— |:/ Dgoo(é—)\)d/\—/ Dgoo(e—/\)d)\
s 0 o

1 €
N — D2oo(A) dA.
5| Daoly

Now, if € A1 = 27/401 =~ 0.016 (as before), we know G401 (0.016) > 1 because the area
inside the mainlobe must be greater than 27 so that the total signed areaequals 2. Since A\; =
27 /(2n+1) tendsto the origin asn — oo, the mainlobe becomestaller and narrower, whereas
itsarearemainsgreater than 2. Thisexplainsthelack of disappearance of the overshoot at the
jump asn — oo. To obtain the numerical values for the areas of the mainlobe and sidelobes,
we shall again make use of the Si () function, which is related to the integral of the Dirichlet
kernel D(V, \) as shown in the following lemma:

Lemma 3.63
1 2T‘7T/N 2
(3.87) lim — / D (N, \)d\ = 2 Si (rr).
N—oo 271— 72T7T/N iy
Proof:

1 2rm /N 2rm /N
lim —/ D (N, \)d\ = lim —/ D (N, \)d\
N—00 27 J _9pn/N N—ooT Jo
. /2”/N sin(0.5N\)
= m — —_—
0 sin(0.5\)

T osinp

let u =0.5NA
N—oom Jo Nsin% (Iet i = 0-5N2)

=— —)d,u (. sinf — Hash — 0)

3.10.6 Eliminating the Gibbs effect by the Cesaro sum

The Gibbs effect can be eliminated if we use the ar ithmetic mean of the successive partial
sums from the Fourier series of g(6) to smooth the approximation. That is, instead of using the
partial sum g (6), we take the average of al partial sumsfrom g;(6) to g, (6) in succession,
theresult is called the Cesar o sum, whichisformally den ed as

@88) S0 = — > pae10) = —— (010) + 8(0) 4+ s (0)),
£=0

n+1 n+1
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where N =2n+1, and gop11(6) = Zf;:_ECgeW. We assume that ¢(6) is discontinuous with
nite jumps as before. Our objectiveisto show that the Cesaro sum f (6) does not exhibit the
Gibbs effect suffered by the partial sum g, ().

To relate the Cesaro sum f (6) directly to the general truncated Fourier series §, (6) =
>, Crel? we express

) = Z g2e11(0
n+1 4=
1 .
1 [ —|—1 Co+nC_1e7 % + nCye?® + -+ C, ™
(3.89) n . , ,
O+ T RELTE (O e 4 oY)

n+1

n
E (arCr)el*?,

where each Fourier coef cient Cj, in the partial sum g, (6) has been modi ed by afactor oy,
de ned by

(3.90) ap =
Observe that the «y, factors are always positive and their values decay linearly from o =1 to

1 .
ay, =—— as|k| increasesfrom O to n.
n+1

To relate the Cesaro sum £, (9) directly to the original function g(#), we shall prove the
following lemma:

Lemma 3.64 The Cesaro sums of an integrable function ¢(#) of period 27 can be expressed
intheintegral form

@9 £ = 5 [ 90 VEa0)ar

where F,,()\) is called the Fejer kernel, which is the arithmetic mean of the n+1 successive
Dirichlet kernels:

(3.92) Fa(d) = —=> Di()) = .
/=
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Proof:

1 i {ZL /7T g(6 — ND,() d)\] (by Lemma 3.58)

_ %lﬂg(e_A) nilzmml dx

£=0

1 [T [ sin (0 + 1) A
o [y

= (n+1)sin%

2
T n+1
g0 —A) Zsm%—l 1

o _(n—l—l sin 3 =t

/
1 /7r [ sin? (n+1

1 )3
2 J_x (n+1)sin®

dX (by denition of D,()))

dA. (by result from Example 1.4)

|
The Fejer kernel F, (\) is periodic with period 27 (one period is shown in Figure 3.14),
and it hasthe following properties:

Property 1. For every n,wehave|F | = ) > 0 for every \.

Property 2. F,(A) = 0for A = £2rw/(n+ 1), wherel < r < n. At A = 0, we have

n

(3893  Fa(0)= —— 3 Dy(0) =

24 1 = 1.
n—|—1é_ +1 tl)=n+

£=0

Property 3. Because the signed area of the Dirichlet kernel D,()\) is 27 for every ¢, weim-
mediately have

(3.94) 7W|Fn (\)|dx = [ﬂFn( = n+1 Z A dX\ =27

for every n. By contrast Dy (A)| # Dn()), and
|Dn(/\)| dX > 2.
Theorem 3.65 The Cesaro sums of an integrable function g of period 27 are bounded by the

maximum value of g. That is, if |g(8)| < M for every 6, then

|Fu(0)| = ’%/W g(0 — \)Fp(\) dA| < M.
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Figure 3.14 One period of the Fejer kernel F,,(\) for n = 8.
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Proof:
|fx(0)] = ‘% / g(0 — N Fp(\) dX (by Lemma 3.64)

1 us

<o 19(8 — N)| [Fa(A)] dX
M s

< oy 7W|Fn()\)| dA

=M. (by property 3 of Fy,(\))

[

Because for every N =2n+1, the Cesaro sum f (0) is bounded by the maximum value of
g(0) according to Theorem 3.65, it cannot overshoot the function and the Gibbs phenomenon
will not occur with Cesaro sums. (There is no undershoot because the Fejer kernel has no
negative sidelobes.)

Asillustrated in Figure 3.15, the computed Cesaro sums of the square wave converge with-
out suffering from the Gibbs effect. As indicated inside each plot in Figure 3.15, the same
result is obtained by either modifying the Fourier series coef cient Cj, or nding the average
of the indicated number of partial sums. For example, in the rst plot, the seven partial sums
used would be §1(0), gs(8),g5(0), ..., g13(6). Because the Fourier series of the square wave
has only nonzero odd-indexed sineterms, g, (¢) involves one nonzero sineterm, gs(6) involves
two nonzero sine terms, and the last partial sum g,3(6) involves seven nonzero sine termswith
the highest index being 13.
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Figure 3.15 Illustrating the convergence of the Cesaro sums of the square wave.
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3.10.7 Reducing the Gibbs effect by Lanczos smoothing

The Lanczos method smooths the partial sum g, () at each 6 by integration instead of sum-
mation. That is, we replace the partial sum by the averaged value computed by the de nite
integral

N 0+t
(3.95) w0) = 3= [ anyan

where 7 = 7/n, and the interval centered at 6 has length 27, which is the period of the last
term e*7"? = cosnf + j sinnf intheunmodi ed partial sum

gn(0) = Z Ck e/,

k=—n
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It was observed by Lanczosthat 27 = 27 /n approximates the period of the ripples produced
by the Gibbs effect. By carrying out the integration, we obtain

n

R 1o 1 o+ -
hy(0) = — gn(A)dA = — TEA A\
O =g [ ayan=g [ 3 cue

0+1

1 & .
= § ( JkA
o Ok/(; el d\

k=—n -7

n RO+T) _ oik(0—7)
(3.96) [ ]

2 G 2kt

k=—n

D Crelt {Smk(ﬂ} (by Euler sformula)
T

k=—n
n
kO
= E [CkUk} e’
k=—n

which shows the effect on the Fourier coef cient: each C), ismodi ed by the Lanczos sigma
factor

sin(km/n) .

(3.97) on= =g

The convergence of the Fourier series after its coef cients are modi ed by the Lanczos
sigmafactor isillustrated in Figure 3.16.

3.10.8 The modification of Fourier series coefficients

The truncation of a Fourier series and the modi cation of its coef cients can both be under-
stood as the result of applying a spectral (or frequency-domain) window (in contrast to the
time-domain window treated in Chapter 8) to the Fourier coef cients of

o0
E Credk?.

k=—oc0

The spectral window used to obtain the partial sum g2, +1(6) is given by

1, for —n<k<n;
(398) k:{ ) n s SNn;

0, otherwise.

The truncated spectrum is the pointwise product of the two sequences {C},} and {d}, }, which
resultsin -
Gons1(0) = D (diCr)e’™ = Z Crel*?.
k=—o0 k=—n
Since d;. s areinterpreted as the Fourier series coef cients of the window function w(6), using
the result from (3.81) we have

n

ko _ k0 _ —jke _ SID (n+3)0 -D
k_z—oo dke k_z—ne k_z—:ne Sing n(e)
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Figure 3.16 Fourier series with coef cientsmodi ed by the Lanzcos sigma factor.
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Following Lemma 3.58, we have

Fonsr(®) = 5- [ 96~ X)Da3dx
m —m

wheretheright sidede nesthe periodic convolution of the signal function g(6) and the window

function w(@). (The subject of convolution is formally treated in Chapter 6. Readers are

referred to Section 6.4 for discussion on periodic convolution and Fourier series.)

The spectral window de ned by nonzero dy, = 1 for —n < k < n is called the N-point
(IV =2n+1) rectangular frequency-domain window for obvious reason (see Figure 3.17). Be-
cause its corresponding window function in the time domain is the Dirichlet kernel D, (6), the
truncation of the Fourier expansion (of a function with jump discontinuities) by a rectangular
spectral window causes the Gibbs effect as explained in Section 3.10.5.

Following (3.90), the spectral window corresponding to the Fejer kernel is given by

{7l—|—1—|k3|7 for_n§k§n7
Qp =

(3.99) n+1

0, otherwise.

The N nonzero ay, s de nean N-point (N =2n+1) triangul ar frequency-domainwindow (see
Figure3.17). Using the result from (3.91), themodi ed partial sum fa,,+1 (0) can be expressed
as the periodic convolution of the signal function ¢(6) and the window function w(#) de ned
by the Fejer kernel F,,(6). That is,

foni1(0) = L /7T g(0 — A Fn(N) dA.

2 J_,
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Figure 3.17 The three N-point frequency-domainwindowsfor N = 2n+1=11.
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Following (3.97), the spectral window for Lanczos smoothing is de ned by the sigma fac-
tors

ke /m)

sin(br/n) — for _ <k<n;
(3.100) o = .
0, otherwise.

The graph of the Lanczos window for N = 2n + 1 = 11 is aso given in Figure 3.17. Our
analysisin Sections 3.10.6 and 3.10.7 shows that the Gibbs effect can be eliminated or reduced
by applying the two tapered frequency-domain windows.

3.11 Accounting for Aliased Frequencies in DFT
We now provide the mathematical argument behind our prior discussion on al iasing in Sec-

tions 2.2 and 2.3. Recall that the DFT coef cients are dened by formula (2.7), which is
restated below for easy reference.

N-1
1 ,
(3.101) X, = N E gyt wy o e /N o =0,1,...,N —1,
£=0

where g, = g(¢At), with At = T/N, arethe N equally spaced samplesof ¢(t) over the period
[0, T'). Tolink the DFT coef cients X, to the complex Fourier series coef cientsof g(t), we
simply evaluate the Fourier series of ¢(t) for its samplevalues. That is, we evaluate

g(t) _ Z C, ejQﬂkt/T

k=—oc0
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att =/¢At =¢T/N,and we obtain

(3.102) ge=Y_ Crel®™/N = N" Gk, 0<I< N -1,

k=—oc0 k=—oc0

Using the right-hand side of Equation (3.102) to replace g, in Equation (3.101), we obtain

N;[z@w

k=—oc0

wy™t, forr=0,1,...,N—1

N—-1 oo

1 Z kwj(\rk ™)

{=0 k=—oc0
0o N—
k=—o0 =0

To further simplify the result, we apply the properties of w,, to show that

N-1 .
1 —_r Cr mN if k= + N7
@Nzwwk{+w_ o
—o 0, if k #r+mN.
Inthe rstcase k = r + mN, we have (k — r) = mN; hence, " = (wmme = 1for

every ¢ th esum of the N termsis IV, and the result given above followsimmediately. In the
second case k # r + mN, wehave (k — r) = ¢ # mN. Thereforew?, # 1, and we can sum
the geometric series of w?,, which resultsin zero as shown below.

N—1 N—1 N N4
Z Wi = Z (wq)z S C ) - (qu) =0. (Cwy=1)

1— 1—
=0 =0 Wi W

We thus obtain

> Coymn, r=0,1,...,N—1,

which reveals how the frequenciesaliased into the Nyquist interval by the sampling processare
accounted for in the resulting DFT coef cients . It isinteresting to note that the contributions
from the aliased frequencies effectively make the DFT coef cients a periodic sequence with
period N, because X, and X, (for every k) are represented by the sum of the same set of
Fourier series coef cients.

To completethestory, let §(¢) denote the function reconstructed fromthe N = 2n+1 DFT
coef cients , and we express

A LI omrt - 2mrt
g(t) = O—I—ZATCOS 7; +Brsin%,

with the following remarks:

1. Thereconstructed j(t) is periodic with commensurate frequencies f, = 4 for 1 <r <
n,andwehave g(t + T') = g(t).

2. The reconstructed g(t) is band-limited to the Nyquist interval [— f,,, fn] = [—%, 2.
(Recall that the Nyquist interval isimposed solely by the sampling interval At = T/N,
and sampling is an irreversible process.)
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. The amplitudes of the sine and cosine components of §(¢) are distorted by the aliased

frequencies as shown below.

AOZX(): io: Cva

7 m=—oo
AT =X, +Xn_r= Z (Cr+mN + CN*TerN) = Z (CTJFT”N + CfTJFmN)’
B =j(Xr = Xn—r) = 3 §(Crimy = Corimn).

. In contrast, the original continuous-time signal ¢(t) is not assumed to be band-limited,

and we express ¢(t) by its continuous Fourier series as

A > o2kt 2kt
g(t):70+;14kcos 7; +Bksin%,

A
where70 = Cy, Ay = Cx + C_g,and B, = j(C, — C_y,) for every k.

. Although the reconstructed g(¢) hasthe appearance of atruncated Fourier series, it is

not equal to the truncated Fourier series of g(t) t he corresponding components have
different amplitudes dueto aliasing.

. The faster the Fourier series coef cients converge to zero, the less impact the aliased

frequencies have on the reconstructed signal. Our earlier investigation on the conver-
gence rate reveals that the Fourier series coef cients of g(¢) converges at a higher rate
if the derivate ¢’ (¢) existsth islinks the phenomenon of aiasing to the differentiability

of g(t).

. To have undistorted A, = A, and B, = B, for 0 < r < n, we need to remove

the components with frequencies higher than f,, from the original signa ¢(¢) before
sampling thisis where the anti-aliasing Iter (discussed in Section 2.3) comes in.
Filtering is the topic of Chapter 10.

3.11.1 Sampling functions with jump discontinuities

Hereisanother hidden technical point: Since the Fourier series convergesto the average of the
right-hand and | eft-hand limits at points of jump discontinuity, if any sampling point ¢, = (At
happens to coincide with a point of jJump discontinuity, then f, must be assigned the average
limit value (to which its Fourier series converges) regardless of whether f(¢) isdened at
t = t, or not. Note that the points of jump discontinuity can occur inside or at the end points
of [0, T']; in either case the rule above must be followed in determining the sample values for
the DFT computation.

Example 3.66 In this example we show the signals reconstructed from N computed DFT
coef cients. For N = 8, 16, 32, and 64, we obtain the DFT coef cients by transforming NV
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equally spaced samples taken from the chosen period [0, 4) of the piecewise smooth function
givenin Example 3.9:

2<t<4;

f(t)={;’ OSE<2 bty = £,

Note that because there is a jump discontinuity at ¢, = 0, the data sample f is assigned the
averagelimit value 1 , which is explicitly shown herewhen N =8 samplesof f(t) are taken
from the period [0, 4):

Js g5 fo fr
2 s T T7T T T
for  fo - g
BT D]
to t1 to t3 tats te t7 4 8

{f07 fla f27 f37 f47 f57 f67 f7} = {17 057 17 157 27 27 27 2}

For N =8, 16, and 32, the computed DFT coef cients{ Xy, X1, ..., Xy_,} arerecorded
in Table 3.1, which is MATLAB output (displayed in format short) from running the DFT
code dft.m providedin Section 4.7 in Chapter 4. The function reconstructed using N =
2n+2 DFT coef cientscan be expressed as

n

s Ao o 2m(n+ Dt o2t - 2mrt
(3103)  f(t) = 5 + Ansrcos — +; Ay cos ==+ Brsin = |,

where T = 4 because the N samples are taken from one period of f(t), 1 Ay = Xo, A1 =
Xpy1, A =X, +Xn_,,and B, = j(X,—Xn_,) for 1 <r<n. For N =8, 16, 32, and 64,
the graphs of the reconstructed f(¢) are shown in Figure 3.18.

Figure 3.18 Graphsof f (t) reconstructed using N computed DFT coef cients.

25

25 T
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Table 3.1 The DFT coef cientscomputed in Example 3.66 (N = 8, 16, 32).

r X, (N =8) X, (N = 16) X, (N = 32)
0| 1.5000 1.5000 1.5000
1| —0.2134+ j0.3018 | —0.2053+ j0.3142 | —0.2033 + j0.3173
2 | —0.0000 + j0.1250 | —0.0000 + 50.1509 | —0.0000 + j0.1571
3 | —0.0366+ j0.0518 | —0.0253 4 j0.0935 | —0.0232 + j0.1030
4 | —0.0000 — 50.0000 | —0.0000+ j0.0625 | —0.0000 + j0.0754
5 | —0.0366 — j0.0518 | —0.0113 + j0.0418 | —0.0088 + j0.0585
6 | —0.0000 — j0.1250 | —0.0000 -+ 50.0259 | —0.0000 + j0.0468
7 | —0.2134— j0.3018 | —0.0081 + 50.0124 | —0.0049 + j0.0381
8 —0.0000 + j0.0000 | —0.0000 + j0.0312
9 —0.0081 — 50.0124 | —0.0033 + j0.0256
10 —0.0000 — j0.0259 | —0.0000 + j0.0209
11 —0.0113 — 50.0418 | —0.0025 + 50.0167
12 —0.0000 — j0.0625 | —0.0000 + j0.0129
13 —0.0253 — j0.0935 | —0.0021 + j0.0095
14 —0.0000 — j0.1509 | —0.0000 + j0.0062
15 —0.2053 — j0.3242 | —0.0020 + j0.0031
16 —0.0000 + j0.0000
17 —0.0020 — j0.0031
18 —0.0000 — j0.0062
19 —0.0021 — j0.0095
20 —0.0000 — j0.0129
21 —0.0025 — j0.0167
22 —0.0000 — j0.0209
23 —0.0033 — j0.0256
24 —0.0000 — j0.0312
25 —0.0049 — j0.0381
26 —0.0000 — j0.0468
27 —0.0088 — j0.0585
28 —0.0000 — j0.0754
29 —0.0232 — j0.1030
30 —0.0000 — j0.1571
31 —0.2033 — j0.3173
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Remark: We will learn in Chapter 4 that <N sample values of the reconstructed f (t) can
be obtained by applying the inverse DFT to the sequence formed by the N computed DFT
coef cients and (x—1)N zeros, provided that « is an integer and the zeros are appropriately
inserted. In other words, the evaluation of the reconstructed f (t) at equally spaced xN data
points amounts to the inverse transform of xN zero-padded DFT coef cients. The process of
zero padding the DFT isdiscussed in full detail in Section 4.6.2 in Chapter 4.
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Chapter 4

DFT and Sampled Signals

We have seen the theoretical relationship between the DFT coef cien ts and the Fourier series
coef cients of aperiodic signa z(t) in the previous chapter, and that relation was established
by assuming, on the one hand, that (¢) can be represented by a Fourier series

. 1 T/2 )
z(t) = Ch eJQﬂkt/T’ Cp = _/ f t e—]Qﬂ'kt/T dt;
= > 7 (1)

and assuming, on the other hand, that the N discrete-time samples {x,} transformed by the
DFT were equally spaced over asingleperiodT' of thesigna z(t); i.e, wehave NAt = T.

However, because DFT is a numerical formulawhich we apply only to the sampled func-
tion values, the samples transformed by the DFT in practice are likely observations of an
unknown signal or phenomenon. For example, one use (among many important applications)
of the DFT is to analyze the frequency contents of an unknown signal f(¢), and we must be
prepared to account for the distortions caused by the potential mi smatch between the period
(IV samplesimply aperiod of N At) irreversibly imposed by using the DFT and the (unknown)
true period of f(¢). To understand and deal with such problems and their consequences, we
propose the following:

1. Wewill derivethe DFT formulasto show why the samples are supposed to be taken over
asingle period of the envelope function in the r st place. (The derivation was omitted
when DFT was r st introduced in Chapter 2.)

2. Wewill sample known functionsfor irregular intervals (longer or shorter than the known
periods) to create mismatched periods for our experiment, so we can study the possible
conseguences.

4.1 Deriving the DFT and IDFT Formulas

As indicated in Sections 2.5 and 2.6 in Chapter 2, there is more than one DFT formula de-
pending on the chosen sampling period and sample size. Following a similar derivation for the
odd-size DFT given in our earlier book on fast Fourier transform algorithms [13], we derive
the DFT formulafor even ssmplesize N = 2n + 2 over the period [0, T']. In addition, we will
show that the resulting formulacan be converted to its alternate form for the symmetric period
[-T/2,T/2].

109
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We indicated in Section 2.6 that an even-size DFT can be derived from using the trigono-
metric polynomial

2 It — 27t 27t
4.2) p(t) = ag + ant1 cos% +;ar cos 7; + b, sin 7;

to interpolate the samples of a periodic function z(¢). In anticipation of the desired change of
variable from ¢ to 6 = 2xt/T in the derivation, we perform the variable change at the outset
by directly using

(4.2) p(0) = ap + ant1cos(n+ 1) + Z a,cosrf + b, sinrf

r=1

to interpolate the N = 2n + 2 equally spaced samples of x(6) over the period [0, 27]. The
samplesaredenoted aszy = z(6,) for 0 < ¢ < 2n+1, whered, = (A0 with A9 = 27 /N =
7w/(n+1). For N = 2n+2 = 8, we show the mapping of {to, t1,...,t7} t0 {60, 61,...,07}
inFigure4.1.

Figure 4.1 Mapping t, € [0,T) to 0y = 27ty /T € [0,27) for 0 < ¢ < 2n+1.

Mapping toe [0,T)to 6, € [0, 2m),
k=0,1,..,N-1L

_— /’762\ —
- ~.
0y w1
7
/ \
// \\
[ \
_ol A8 =2mN |
= 99 =0
e%} (N=2n+2=8) /) 0
\ /
\ /
\\ //'
O 0, =21-a0
i
0
0 6 2n
X S & |
eo 61 92 93 4 95 6 e7

In order to explicitly display all of the terms (for clarity) during the derivation without
loss of generality, we consider a particular size N = 2n + 2 = 6 withn = 2. Since p(6)
interpolates every x,, we must have x, = p(6,), i.e,

(4.3) xg = p(0¢) = aog + aq cos Oy + by sin Oy + ag cos 20y + by sin 260, + as cos 36,.

Correspondingto ¢ = 0,1, ..., 5, we have a system of six equations

[1 cos@p sinfy cos26y sin20p cos36y| [ao] [20]
1 cosf; sinf; cos20; sin20; cos360:| |a1 T
1 cosfly sinfly cos20; sin20p cos3fz| [bi|  |z2
1 cosfs sinfs; cos205 sin20s cos30s| |as|  |zs
1 cosfy sinfy cos20; sin26y cos36y| | by Ty

|1 cosfs sinfls cos205 sin20s5 cos30s| |as]| e
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Using Euler sformulae’® = cos# + j sin 6, we may now express
Jroy —jrly gre _ ,—jrby
cosTl, = e tte” and sinrf, = L
2 27
Note that when N = 2n + 2, wehave §, = ¢A0 = ¢r/(n+ 1) and (n 4 1)0, = ¢=. Hence,
for the special caser = n + 1, we have

e](n+1)9£ — e]éﬂ' _ e*jfﬂ' 7](n+1)95’

=€
which implies

cos(n +1)f, = (D0
Using these complex exponentialsto express the cosine and sine valuesin (4.3) yields

az + jb . a1 + jb ,
xg:p(94)2< 2 2] 2)6_329@_’_( 1 2] 1)6_]9@_’_@0

N (al —2jb1> G0 (a2 —2jb2> 1200 | g ed30

Noting that e*/7% = (eﬂ’f)ir; we may use the power +r asindex and rename the coef -
cientsof e*9"% as X .., we thus obtain

(44)  xzp=p(0) = X_oe 72 + X_1e77% + Xo + X167% + X672 + X3e7%%.

To further simplify the right-hand side, recall that 8, = ¢Af, s0o §; = Af = 2x/N, and
eife = ¢ithh — (i) = ot if weden e

w= el = ?T/N N =2n+2.

Equation (4.4) can now be written as
(4.5) xe = p(0r) = X 0w+ X 107+ Xo + X1w® + Xow? + X3,

wherew = ¢77/3 for N = 6.

We further note that w = €727/~ is the Nth primitive root of unity it is easy to verify
that w™ = 1 andw™" = w~"*". By changing (w”’)‘Z in the above equation to the equivalent
(w¥=)", wherer = 1,2 and N = 6, we obtain

(4.6) xe = p(0s) = Xo + Xiwh + Xow? + X503 + X0 4+ X5

Correspondingto ¢ = 0, 1,. .., 5, we now have asystem of six equationswith unknownsbeing
X, forr=0,1,...,5:

1 1 1 1 1 1 Xo o
1 w w? W oWt WP X1 T1
47 1 w?2 wtr W oW W0 | X, B
(4.7 1 P Wl W W2 WP (X |
1wt W8 w2 W6 20| | x, €4
1 W5 w10 15,20 w25_ X | ||

This can be written as a matrix equation M X = , and we shall obtain the scalar DFT
formula (2.11) for each X, by solving this matrix equation analytically. To accomplish that,
three additional steps are required:
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Step 1. For w = ¢/27/¥ = cos(21/N) + jsin(27/N), we need to prove the following prop-
erties (which are required in Step 2):
(@ w'l=w vt =1, andw*/2 = —1.
(b) wttEy — £,
(©) Zﬁ;olw’“ =1l4w4wi+ 4N 1=

0 ifp#gq,

(d) For1 < p,g <N, ZZ;J Wwklp—a) — .
N ifp=gq.

() Ifwy = eI2™/¥, provew? = wy . (Note: the notation w is used when we need to
refer to w for more than onevalue of N at the same time.)

Proof: For part (a), we apply the de n ition of w to obtain

w = e*JQﬂ'/N = COS(2’]T/N) -7 Sin(27T/N) =w.

WEN = (P27 INYEN = 927 — o527 4 jsin 2 = 1.

; +nN/2 i R
wEN/2 — (632”/1\’) / =M™ =cosm+ jsinT = —1.

For part (b), using w®" = 1 from (a), we immediately have
WEOEN L kN e

For part (c), we use the closed-form expression for the geometric series to obtain

N—1 1—wN

Eaf:1+w+w%%~+wwizl_ =0. (. w¥=1from(a))
—w

k=0

For part (d), let m = p — ¢q. Thecondition1 < p,q < N implies0 < m < N — 1.
If p # ¢, thenm # 0, and we use again the closed-form expression for the geometric
seriesto obtain

N—1 N—1 1 (wm)N 1— (wN)m
E:uﬁ@—wZZE:(wm)k: = =0.  (cwV=1)
P = 1—w 1—w

If p = g, then we have

—1

Z Wke—a) — W0 = 1
k

k=0 =0

2
|
—
2
2
|
—

i
[
=

For part (e), we use the de n ition of w,, to obtain

2 j2m /N 2 jAm /N 27 /(N/2
w? = (& /) = JTIN = QB2 (N2 —

Step 2. The Fourier matrix M isden ed by M (p,q) = w®=D@= for1 < p,q < N. With
the properties of w now available from Step 1, we may prove that the Fourier matrix M
isinvertible, and itsinverseis +; M. (We have used M to denote the complex conjugate
of M.)
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Remarks: For N = 6, the Fourier matrix M appeared in (4.7), and it is a simple task
to verify that the elementsin the pth (1 < p < N) row are M (p,r) = wP~D=1 for
1 <r < N;andtheelementsintheqth (1 < ¢ < N) columnare M (r, q) = w("— D=1
forl1 <r<N.

Proof: To obtain M ~' = LM, we may form the product D = MM and show that
D = NI, whereI istheidentity matrix. That is, for 1 < p, ¢ < N, we must show

D(p,g) = " M(p, 1) Fi(r,q) = {?V :Zﬁj

r=1
We proceed to prove the desired result bel ow.

N

D(p,q) =Y _ M(p,r) M(r,q) =

r=1

WP~ 1=1) Gr=1)(a=1)

NE

1

ﬁ
I

WP D) =) (g — )

I
WE

1

.3
Il

w(r=D(p=9)

[
NE

il
R

— Z k=) (ik=r—1)
k=0
0 if ,
= { I P74 (from Step 1(d))
N ifp=gq.

To demonstrate the result that we have just proved, we display D for N = 6:

6 0 0 00 O 1 0 00 0O
06 00 0 O 01 0 0 0 O
— 00 6 00 O 00 1 0 0 O
D_MM_OOO6OO_60001OO
0 000 6 0 0 00 010
0 0 0 0 0 6 0 0 0 0 0 1]
Therefore, we have obtained
1 AT 1
which yields
—1 1 ar
M '=1M.

Step 3. Solvethe matrix equation M X = x by inverting the matrix M, i.e.,

X=M'lz=1Mz.

L
N
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For N = 6, we obtain

[ X0 11 1 1 1 1] [zo]
X1 1 wl w2 w3 vt Wb T
48) X _ 1 1 w2 w?t wb W WO [y
X3 611 w3 wb w2 w12 W [z,
X, 1w W 12 16 200 |
| X | 1 Wb w10 ,-15 =20 w*%_ ES

Since X = M ~'x expresses X as amatrix-vector product, we can now express each element
of X by the corresponding scalar equation, which is the formulafor the DFT:

2n-+1
ngw Z, 0<r<2n+1.

= 1
7r€
(4.9) X ; 2n + 2

Similarly, because x = M X, theinverse DFT formula (IDFT) has the form

2n-+1
(4.10) Z X,wtt = Z X,wtt, 0<0<2n+1.

4.2 Direct Conversion Between Alternate Forms

We indicated in Section 2.6 that if the given N = 2n + 2 samples Z(t,) are equally spaced
over [—T/2, T/2], we may obtain the alternate DFT/IDFT formulas.

N
B 1 5 } B 1 n+1
(4.11) XT:N Z a:ng 2n+2 Z Towy —n<r<n+1;
t=—4 41 {=—n
% n+1
(4.12) B= Y Xwi = Xw, -n<i<n+1.
r=—%41 r=—n
2

To convert the DFT formulagiven by (4.9) to its alternate form given by (4.11), we recall
the simple fact behind the derivation of a DFT formula: the periodic x(t) was uniformly sam-
pled for asingle period of length T', so the sample sequence {z} over [0, T] isrelated to the
sample sequence {Z,} over [—T/2, T/2] through the periodicity of x(t). For the even sample
size N = 2n + 2, we have

T foro </ < 1;
(4.13) a:g:{“ stsnth

To_y fOrm+2</0<2n+1.
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Using thisfact in the DFT formula (4.9), we obtain (4.11) as shown below.

2n+1 1 2n-+1
1 —rt_ 1 —re | 1 —re
X =% g Ty = § Twy" + E Tpwy
(=0

3
+

£=0 l=n+2
n+1 2n+1
=) i R Y Eeawy (from (4.13))
=0 l=n+2
n+1 -1
= % Z jéw;ré + % Z ‘%mw;r(m+m (letm = — N)
£=0 m=—n
n+1 —1
1 I~ —rl 1 ~ — . =N
:Nzxéwz\]r + x5 Z Tmwy' (rwy¥=1)
£=0 m=—n
n+1 —1
=N D Fw Ay Y Ewy (denote m by ¢)
£=0 l=—n
n+1
=5 D Tewy™. (combine partial sums)
l=—n

Observethat the right-hand siderepresents X, if 0 < r < n+1. Forn+2 < r < 2n+ 1, the
right-hand side represents X, as shown below.

n+1
XT:%ngw;M (forn+2<r<2n-+1)
l=—n
n+1
~  —(r—n)¢ —r —r
ST ™ =
l=—n
=X, _x. (o—n<r—-~<-1)

These results reveal that the relationship between the two sets of DFT coef cients mirrors the
relationship between the two sample sequences:

X, foro<r< 1;
(4.14) S sr=ndt
X n forn+2<r<2n+1.

Thisis expected because X1 v = X, from either formula; i.e., { X, } is a periodic sequence
with period N.

Asto converting formula (4.11) back to (4.9), we simply make use of the same fact in the
opposite direction:;

foro0</¢< 1;
(4.15) = {“ stsnt

Tepy for —n <0< -1,

The corresponding IDFT formulas can be converted to each other by the same process.
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4.3 DFT of Concatenated Sample Sequences

If we concatenate the N-sample sequence {zq, x1, . . ., xx—1 } tO itself, then we obtain an M-
sample sequence {yo, ¥1, - - -, Yn—1 1, Where M = 2N, and

K7 foro </ < N —1;
ve= To_y FfOrN <l<2N —1.

Supposethat the N DFT coef cientscomputed from the N-samplesequenceare { Xy, X1, . . .,
how are they related to the 2N DFT coef cients{Yp, Y1, ..., Yay_1} computed from the con-
catenated 2N -sample sequence? To answer this question, we apply the de n ition of DFT to

compute Y, and Y, 1 forr=0,1,..., N — 1:
1 M-1
}/27’ — M Z yew;IQT’/
£=0
1 N-1 2N—-1
=N Z xgw_zﬂ Z To— ngN
(=0
1 N-1 1 N-1
= o5 O T+ g D gy Y (leth=(—N)
=0 k=0
1 N-1
== x (wQNW + Q_NQT(“N)) (renamek tobe /)
2
(=0
1 N-1
27l —2rf .. —2N\T
TN 2 (won"" +wan"™) (v (war™) =1)
(=0
B 1 N-1 o
= N LW
=0
Through the same steps we obtain
1 M-1
Yor i1 Z Yoy 2T
=0
1 N-1 2N—-1
—(2r+1 / —(2r+1)¢
=g 2 e g 2 e
1 N-1 1 N-1
—(2r+1 2r+1)(k+
= oN xeng( )+f2xk QN( ) (k+n) (letk=¢—N)
=0 k=0
1 N-1
=on > (wQ_N(QT“)[ + Q_N(QT“)(“N)) (renamek tobe /)
(=0
1 N-1 i1
—(2r+1)¢ —(2r+1)¢ T+
- X0 (wQN( ) —wQN( ) ) (. (wa) =-1)
(=0

XN—l};
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This establishes the relationship between the DFT coef cien ts{Y}, } and { X} as

Xy if k=2
(4.16) Y, = § k2! " k=01, 2N—1.
0 ifk#£2r

Thisresult can be extended to multiple sequences: if the ¢ N-sample sequence {y, } is obtained
by concatenating the N-sample sequence {x,}, whereq > 2 isapositiveinteger, then the DFT
coef cients {Y;} and { X} arerelated as

Xpjo ifk=
(4.17) Y= Ba TEZAT 01, gN 1.
0 if k& # qr

The derivation given above for the case ¢ = 2 can be adapted for the case ¢ > 2 in an obvi-
ous way: instead of combining only two subsequences, we combine the ¢ > 2 subsequences
resulted from applying the DFT de n ition to the concatenated sequence {y, } in asimilar man-
ner.

4.4 DFT Coefficients of a Commensurate Sum

In preparation for the discussion forthcoming in this section, we assume that readers are famil-
iar with the contents of Chapter 2 and the following sections from Chapter 1:

e Section 1.6 Periodicity and Commensurate Frequencies.

e Section 1.8 Expressing Single Component Signals.

e Section 1.9.1 Expressing sequence of discrete-time samples.
e Section 1.9.2 Periodicity of sinusoidal sequences.

In this section we shall relate the DFT coef cien tsof a commensurate sum to the DFT co-
ef cientsof itscomponents. Recall from Section 1.6 that acommensurate y(t) is periodic with
its fundamental frequency being the GCD of the individual frequenciesand its common period
being the LCM of the individual periods. For example, when f, = k/T, the fundamental
frequency is f1 = 1/T, and the composite function

y(t) =Co+ > _ Ck 608(27;kt - cbk)
k=1

is commensurate and periodic with common period 7', i.e., y(t + T) = y(¢).

4.4.1 DFT coefficients of single-component signals

We consider sampling a single-component signal

2(t) = Cio cos(2 fxt — ér), where fi, — %

a intervals of At = T/N, where N is chosen to satisfy the Nyquist condition
1/At > 2k/T so that aliasing will not occur. Note that because T = NAt, the Nyquist



118 CHAPTER 4. DFT AND SAMPLED SIGNALS

condition is equally dened by N > 2k. From f, = k/T, we know that z(t) completes k
cyclesast variesfrom0to T = NAt; i.e, the N samples span k periods of x(t).

For single-component signals, we may obtain the IDFT formulafor z, directly: for ¢ =
0,1,...,N — 1 with N > 2k (ensured by satisfying the Nyquist condition),

xp = x(UAt) = Ck cos(2m frl At — ¢)

= Cj cos(2mlk/N — ¢y) (. fk&Dt=k/N)
w19 = Cicos(ktfy — in) - (let 6 = 27/N)
= (3Cre %)M 4 (1CkeI?) eI (by Euler sformula)
= XM 4 Xkt (w el
= Xt + X, kwj(\,N ke, (" wyk N=ky

Accordingly, there are only two nonzero DFT coef cients with indexes k and N — k in the
IDFT formulain thiscase, i.e,

(4.19) zo= Y Xowlf = Xpokf + Xyl

where2k < N, X = %C}Ce*j@“, Xy_k = %Ckej‘b’“.

Remarks: If we changevariableto § = 2xt/T, then cos(2mkt/T — ¢y ) = cos(kf — ¢y, and
we would sample the mathematically equivalent

(4.20) 2(0) = Cy, cos(kd — éy,)

at intervals of
NG =2 At/ (NAL) = 21 /N = b6y,

which leads to exactly the same formulation already used in (4.18):
= 2({Af) = Cy, cos(klly — Pi.),

and we arrive at the same results given by (4.18) and (4.19).

However, formula(4.20) hasits own roleto play in signal reconstruction: while the contin-
uousfunction z(#) can be reconstructed from the DFT coef cients X, alone, the reconstruc-
tion of the analog signal z(¢) requires the actual value of T = NAt (. fr = k/T), which
may or may not be available depending on whether the sampling rate or interval is known or
not, although this does not prevent us from constructing an analog signal at any desired out-
put frequency r ecall the following comments from Section 1.9.1: by simply adjusting At
at the time of output, the same set of digital samples may be converted to analog signals with
different frequencies.

Example 4.1 Inthisexamplewe study the sampling and reconstruction of asingle-component
signal x(t) = 3.2 cos (1.5wt — w/4) for two cases:

(i) The Nyquist condition is satis ed.
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(i) The Nyquist conditionis not satised .
At r st weidentify the physical frequency of the analog signal by expressing

. 3 k k
For case (i), we choose the sample size N = 8 over T' = 4 seconds, so the condition N >
2k = 6issdatised , and theresult fromusing £ = 3 and N = 8 in (4.19) isthe IDFT formula:

(4.21) 2 = Xswit + Xswdt = 1.6e77™/ w3l +1.6e7/4wd".
We can now reconstruct the function x(#) from the DFT coef cients obtained from (4.21):

(4.22) z(0) = Cy, cos (kO — ¢x,)
=32 COS(39 — 71'/4) ( k= 37 Xk — %Cke*j@c — 1.667j7r/4)

Since 6 = 27t /T, we can rewrite (4.22) as

x(t) = 3.2cos (27 fxt — w/4) with fi, = % = ﬁ = &
Since we have chosen N = 8 over T' = 4 sec, the sampling interval is At = 0.5 sec, and
we obtain f;, = 3/(8At) = 0.75 Hz, with which we get back the original signal z(t) =
3.2 cos(1.5mt — w/4). Hence, we can reconstruct the analog signal z(¢) if we know the sam-
pling rate used to obtain {x,} in the rst place; more importantly, we can output z(t) at any
physical frequency by setting and adjusting the sampling interval At as desired.

For case (ii), we choose the sample size N = 4 over T' = 4 seconds, thus N # 2k = 6 and
we expect to see the effect of aliasing. We can determine the aliased frequency using different
methods although they lead to the same result, we gain valuable insight about the methods
themselves.

Method I. Since At =T/N = 4/4 = 1 second, by sampling the given signal
x(t) = 3.2 cos(1.5mt — w/4) at intervalsof At we obtain

xp = x(LAt) = 3.2 cos (1.5mlAt — 7w /4), £=0,1,2,3,
= 3.2cos (1.5m¢ — 7/4) (" At = 1 second)
4.23) =3.2cos (1.57n¢ — w/4 —2xwl) (- cos (6 £ 2mL) = cos 0)
= 3.2cos (—0.5m¢ — w/4)
= 3.2cos (0.57¢ + 7/4) (note the phase reversal)
= 3.2cos 2nfol + w/4), where f, = 0.25 Hz.

Since fmax = 1/(2At) = 0.5 Hz, we see that the higher frequency fi, = 0.75 Hz present
in the original signal has been aliased into an equivalent lower frequency f, = 0.25 Hz
inside the Nyquist interval [— fmax, fma] = [—0.5, 0.5] inthis case.

Remarks: Recall that the samplingrate R = 1//\t (samples per second or Hz). For this
examplewehave At =1andR =1, s0

JR< fe =0.75Hz <R.
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We shall learnin Chapter 7 that the Fourier t[ansform of asampled sequenceis periodic
with period IR, hence the aliased frequency f. € [-1R, 3R] can be computed directly
as

(4.24) fo=fr—R=0.75—1=—0.25Hz,

where the negative frequency is mterpreted as phase reversal (discussed prewously in
Section 1.9), which occurswhen weturn f, = —0.25 Hz into positive f, = —f, = 0.25
Hz through the trigonometric identity cos(—6) = cos 6. Note that the phase reversal can
be avoided when the following relation holds.

(4.25) R < fp < 3R, because0 < f, — R < IR.

Method I1. To show that we obtain the same aliased frequency from the DFT coef cients, let

us adapt (4.18) for N < 2k we begin by repeating the rst part of (4.18):

xp = x(LAL), £=0,1,...,N -1,
=Cy COS(Q?TkaAt — (bk)
(4 26) =C} COb(ZTrék’/N gbk) ( kat = k/N)
. = Cf cos 1— etf, =2n
= 47 let 6, = 27 /N
= (3Cre™ m)eﬂml + (1Cyei?) e~ 7% (py Euler sformula)
= (%C;@e*j‘b’“)w% + (%C;@ej‘i”“)w;kz. (- wy =€)

At this point, we can apply formula (4.26) to a problem with known numerical values
for Cy, ¢r, k, and N. However, because we choose N < 2k, we must use the properties
wimN = 1toreducek tor < N/2 so that w, and w¥ " correspond to the termsin the
IDFT formula.

For our example, we continue from the last line in formula (4.26) with Cy, = 3.2, ¢y, =
7/4,k =3,and N = 4:
Ty = 1.66‘jﬂ/4w2€ + 1.6€j”/4w23€, = O, 1, 2,3,
= 1.6e 7™ 4wt + 1667/ 4w} (- =1, wi=witw? =w)
= X _qwit+ X0 (noterzlandr<N/2)
= X3w3 + X0l

(4.27)

Hence the two nonzero DFT coef cients are
Xy = 1.66™%, X3 =1.6e777/%.
We can now reconstruct the function () using the DFT coef cients:

y(0) = Cpcos(r — ¢,), wherer < N/2,

(4.28) , .

=32cos(0 +m/4). (-r=1,X,=L1Ce % =1.6e1)
Since§ = 2nt/T = 2nt /(N At) = 2wt /4 = 0.57t, the reconstructed analog signal
(4.29) y(t) = 3.2 cos(0.57t + m/4)

contains aliased frequency f, = 0.25 Hz. Note again the phase reversal from ¢, = /4
inz(t) or x(0) to ¢, = —m/4 inthe reconstructed y(6) or y(t).
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4.4.2 Making direct use of the digital frequencies
Recall that using the digital frequency de ned by

k k
Fp. = kat = TAt = N,

we may conveniently express

Ty = Ck COS(QTFF}J — gbk),

whereF;, < % because 2k < N when the Nyquist conditionis satised. Notethat F, = k/N
directly conveysthe following information:

1. If £ and N do not share a common factor, then the period of the N-sample sequence
{z,} isindeed N samples, and they span & periods of its envelope function, which leads
to two nonzero DFT coef cientsindexed by £ and N — k.

2. If k and N share acommon factor ¢, then we have

‘ )
t

k
]F = — = =

=
2

which tells us that

x5 = Cy cos(2mk — ¢y)
and the period of {x,} is N = N/q samples. The fact that we have computed the DFT
coef cients based on N = ¢N samples simply means that the DFT coef cien ts are

positioned at index k& = ¢k and N — k, which are their rightful places when the sample
sizeisN = ¢N.

L et us now turn to the composite signal: suppose that we sample

y(t) = Co + Z Cr cos(zgkt - gbk)
k=1

to obtain the N-sample sequence (with N > 2n)

ye = Co + Z Ck cos(2nF il — dr.);
k=1

weimmediately seethat Fy, = k/N if T = NAtfork =1,2,...,n,and the DFT coef cients
of {y,} areexactly the union of the DFT coef cients of each component.

Recall that the period of composite y(t) is determined by its fundamental frequency f1 =
1/T. Itisnow clear that when we samplethe compositesignal y(t) for asingle period, we have
in fact sasmpled its components for multiple periods. Since the N samples span k periods for
the kth component, it has the effect of putting the DFT coef cients from different components
in their separate positions so they will not interfere with each other. It turns out that sampling
asignal (whether composite or single-component) for integer number of periodsis the key to
avoid the| eakage of frequencies, which is the subject of Section 4.5.
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Example 4.2 To determine the appropriate sampling rate and duration for the signal z(t) =
10 cos(107t), we rewrite z:(t) = 10 cos(27 fot) With f, = 5 Hz, and we obtain the digital
frequency F, = f, At = 5At. To satisfy the Nyquist condition, we must have
1
= < -
F, =5At < 5

which immediately leads to At < 0.1 sec. By choosing At = 0.05 sec, we obtain F,, =
5At = 0.25, which enablesus to expressF,, asarational fraction

1k
Fo=-=—.
4~ N

Therefore, by sampling «(t) at intervals of 0.05 sec, the N = 4 samples will span &k = 1
period of z(t), and the sampling durationis NAt = 4 x 0.05 = 0.2 sec. The sampling rate is
R =1/At=1/0.05 = 20 (samples per second or Hertz).

From the resulting discrete-time sinusoid

x¢ = 10 cos(2nFof) = 10 cos(2nkl/N), wherek =1, N =4,
we obtain the two nonzero DFT coef cients
X1 = £(10) = 5, and X3 = 3(10) = 5.
Thisresult can be veri ed by actually computing
x¢ = 10 cos(2nFo¢) = 10cos(0.57¢), ¢=10,1,2,3,

to obtain the sequence
{z0, 21,22, 23} = {10,0,—-10,0}

and use the DFT formulato obtain

X 1 1 1 1 10 1 1 1 17f10 0
Xi| 1|l wp' wi? w0 1|1 -5 -1 0| |5
Xo| 4|1 wp? wi* Wil |-10] 4|1 -1 1 —1||-10] |0
X3 1w w® w®l Lo 1 5 -1 —jJLo 5

Observe that we have simpli ed the DFT matrix using the value
wy = eI2™* = cos(0.57) + j sin(0.57) = j
and theden ition j2 = —1.

Example 4.3 Using the experience gained from the last example, we can now determine the
appropriate sampling rate and duration for y(¢) = 3.2 cos(1.57t — w/4) in two simple steps:

. 1 . 2
Step 1. WerequireFg = 0.75At < 5 which leadsto At < 3"

Step 2. We choose At = 0.2 to obtainF3 = 0.75 x 0.2 = 0.15 = 2% = %

Therefore, the sampling durationis N At = 20 x 0.2 = 4 (sec), and the N = 20 samples span
k = 3 periodsof y(t). ThesamplingrateisR = 1/At = 1/0.2 = 5 (Hertz). The two nonzero
DFT coef cientsof {y,} sosampled areindexedby k =3and N — k = 17:

Y3 =167/ = 42 42 andyy; = 1.667/1 = 12 4 jAV2
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Example 4.4 We now repeat Step 2 in Example 4.3 with At = 0.5, and we obtain

3k
Fy = 0.75 x 0.5 = 0.375 = & = —_
g 8 § N

The sampling duration is NAt = 8 x 0.5 = 4 (sec), and we have N = 8 samples spanning
over k = 3 periods of y(t). The sampling rateis now reducedto R = 1/0.5 = 2 (Hertz). The
two nonzero DFT coef cients of the eight-sample sequence {y,} are indexed by £ = 3 and
N —k=5:

Yy =167 =82 42 and vy = 1.6e/7/4 = 42 4 j 42,

4.4.3 Common period of sampled composite signals
Suppose the composite signal
z(t) = Cy cos(27 fot) 4+ Ce??™ /st

has been sampled above the Nyquist rate at intervals of At seconds (which isthe reciprocal of
the sampling rate of R Hertz), and we express the sample sequence as

zg = Cop cos(2nF o 0) + Cpe?®™5t 1 =0,1,...,

where the digital frequencies F, = f, At < % and Fg = fgAt < 5 . To determine the

periodicity of the sample sequence {z,}, we take the following steps:

(SIS

Step 1: Expressthedigital frequency of each component signal asarational fraction. For the
given signal, let us assume

K ks
F, = X and Fy = —2.
N, =N,

Step 2: Find the common period N = LCM (N7, Ns).

We now verify that x4 v = x¢. To proceed, we assume N = m; N7 = mo N> (because N is
the least common multiple of N; and N-), and we obtain

Ca cos(27rIFa L+ N)) = Cy cos(2nF ol + 2mwkymy) = Cy, cos(2nF ,0),

and
CgejQﬂ'Fﬁ (erN) — Oﬂej2ﬂ'Fﬁ€ej27rk2mg — 056]271']17[3[.

The desired result followsimmediately:

Topn = Co c08(27Fo (0 + N)) + Cge2™ o)
= C, cos(2nF 0) + Cped?™nt

= Ty.

If we denote the fundamental frequency of the composite envelope function z(¢) by f,, then
fo isthe greatest common divisor of the individual frequencies (recall Section 1.6):

fo = GCD(.fOn fﬂ)a
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and the period of the composite signal =(t) isT, = 1/ f, sec. Since the sampling duration is
Ty = N/t secondsin total, we have sampled A = T /T, periodsof x(t) for the N samples.
It also turns out that we may directly obtain A = GCD(k;, k»), because

7, = 1= GOD(fo. £5) = GO0 (P 20 ).

o NiAt" NoAt
and we obtain
T kimi kam
F::TNxfO:TNxGCD<]\1[A;,A27Ai> (- N = Nymy = Namy)
1
= TN X NAL X GCD(klml, kgmg)
= GCD(klml, kag) ( TN = NAt)
= GCD(k1, k2). (.- GCD(m1, ma) = 1)

Example 4.5 Thefunction
y(t) = 4.5 cos (2m fat) + 7.2 cos (27 fgt) = 4.5 cos (1.27t) + 7.2 cos (1.87t)

was used in Examples 1.1 and 1.2 in Section 1.6 to demonstrate a commensurate sum with
fundamental frequency f, = 0.3 Hz. Suppose y(t) has been sampled at intervalsof At = 0.5
(sec) so that y, = 4.5 cos (27 F o) + 7.2 cos (27 F gt), where

3 kl 9_k2

Fo = falAt=06%05= > = 2. Fy=faAt=09%x05= - =2
JalSt=0.6%05 = 15 = 55 Fy=foht=09x05= 5=+

We can now determine the period of the sequence {y,}, whichis N = LCM(Ny, N2) =
LCM(10, 20) = 20 (samples), and they span over A = GCD(k1, ko) = GCD(3,9) = 3
periods of the original signal y(t). Since the total time for taking 20 samplesis Ty = NAt =
20 x 0.5 = 10 seconds, we get the same result from computingA = Ty X f, =10x 0.3 =3
periods.

Applying the DFT formulato the N = 20 sample sequence {yo, 1, - - -, Y19}, We Obtain
four nonzero DFT coef cientsindexed by ky = kymy = 6, N — k1 = 14, kg = komy = 9,
and N —ky =11,i.e,

Yo=1C, =225, Y. g=1C,=225=Y;

Yo =3C3 =36, Y_g=3C3=36=Yp.

The original function y(#) can be reconstructed from

¥ 10
WO = S Vet = 3 v

N

-5

+1 r=-9
= 3.6e799% 42257950 1 2 956767 1 3,679
= 2.25(e7% 4 e775) +3.6(e7%? + e77%)
= 4.5cos (60) + 7.2 cos (96).

Observethat y(6 + 27) = 4.5(660 + 4) + 7.2(99 + 67) = y(6). To convert the variable from
0 back to ¢, it is important to recall that the DFT formula was derived by assuming that the
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N samples are equally spaced over T' = Ty = NAt seconds, S0 0 = 27t /T = 27t /Ty =
27t /(10) = 0.27¢, and we are able to reconstruct the original signal

y(t) =4.5cos (1.2wt) + 7.2 cos (1.87¢).

Remark 1: For the chosen At = 0.5 sec (or sampling rate R = 2 Hz), the common period
N = 20 represents the smallest number of samples we must take so that the period
T = NAt imposed by the DFT is an integer multiple of the fundamental period T, of
theoriginal signal y(t) in thiscase, we have Ty =3T,. The sampling of y(¢) based on
these choicesisillustrated in the top plot in Figure 4.2.

Figure 4.2 Sampling y(t) at 2 Hz (for three periods) and 3 Hz (for one period).

Sampling y(t) at 2 Hertz for three periods (N = 20)
L~ 1stperiod —— 2nd period —— 3rd period T

-0 R I I I

0 10/3 20/3 10 sec

Sampling y(t) at 3 Hertz for one periods (N = 10)

*— one period —

Y
0 10/3 sec

Remark 2: The sampling rate may vary as long as (i) the Nyquist condition is satised and
(i Ty = NAt = mT,, wherem > 1 is a positive integer. For this example, using
At = L will resultinF, = £ andF3 = 3. Since N = LCM(5, 10) = 10 and
A = GCD(1, 3) = 1, the ten samples are equally spaced over a single period of y(¢),
and we verify that Ty = NAt = 10 x % = T,. Applying the DFT to the ten samples,
we obtain the four nonzero DFT coef cients: Yo = 2.25,Y_5 = 2.25 = Yy, Y3 = 3.6,
andY_3 = 3.6 = Y7. Thereconstructed y(0) is now given by

y(0) = 4.5 cos (20) 4 7.2 cos (30).
Observethat y(6 + 27) = y(0). Letting 8 = 27t/ T, = 0.67t, we again recover

y(t) = 4.5cos (1.2wt) + 7.2 cos (1.87t).
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The sampling of y(t) based on these new choicesisillustrated in the second plot in Figure 4.2.

Thesignal fully reconstructed based on the twenty computed DFT coef cients{Yp, Y7,..., Y19} =

{0,0,...,0,Y5,0,0,Y9,0,Y11,0,0,Y14,0,0,...,0} from Table 4.1 is shown in Figure 4.3.

Table 4.1 Numerical values of M DFT coef cientswhenTy; =T, and Ty = 37,.
M =10 (one period) M = 20 (three periods)

r | DFTY, A, | B: DFT Y, A, B,
0 0 0 — 0 0 —
1 0 0 0 0 0 0
2 2.25 4.5 0 0 0 0
3 3.60 7.2 0 0 0 0
4 0 0 0 0 0 0
5 0 0 — 0 0 0
6 0 2.25 4.5 0
7 3.60 0 0 0
8 2.25 0 0 0
9 0 3.6 7.2 0

10 0 0 —

11 3.6

12 0

13 0

14 2.25

15 0

16 0

17 0

18 0

19 0

4.5 Frequency Distortion by Leakage

In the context of Example 4.5 from the previous section, the term leakage refers to the
consequent distortion of frequency contents when the total number of samples M is neither
equal to N = LCM(Ny, N») nor equal to an integer multiple of N. We study again the
function used in the cited example:

y(t) = 4.5 cos (2w fot) + 7.2 cos (27 fat) = 4.5 cos (1.27t) + 7.2 cos (1.87t).

For sampling rate R = 2 Hz the digital frequenciesof {y,} were determined to be
h_3 p k9

Fao

TN 100 TN, 20

with N = LCM (N7, N2) = 20. Suppose we have sampled y(t) at R = 2 Hz to obtain atotal
of M = 10 samples, then M = 0.5N, and the sampling duration T\, = MAt = M/R =5
seconds. Sincetheratio T, /T, = T X fo = 5 x 0.3 = 1.5, thefunction y(¢) is now sampled
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Figure 4.3 Signal reconstructed using computed DFT coef cientsfrom Table 4.1.

Sampling y(t) for three full periods (N = 20)

15
oh y(t) = 4.5 cos(1.2nt)-+ 7.2 cos(1.8nt) " :
. I\ ; A
\ ;o LI |
L . R #*, I . i
° \ A 7”,\ Foa o ’*‘ I : /ﬁ* /f‘ I
o \ ! \ A h ! ;N X !
or ! ok o x \ Y k N oa H
\ 1 / | . p w \ 1 1 -I / )
5k \ 1 ¥ A V! Nk \ -
; E v : ; ST !
- - : \ A
-10}+ *v % \-)‘ : * —— \ * B
i [ i 1 L 1 i i b
0 1 2 3 4 5 6 7 8 9 10

Signal reconstructed using DFT coefficients Y6, Yg, Y

,and Y
15 T T T T T 11 T 14

Figure 4.4 Sampling y(t) at 2 Hz for 1.5 periods.

Periodic y(t) Sampling y(t) for 1.5 periods
R N 15 R B
' ‘N =10

-10

: | : - 1.5 periods f
-15 = = -15 - 1
-5 -5/3 0 5/3 5sec -2.5 0 25 5 sec

Periodic extension of truncated y(t) with period TM =5 sec.
15 T T T F

LZ(t) = y(t)

«—Period T, = 5 sec—»
-15 | i M £ |
75 -5 25 0 25 5 75 sec
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for 1.5periods instead of aninteger number of periods. The sampling of y(¢) based on these
choicesisillustrated in Figure 4.4.

To investigate the consequence of applying the DFT to the M -sample sequence with M =
10, we express the digital frequenciesas

3 3 9 4.5 4.5
]Fa = — = —, F == = —,
10 M P72 10 M
and we obtain the analytical expression
ye = 4.5cos (2m2-0) + 7.2 cos (2m520), ¢=0,1,...,M -1,
= 4.5cos (3061) + 7.2 cos (4.5¢0;) (let6, = 27)
(4.30) = 2.25 (730 4 e73301) 4 3.6(e/*501 4 ¢7I451)  (py Euler sformula)
=2.25w¥ + 225w, + 3.6 wi? + 3.6w,, M (letw,, = ei)
=2.25w3 +2.25wlF + 3.6w};" +3.6w5%. (. whE = win)

Comparing the right-hand side of (4.30) with the M -term IDFT formula

M—1

0 def jom/M
Yo = Z Y,wi;, wherew, = ¢’ /M
r=0

clearly we won t nd terms to match w?,%* and w?:%*, because the exponent r in the IDFT
formulamust be an integer. Thishappens because the corresponding component in the original
signal y(t) is nonharmonic with respect to the interval T,,, = 5 seconds chosen for the DFT
computation:

4.5 4.5
7.2cos(1.87t) =7.2cos | 2r—t | = 7.2cos | 2r—1 | ,
) T

which shows afrequency fz = 4.5/T,, instead of fi, = k/T, required by aharmonic compo-
nent. We will show how the frequency content of a nonharmonic component spreads acrossthe
entire DFT spectrum. Because of such leakage from the nonharmonic component, while the
two terms 2.25 w3 and 2.25w7¢ from the harmonic component 4.5 cos (1.27t) contribute to
the corresponding termsin the IDFT formula, they are no longer solely responsiblefor the val-
uesof Y3 and Y~ the effect of leakage on the entire DFT spectrum is studied in the following
sections.

45.1 Fourier series expansion of a nonharmonic component

To determine the ten DFT coef cients of the nonharmonic component

4.5
z(t) = 7.2 cos (1.87t) = 7.2 cos (27TT—t> ,

M

which was sampled at R = 2 Hz for T}, = 5 seconds in the last example, we can proceed
analytically by nding, at rst, the Fourier seriescoef cientsof z(¢) using formula(3.12) from
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Chapter 3:
1 [Ta/2 }
Cp=— 2(t) e 32kt T gy
T T /2
9 [5/2 )
= % ” cos (1.87t) e 727k gt (- Tw=5)
7.9 5/2 j1.8mt —j1.87t )
= € te e I2TRS gt (by Euler sformula)
5 J 572 2
3.6 [°2

eI2m(A5=k)t/5 | j2m(~4.5-k)t/5 g
5 J_s5.2

To evaluate the de n ite integral on the right-hand side, we make use of the following result:

T joct T
i eJot gy — iejli
2r J_. 21 jo

1 [63‘” — 6_30‘7} sin ot

ar 2j ar

LettingT = 5/2, « = 2w(4.5 — k)/5,and 8 = 27(—4.5 — k) /5, we immediately obtain

T o7

36 [T . :
Cy / eI+ Pt at

-7

=3.6

[sinar = sinfB1
| ar BT }

[sin(4.5 — k) sin(—4.5 — k)7
| 45—k (—4.5—Fk)m }
[sin(4.5 — k)m  sin(4.5+ k)m

| (45—-K)m 4.5+ k)m }

=3.6

=3.6

We can further smplify the right-hand side using

k

sin (ym F km) = sinymwcos km F cos4.5msinkr = (—1)"sinyw
with v = 4.5, and we obtain
Cr = 3.6(—1)Fsin4.57 + !
= ' 45—-km  (45+4+k)m
9
_ k R _

Note that Cj; # 0 for every integer k € (—oo, 00). Because the factor (4.5% — k?) occursin
the denominator, C'+4 has the largest magnitude when (4.52 — k?) takes on the smallest value
with k = +4.

45.2 Aliased DFT coefficients of a nonharmonic component

Using the results from the last section, we can express the component z(¢) (which is non-
harmonic with respect to the sampling duration 7', chosen for the DFT computation) by its
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Fourier series expansion, i.e.,

4.5 > ,
z(t) = 7.2 cos (1.87t) = 7.2 cos (2771%) = > Cpe>™ /M where

TIVI k= —o00
3.6 x 9 x (—1)F
Tu=% O = ey

As discussed previoudly in Section 3.11, the Fourier series coef cients C of z(¢) can be
directly linked to the DFT coef cients Z, de ned by

| M1
—rt j2m /M
ZT’:M E 2wt wy =M =01, M -1,
=0

where z, = z(¢At) arethe M equally spaced samplesof z(¢) over theimposed period [0, T,].
Therelationship

Zp=Y_ Crpmm, 7=0,1,...,M~1
derived in Section 3.11 explains how al of the DFT coef cients of sampled z(¢) are affected
by thein nite number of nonzero Fourier series coef cients.
Recall that in our example we were analyzing the DFT coef cients of sampled composite
signal
y(t) = 4.5 cos (1.27t) + 7.2 cos (1.87t),

for which we have the IDFT formula

M—1 M—1
ye=2.25wY + 22500 + Y Zuwif = > Yywif, €=0,1,... M~
r=0 r=0

hence, the DFT coef cients Y,. can now be expressed as

Z3+225 ifr=3
Yo =19 Z; 4225 ifr=7
Zy ifr#3&r#7

forr=0,1,..., M—1 (recall M =10 in our example), where

Zr: Z CrerM

B Z 3.6 X 9 x (—1)rtmM
B (4.52 = (r+ mM)?)7

> 32.4(-1)" iy
= . o M:1 _1 m - ]-
m:Z_OO 20.257 — (r + 10M)%m . 0. (=1) )

To approximatethe DFT coef cientsY,. using thisanalytical formula, we may evaluate

K
Zr: Z CTerMa
K

m=—
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using suf ciently large nite K. For M = 10, using K = 500, we obtain Y, ~ 0.1143,
Y1~ —0.1267, Yo~ 0.1768, Y32 1.9032, Y4 ~ 1.5667, Y5 ~4.5456, Y~ 1.5667, Y7~ 1.9032,
Ys =~ 0.1768, and Yy =~ —0.1267. Therefore, the entire DFT spectrum is affected by leakage
from the nonharmonic frequency.

4.5.3 Demonstrating leakage by numerical experiments

In the last section we used the composite signal from Example 4.5 to study frequency distor-
tion by leakage analytically; we shall now do the same numerically. We have sampled the
composite signal

y(t) = 4.5 cos (1.27t) + 7.2 cos (1.87t)

at intervals of At =0.5 for M = 10 samples over the duration 7', = 1.57,, = 5 seconds, and
we apply the DFT formulato compute {Y;.} directly from the M -sample sequence {y,}. The
computed DFT coef cients{Yy, Y1,...,Yy} aregivenin Table 4.2. The reconstructed signal

9
Z(t) — Z}/'r‘ €j27TTt/TIVI
r=0

A 07t omrt ot
431 = — + Ascos + A, cos + B, sin
(4.31) 2 ST, 2_; Tw Tw

4

A
= 70 + As cos (4mt) + Z Ay cos (0.4mrt) + By sin (0.471t)

r=1

contains M = 10 terms with coef cien ts A, and B, explicitly given in Table 4.2. Note
that B, = 0 for every r because the function in the sampled interval remains to be an even
function; however, we now have A, # 0 forr = 0,1,2,3,4,5. Clearly the reconstructed
signal z(t) # 4.5 cos (1.2mt) + 7.2 cos (1.87t), and we illustrate how z(t) deviates from y(t)
in Figure 4.5. In Figure 4.6 we show that leakage can be reduced by increasing the number of
samplesfrom N =10 to N =20.

4.5.4 Mismatching periodic extensions

In this section we offer another useful perspective on the cause of frequency leakage. Suppose
we have sampled asignal z(¢) with period T to obtain M equally spaced samplesover [0, T',]
for spectrum analysis, and T, is not an integer multiple of 7. By carrying out the DFT on the
M samplesdenoted by z, < =, for¢ = 0,1,..., M —1, we obtain

M-—1

1
(4.32) Z. = i Zzgw;fé (r=0,1,...,M—1);
=0

by carrying out the IDFT on computed Z,., we recover

M-—1

(4.33) =Y Zwh  ((=01,...,M-1).
r=0

Observe that the periodicity of the M -sample sequence, expressed as zyy,, = z¢, ISimposed
by the IDFT computation prescribed by (4.33), which reinforces the fact that the A/ samples
are taken by the DFT to represent a single period of some unknown signal z(t); hence, the
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Table 4.2 Numerical values of M distorted DFT coef cientswhen T, =1.57,.

M =10 (Ty = 1.5T,) M =20 (Ty = 1.5T,)

r DFT Y, A, B, DFTY, A, B,
0 0.1140368 0.2280736 — 0.4215058 0.8430116 —
1 | —0.1264108 —0.2528215 0 —0.4474678 —0.8949357 0
2 0.1765708 0.3531417 0 0.5448626 1.0897252 0
3 1.9034602 3.8069204 0 1.4256876 2.8513752 0
4 1.5664108 3.1328215 0 2.3303310 4.6606621 0
5 4.5459011 4.5459011 — 2.2729506 4.5459011 0
6 1.5664108 —0.7639203 —1.5278405 0
7 1.9034602 0.4777726 0.9555452 0
8 0.1765708 —0.3682918 —0.7365835 0
9 | —0.1264108 0.3210571 0.6421141 0

10 —0.3074691 —0.3074691 —

11 0.3210571

12 —0.3682918

13 0.4777726

14 —0.7639203

15 2.2729506

16 2.3303310

17 1.4256876

18 0.5448626

19 —0.4474678
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Figure 4.5 Signal reconstructed using M =10 DFT coef cientsfrom Table 4.2.

Sample y(t) for 1.5 periods (N = 10)
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Figure 4.6 Signal reconstructed using M =20 DFT coef cientsfrom Table 4.2.

Sampling y(t) for 1.5 periods (N = 20)
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reconstructed signal must satisfy z (t+7,) = z(t). Clearly, x4, # x¢and z(t+T,) # x(t)
when T, /T isnot an integer, so the signal z(¢) analyzed by the DFT is not the original signal
x(t). By treating z(¢) as a time-limited function over [0, T,] a rst, its periodic extension
gives us the protracted version of z(t) with period 7',. That is,

(1) def {x(t), t €0, Twl,

z(t—mTy), |t|>Ty, t—mTy €[0,Ty], misaninteger,

Since the Fourier series expansion of the T, -periodic z(t) is different from that of the T'-
periodic x(t), so are the corresponding DFT coef cients; i.e., Z, # X,. The leakage error
in the computed Z,. can thus be attributed to truncating «(¢) at the wrong place, and for this
reason the leakage error is also referred to as the truncation error or  nite sample error in the
literature.

Understanding frequency leakage from this perspective will be useful when we connect the
error in the computed spectrum to the application of windows in Chapter 8.

45.5 Minimizing leakage in practice

While in theory we can eliminate leakage by sampling a given signal for an integer number of
periods, this cannot be easily accomplished in practice when we attempt to analyze samples
from an unknown signal becaus e we would not know its period. The usua strategies em-
ployed to minimize leakage are to (i) experiment with increasing sampling rate and sampling
duration if this option is available (in general, a higher sampling rate and a longer sampling
duration help minimize the effects of aliasing and leakage); (ii) run the DFT on increasing
number of samplesuntil thereislittle changein the computed spectrum (for example, we have
demonstrated how leakage can be reduced by increasing the number of samplesfrom N =10
in Figure 4.5 to N =20 in Figure 4.6); and (iii) use tapered windows to truncate the sample
sequence before running the DFT  thisis atopic covered in Chapter 8.

4.6 The Effects of Zero Padding

4.6.1 Zero padding the signal

There are two commonly cited reasons for extending the sample sequence by adding zeros.
(i) Some FFT computer programs require the user to input exactly 2™ samples. (When this
condition is not met, some program will automatically append zeros to the input data so the
data length is extended to the next power of two.) We remark that the radix-2 FFT is smply
one fast method of computing the DFT coef cients it does not alter the mathematical de ni-
tion or properties of the DFT. Although FFT algorithmsfor other lengths (including arbitrary
prime length) have been developed, their implementations may not be available in every FFT
package. (ii) When the DFT spectrum is too sparse for us to visualize a continuous analog
spectrum X ( f), one may wish to decrease the spectral spacing A f on the frequency grid. Re-
cal that Af = 1/(NAt); hence, A f can be reduced if we enlarge N by adding zeros. (The
continuous analog spectrum X (f) is called the Fourier transform of z(t), which is formally
treated in Chapter 5.)

How does zero padding affect the DFT spectrum? In the rst case, the zero-padding of
input data to the next power of two M = 2° > N may result in M = oN, where « is not
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an integer. In such case the zero-padded input data of length A/ = &N may be interpreted as
the result obtained by truncating zero-padded input data sequence of length M = gN, where
g >aisaninteger the casewe study next, and the frequency distortion caused by improper
truncation of the data sequence in the time-domain will be studied in Chapter 8.

We develop next the zero-padding strategy which allows us to obtain the additional values
needed for visualizing a continuous spectrum without distorting the original DFT spectrum;
i.e., the original DFT coef cients can be recovered from the new results. To accomplisth that,
we need to append zerosto an N-sample sequence {x, } to extenditslength to M = ¢ N, where
g isaninteger and ¢ > 2, and when we assume N = 2n+2 and M = 2m+2, the DFT of the
zero-padded M -sample sequence {z;} is given by

m—+1
Z, M Z zewy, ™, Wy L a2/ m (—m<r< M-m+1)
l=—m
(4.34) il
=7 Z zow; "t (cze=0forl < —norf>n+1))
Z—fn

Note that neighboring Z, and Z,..; are now separated by

5 1 1 1 1
A= 3ra = [N—At}zaﬁf-

Lettingr = g x kfor —n < k < n—1intheden ing formula(4.34) for Z,., we obtain

ntl n+1
- = P M =gN
q><k ]W[_X_:nww qu_z_:nz Wy ( q )
1 n+1
= ~ ZZEUJ;M (. ng — eI2m/N W)
(4.35) g, —
1 1 n+1
= — —Zl‘gw;kf ('.'ZZZQ:E, _ngéﬁn—l—l)
q|N,=
1 .y
= an- (by den ition of DFT)

Hence we can recover X, = qZgxk for —n < ¢ < n+1. (An example is shown later in
Figures4.7, 4.8, 4.9, and Table 4.3.)

How do we interpret the ¢ — 1 values of Z, between Z, . and Z, (x11)? Since we can
obtain the de ning formulaof %X r by evaluating

n+1 n+1
4. -0 — —jto
( 36) [ F;nx * ‘| M i_z—n .
at 0 = k(2 /N), and we can also obtain the de ning formula (4.34) of Z, by evaluating the
same Z(0) a 6 = r(2m/M), the Z,. values between | X, and ; X,,;1 are smply additional
interpolating frequency points supplied by the same function Z(6).

Therefore, by zero padding the signal, we effortlessly obtain additional values of Z(6) so
that we can plot avisually denser spectrum. The IDFT of {¢Z, } returnsthe original N samples
plus M — N zeros noinformation is gained or lost by zero padding. This explainswhy zero
padding in the time domain leadsto interpolation in the frequency domain.
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To directly and explicitly demonstrate Z,. s interpolation of the DFT, we begin with the
DFT (of zero-padded sequence) de ned by Equation (4.34) and proceed as shown below.

n+1
ZT: Z {,Ugqu , where N = 2n + 2, M = gN,
n+1 n+1
= Z lz ka’“} wy"*  (by IDFT de niton)
Z—fn k=—n
n+1 n+1
(4.37) = — Z X [Z whw —”’]
k—fn
n+1 n+1 ,
M Z Xk Z Wzlif(kr/q)‘| (cwh =wiy = e?m/N = wy)
k_—n l=—n
n+1
Z Xy Ly (k —7/q),
k_—n
where
N if m=k—r/q=0;
n+1
Li(k—r/q) = Zwé(k r/a) _ 0 - if m=k—r/q+#0isaninteger;
1—els™ . .
t=-n 67/\76 if A\, =k —1r/q# 0isnotaninteger.

1—wy

Note that w*™ = €72 =£ 1 when ), is not an integer. Assuming that ¢ = M/N isan
integer as before, we may now use (4.37) to show

s, 1 N 1
Zgxp = Z XL (k - qxu) = MXALL#(“ - QXTN) = MXH = EXM
k_—n

for Z, with » not being an integer multiple of ¢, we have the interpolated value according
to (4.37):

n+1 ntl 27 A
1 1—elmk
Zy = i kz XiLi(k—r1/q) = i kZ Xk [763'2“’6/”} )

where A\, = k — r/q isnot an integer.

When the zero-padded data length M is not an integer multiple of the original length IV,
then ¢ = M/N is not an integer; while Z,. is still de ned by Equation (4.34), we no longer
have the conventional DFT { X, } appear as a subset of the new DFT {Z,.}.

Example 4.6 InFigures4.8 and 4.9 we demonstrate the effect of zero padding using the Gaus-
sian function
zt)=e ™ (a>0), te(—00,00),

and its Fourier transform

X(f) = /rfae ™/ fe (—oo,00);
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the latter represents the continuous analog spectrum of the nonperiodic time-domain function
z(t) in the frequency domain. (The Fourier transform pair involving the Gaussian function is
derived in Example 5.2 in Chapter 5.) The graphsof z(¢) and X (f) are shown for ¢t € [—5, 5]
in Figure 4.7. To obtain the DFT coef cientsin Figure 4.8, we have performed the following

steps:
Step 1. Take N =10 equally spaced samples

{33—47 r_3, -2, T-1, Lo, T1, T2, T3, T4, 965}
fromtheinterval —5 < t < 5 asidenti ed inthe rst plotin Figure 4.8.

Step 2. Compute N =10 DFT coef cientsusing the formula

5
1 —r
X, = N@_E%xew]v Z, —4 <r <5.

The computed X, s (scaled by T'=10) are identi ed in the second plot in Figure 4.8,
and their numerical values are recorded in Table 4.3.

Remark: In this step, if needed, we may rearrange the data to obtain
{%0, 1, T2, T3, 24, T5, T6, T7, T8, To}
:{xm Ty, T2, 3, T4, T5, T4, -3, T2, 95—1}7

and compute the N =10 DFT coef cients by the aternate formula:

1
XT:NP Fowy™, 0<r<o.

Using therelationship X, = X,._ y, we can convert the computed X, 6 < r < 9, back
to X _4, X_3, X_o, and X_1.
Thisisauseful strategy in computing practice when only one of the two equivalent DFT
formulasis implemented by an available FFT computer program.
To obtain the extraten DFT coef cientsin Figure 4.9, we have performed the following
steps:

Step 1. Take N =10 equally spaced samples
{$—479€—3,$€72,$71,$079€1,C€2,$3,$4,C€5}
fromtheinterval —5 < t < 5 asidenti ed inthe rst plotin Figure 4.9.

Step 2. Zero-pad the 10-sample sequence {x,} by appending ten more zeros. That is, we
double the sample length from N to ¢V with ¢ = 2. As shown below, the ten zeros
are split up and appended to both ends of the given sequence. The resulting 20-sample
sequence {z,} is

{Z_g, Z—8y +evy Be1y R0y Rly + -+ 210}

= {0707070707 T4y, T_3, T_2, T—-1, T, L1, T2, T3, T4, T5, 070707070}'
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Step 3. Compute M =20 DFT coef cientsusing the formula

10
1 —r
Z, = i pé_g Zpwy, 27 -9 <r<10.

The computed Z,. s (scaled by ¢7' = 20) areidenti ed in the second plot in Figure 4.9.
The numerical values of Z,. s are recorded in Table 4.3, so they can be compared with
the ten previously computed X, s directly.

Remark: In this step, if needed, we may rearrange the data to obtain
{20, 21, .-+, 2105 211, -+ -5 219} = {20, 21, -+, 210, 29, -+, Z-1},

and compute the M =20 DFT coef cients by the alternate formula:
1 = —rl
Zp=— FZw, ", 0<r<19.

Using the relationship Z, = Z,._j;, we can convert the computed Z,., 11 < r < 19,
back to Z_o, 0 gy, L_1.

We mention again that this is a useful strategy in computing practice when only one of
the two equivalent DFT formulas is implemented by an available FFT computer pro-
gram.

Figure 4.7 The Gaussian function z(t) and its Fourier transform X (f).
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Figure 4.8 Computing ten DFT coef cientsfrom ten signal samples.

Taking N = 10 samples from x(t), te (-5, 5

1.2

T T T

X(t)

0.8

0.6
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0.2

NS
o

The ten computed DFT coefficients (multiplied by T)
3 T T T T 3 T

2sp X, T % i
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Figure 4.9 Computing twenty DFT coef cientsby zero padding ten signal samples.

Taking N = 10 samples from x(t), te (-5, 5]
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06f
04t
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Table 4.3 Numerical values of the DFT coef cie nts plotted in Figures 4.8 and 4.9.

N=10(T=10) M =qN =20 (T'=10)

+r X, T +r qZ 1T (q=2)
-9 0.0524351
—4 0.1085813 -8 0.1085813
-7 0.2239264
-3 0.4243447 —6 0.4243447
-5 0.7300004
—2 1.1381158 —4 1.1381158
-3 1.6077044
-1 2.0576168 -2 2.0576168
-1 2.3859337
0 2.5066245 0 2.5066245
1 2.3859337
1 2.0576168 2 2.0576168
3 1.6077044
2 1.1381158 4 1.1381158
5 0.7300004
3 0.4243447 6 0.4243447
7 0.2239264
4 0.1085813 8 0.1085813
9 0.0524351
5 0.0360585 10 0.0360585
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4.6.2 Zero padding the DFT

In view of the symmetry in the formulation of DFT and IDFT, it is expected that zero padding
the DFT will lead to signal interpolation inthetimedomain. Thisisindeed the case provided
that we preserve the DFT property |Z,.| = |Zy—-| (for > 0) in the M-point zero-padded
{Z.}, because this would have held when the DFT and IDFT are derived directly from any
M -point sequence. To show how to transplant this property from the original N-point DFT to
the zero-padded M -point DFT, we shall use a concrete example to help with the explanation
that follows. In the example we are required to extend the DFT length from N =2n+2=61to
M =2m+2=10, and the questions are: Where should we put the zeros? What other changes
should we maketo ensure | Z,.| = | Z,,—,| in the zero-padded new DFT?

We rst review some key relationships embedded in the derivation of the DFT. Recall that
DFT was derived to give usthe N = 2n+ 2 coef cients of the interpolating trigonometric
polynomial when the latter is expressed in complex exponential modes:

n+1
(4.38) a(t) = Y X
By evaluating (4.38) at N equally spaced signal samples x, over [0, T , we obtain the system
of equations;
n+1

(4.39) Ty = Z ergé, Wy = ej%/N, 0</<N-—-1.

rT=—"n

For N = 2n + 2 = 6, the coef cientsin (4.39) are
{X_2, X1, Xo, X1, X2, X3},

and we have |X,| = |X_,| for 1 < r < 2; because it is through de ning
Xip = %(AT F jB,) we convert z(t) from the expression using the pure cosine and sine
modes to the one using complex exponential modes. By making use of the fact w,” = w7,
we relabel theterms X, w5 in (4.39) as X x_,w\¥ " to obtain the IDFT

N-1
(4.40) 2= X, 0<L<N-—1,
r=0

which then leads to the DFT formulafor X,. (1 <r <N — 1). Hence the DFT coef cientsin
our examplefor N = 6 are

{X()a le X27 X37 X47 X5} = {X07 Xl? X27 X37 X—Qa X—1}7

and | X, | = |X_,|forl <r < nin(439)istrandatedto | X,| = |[Xy_,|fOor1 <r < mn
in (4.40).

To gure out where to insert the zeros in the N-point DFT {X,.}, we start with the equa-
tionsde ned by (4.39) (or its equivalent for odd V), because any additional termsin the DFT
must originate from (4.39). Depending on N being even or odd, we take the following steps
to arrive at the de n ition of zero-padded DFT {Z,.}:

Step 1. (Skip this step if IV isodd.) Starting with (4.39), we split the term with coef cient
Xn+1 (Whichis X3 in the example) into two halves so that we can extend the property
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|X,| = |X_,|for1<r<nto|X,| = |X_,| over the extended symmetric range for
1<r<n+ 1 asshown below.

n+1
2= Xwl ( start with (4.39) )
- % 1’L+1‘»‘J1(\In+1)z + Z ergf + %X7L+1w1(\ln+l)é
(4.41) —(n n "
= % n+1WN( 1 + Z ergé + %Xn+lwz(v e
(P N=2n+42, Wi =e/"=¢ "= ")
n+1
= > Xl
r=—n-—1
where

1 Xnp ifr=—(n+1),
(4.42) X, = X, if —n<r<n,
%Xn+]_ Ifr:n-l-l

For N =2n+2=6 in our example, we split X5 to obtain
{(X_3, X_9, X1, Xo, X1, Xo, X3} = {31X3, X9, X_1, Xo, X1, X2, $X3}.

Observethat |X,| = |X_,|for1 <r < 3.

Step 2(a). (For even N) We now add M — N —1 =2(m —n)—1 zeros to the (N + 1)-point

sequence { X, } in the following manner: add 1 —n —1 zeros before X,(n+1), and add
m—n zerosafter X,, 1. For M =10 and N =6, wehave M—N—1 = 3 in our example,
so we obtain

{Z-4, Z 3, Z—2, Z_1, Zo, Z1, Z2, Z3, Za, Z5}
= {07 X*37 X*27 X*la XOa Xla X?a X37 07 0}
= {0, %X3, X_ o, X_1, Xo, X1, Xo, %X:;, 0, 0}, (from (442))

where |Z,.| = |Z_,| holdsfor 1 <r < 4. Observethat |Z3| = |Z_3| because we split
the X3 term, which is no longer the last term in the zero-padded 10-point sequence.
Because the condition |Z_,.| = |Z,| for 1 < r < missatised , we may now interpret
Zy (—m < r < m+ 1) asthe coef cien tsof

m—+1
(4.43) w= Yy Zuwi, wy=e2M o<t <M-1.

r=—m

Step 2(b). (For odd N) When N = 2n+ 1, we aready have equal number of X, and X_,.,

so the term splitting in Step 1 is not needed. Since M — N is an even number when
M =2m+1 and N =2n+1 are both odd, we add exactly m —n zeros before X _,, and
exactly m—n zeros after X,,.
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Step 3(a). (For even N) The property w;,” =w " enables usto relabel the terms Z_ w3,
in (4.43) as Z,,_.w{" " to obtain the M-point IDFT

M-1
(4.44) 2= Z Zywit,  wy =M 0<(<M-1
r=0

To complete our example, the zero-padded DFT contains

{2,y =1{Zy, Z1, Z3, Z3, Z4, Zs, Zs, Zr, Zg, Zo}
={Z0, Z1, Z3, Z3, Z4, Z5, Z_4, Z_3, Z_o, Z_1}
={Xo, X1, X2, $X3,0,0,0, $X3, X2, X1} (fromstep2(a))
={Xo, X1, X2, $X3,0,0,0, $ X5, X4, X5}. (- Xop=Xyny)

We have thus arrived at the following denitionof Z,. (0 < » < M — 1) in terms of
gven X, 0<r<N-1)withM =2m+2and N =2n + 2:

X, 0<r<mn,
%XnJrla r=n+1,
(4.45) Z, = 0, n+2<r<M-n-—2,

%Xn+17 r=M-—n-—1,
X winy M—n<r<M-1.

The process we use to arrive at the de n ition of the new DFT {Z,.} ensuresthat |Z,.| =
|Z i~ holdsfor 1 <r < m.

Step 3(b). (For odd N) Repeating the processin 3(a) on the zero-padded sequence from step
2(b) mandates that M — N zeros should be inserted between X, and X,,; when N =
2n + 1.

With the zero-padded DFT properly de ned, we can now demonstrate how the computed M -
sample sequence { z, } interpolatesthe N-sample sequence { x4} in thetime domain. Assuming
that ¢ = M/N is an integer, we show next that the computed {z,} contains {z,} th evalue
of z, agrees with the value of x,,, when ¢ is an integer multiple of ¢, i.e., z¢ = x,/, for
0<{¢/qg<N-L1

We proceed by computing z, from the zero-padded {Z,.} de ned in (4.45) using the M-
point IDFT, where ¢ is an integer multiple of ¢, and we assume ¢g=M /N =(2m+2)/(2n+2)
isan integer:

M-1
w= Zwy, (0<l<M-1)
=0
n M-1
4 1—n—1)¢
(446) = Xowif + [3Xn (W0 W) 1 D Xl
r=0 T=M-—n
n M-1
= ZXT W+ X eI Z Xy arenwt
r=0 rT=M-—n

Note that in deriving this intermediate result we have made use of the fact that w}/ = 1 and

wEMTDE — g2t )e/n — o£int/a \where ¢ = M/N. Since ¢/q is an integer, we have
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eI™t/a = ¢=imt/a and the result follows. We continueto simplify formula (4.46):

n+1 M—-1
ZX w —|— Z X, A1+Nw]\f ( Xn+1w1(v7+l) Xn—&—lejﬂ-e/q)
r=M-n
n+1
—ZXw + Z Xqw{tHM=NE (de ned=r— M+ N)
d=n-+2
n+1
—ZX w4 Z X, Wt -t (relabel d asr; notew™’ =1)
r=n+2

n+1 1 N— —
Z [N Z ka;kr TZ Z [ Z kakr‘| wréwaZ

1 1 n+ 1 N— N—-1
kr rﬁ —kr rf —nN{
xk Wy E Wy Wy | Wy

k= r=n—+2

(4.47)

n+1
]- —r — —r
=% T [Z Wy (k=t/a) |, Nﬁ/q Z (k ﬁ/q)‘| (rwl =wy)
k=0 r=0 r=n-+2
L N-1 N-d
=N T wy"FHD (- wy % =1 when ¢/q isan integer)
k=0 r=0
| V-l
= 2 ik = /q),

=

[}

N-1
where  Ti(k —£/q) = > wi" 0
r=0
N ifk—t/g=0,
0 otherwise. (.- k — £/q isanonzerointeger)

Since ¢ is an integer multiple of ¢, we express the result from (4.46) with £ = ¢ x d, we
immediately obtain

1

1
20 = Zgxd = N Z kak(k— %d) = N;Cde(d— &qd) =Td = Ty/q

for0 </{/qg<N—1.

Example 4.7 To demonstrate the effect of zero padding the DFT, we make use of the DFT co-
ef cientsfrom Table 3.1, which were computed in Example 3.66 (in Section 3.11.1, Chapter 3)
from data taken from the function

t, 0<t<2, B
f(t)={27 D <tk ft+4)=f(t).

For N =8 and 16, wedisplay the zero-padded DFT coef cient sequencesof length2 N =16
and 32 in Table 4.4. Observe that the steps given in this section for padding zeros have been
followed: for N =8, the coef cien t X is split and seven zeros are inserted; for N =16, Xs is
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split and 15 zeros are inserted. In Figure 4.10, we explicitly contrast the signal sample values
obtained by inverse transforming the N DFT coef cients (without zero-padding) with those
obtained from inverse transforming the 2V zero-padded DFT coef cients.

Note that for the two cases N =8 and NV = 16 we demonstrate in this example, doubling
the sample sizes to 2V serves our purpose because our objective is to explicitly show where
the extra values occur. To plot asmooth graph of the function f (t) reconstructed from N DFT
coef cientsin Example 3.66, one may extend N to kN by padding zeros, where  can take on
an integer value as large as needed. (A reminder: Depending on whether IV is even or odd, the
zeros are padded in different manners as explained earlier in this section.)

Table 4.4 Zero pad the DFT coef cients computed in Example 3.66 (IV = 8, 16).

r | Zero-padded X, (2N = 16) | Zero-padded X, (2N = 32)
0 1.5000000 1.5000000
1| —0.2133884 + j0.3017767 —0.2052667 4 j0.3142087
2 | —0.0000000+ 50.1250000 0.0000000 + 50.1508884
3 | —0.0366117+ j0.0517767 —0.0253112 + j0.0935379
4 0 — 40.0000000 0.0000000 + 50.0625000
5 0 —0.0113005 + 50.0417612
6 0 0.0000000 + 50.0258884
7 0 —0.0081216 + 50.0124320
8 0 0+ 50.0000000
9 0 0

10 0 0

11 0 0

12 0 — 40.0000000 0

13 | —0.0366117 — j0.0517767 0

14 | —0.0000000 — j0.1250000 0

15 | —0.2133884 — j0.3017767 0

16 0

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0+ 50.0000000

25 —0.0081216 — 50.0124320

26 0.0000000 — 50.0258884

27 —0.0113005 — 50.0417612

28 0.0000000 — 50.0625000

29 —0.0253112 — j0.0935379

30 0.0000000 — 50.1508884

31 —0.2052667 — j0.3242087
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Figure 4.10 The effect of zero padding the DFT asdonein Table 4.4.
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4.7 Computing DFT Defining Formulas Per Se

While thereis no doubt that appropriate FFT algorithms should be used to computethe DFT at
all times, it remainsuseful to learn to program and compute the DFT as matrix-vector products
according to its various de ning formulasfor the following reasons:

1. The various FFT algorithms are tailored to DFT of speci ¢ lengths. While there is a
mismatch in lengths, zero-padding commonly occurs, and the DFT computed from the
zero-padded signal may not contain the original DFT as we discussed in Section 4.6.

Therefore, when test problemsof small sizes are used for debugging or aiding theoretical
understanding, it is often useful to compute the exact DFT as matrix-vector products.

2. There are anumber of different ways to formulate the DFT depending on the sampling
period and sample size as discussed in Sections 2.5 and 2.6. While each formula can
be computed as a matrix-vector product, the FFT programs available will not compute
every formula directly and exactly. Even when the FFT program which computes the
desired DFT formula of the given length is available, the FFT output may not be in the
desired order.

We can eliminate such uncertainties by checking the output of a selected FFT program
against the desired DFT matrix-vector product on small test problems.

3. Since the DFT formulas are numerical formulas at the core of digital signal processing
(DSP), there are DFT-like formulas which cannot be computed by the FFT  e.g., part of
the Chirp-FFT codesimplements DFT-like formulaper se; learning to program the DFT
in an environment suitable for DSP applications can only help with our future tasks.

Since we use MATLAB®? for all numerical computation in this book, we want to show how
to and how not to compute the product of a DFT matrix and a vector in MATLAB. At the
same time we also want to use the very specially structured DFT matrix as a vehicle to bring
out those programming techniqueswhich set MATLAB apart from other high-level procedural
programming languages such as C, Fortran, and Pascal.

4.7.1 Programming DFT in MATLAB

For comparison and contrast, we show multiple MATLAB implementations of the same for-
mula, and we also show how to simulate a C, Fortran, or Pascal program in MATLAB. The
various MATLAB programs and timing results demonstrate that very signi cant reduction in
execution time may be achieved by using built-in functions, high-level matrix operators, and
aggregated data structures.

In order to connect the MATLAB code to the mathematical equations, the following vari-
able names are chosen to denote the mathematical symbols indicated. Since M (r, () = w?’
(note that w isreden ed asw,y = wy ! so the negative power can be omitted in coding the
DFT matrix), it is important to note that M (r, ¢) is stored in M_dft(r+1,el1+1), because
the index range of arraysin MATLAB begins at one instead of zero.

Suppose that matrix A and vector « have been entered, the MATLAB command for com-
puting their product is simply y=A*x. Therefore, to compute the DFT of sequence x with
period N according to the matrix equation X = %Msc one only needs to generate the DFT

IMATLAB is aregistered trademark of The MathWorks, Inc.
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Table 4.5 Variable namesin MATLAB code.

Variabletypes Mathematical expressions MATLAB expressions
matrix Q o Qnxn Omega or Omega(l:N, 1:N)
M or Mpyxn M_dft or M_dft(1:N, 1:N)
matrix element Q00 <N-1 Omega(r+1, ell+1)
M, 0<r{<N-1 Mdfe(r+1, ell+1)
matrix row M,. or M]|r, x| Mdfe(r+1, :)
Q. or Qr, %] Omega(r+1, :)
matrix column M., or M]|x,/] Mdft(:, ell+l)
Q.0 or Qfx, /) Omega(:, ell+1)
scalar w or wy =e I27/N w = exp(-j*2*pi/N)

matrix M, whichisde nedby M, , = w7, with0 < r, ¢ < N — 1. InMATLAB, this can be
donein morethan oneway four programs are discussed below.

1. Simulating C, Fortran, or Pascal Code in MATLAB: (Not recommended)

function M_dft = dftl_matrix(N)

%

% Input N: order of the DFT matrix

% Output M_dft: the DFT matrix (without division by N)

%

w = exp(-j*2*pi/N); % j is MATLAB constant for sqrt(-1)

for r = O:N-1 % access matrix elements row by row
for ell = 0:N-1
power = r*ell;
M_dft(r+1,ell+1) = w power; % compute each scalar
end % element
end

For DFT matrices of order N = 100, 200, 400, 512, and 800, the execution times
and total op counts are given in Table 4.6. (Note that MATLAB 5.3 built-in function
flops.misused to obtain the op counts reported here, but this function is no longer
avaiablein the current version 7.4 of MATLAB.)

2. Using MATLAB’s matrix building functions and operators: Wereview the needed func-
tionsand operatorsbeforethe code of functionsdft2_matrix.manddft2b_matrix.m
are presented.

¢ MATLAB command A=ones(M, N) generatesan M x N matrix of all ones. If M =
N, one would commonly use A=ones(N) instead of A=ones(N,N), although the
latter is also correct. Since MATLAB supports the product of a scalar and a matrix, the
command Omega=w*ones(N) generates a constant matrix with all entries 2, , = w.

e MATLAB command v=0:N-1 generatesarow vector v = [0,1,--- , N — 1]. To get
a column vector, simply use MATLAB s matrix transpose operator as in the command
u=v’.
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Table 4.6 Testing function dftl_matrix.m using MATLAB 5.3 and 7.4.

MATLAB 5.3 MATLAB 7.4

M-File Timings Total Flop M- le Timings

N (CPU 1.3GHz) Counts N (CPU 3.2GH2)
100 0.13 sec 990,246 100 0.03 sec
200 0.52 sec 4,697,686 200 0.16 sec
400 3.39sec 21,715,446 400 1.73 sec
512 7.03 seC 37,285,462 512 3.39sec
800 25.13 sec 98,477,476 800 12.13 sec

¢ MATLAB commands v=0:N-1 and Power=v~*v compute the outer product given

below.

Power =v’>*v =

e MATLAB command C=A."B computeselements C,., = Af;ﬁ. ThisimpliesC,., =
Fif A,y = wand B, = k. Therefore, the DFT matrix may be generated by the
command M_dft=(w*ones(N)) - "Power. For example, the DFT matrix of order

N = 4 may be generated as

Mdft =

(w*ones(N)) .~

Power =

€ €& & & & & &

0
0
0
0

€ & &€ &

w
w

&

0
1
2
3

€ & & &
£ & &€ &

w
w
w

w

D N O

>

wO
w3
w6

9

o O O O

W NN = O

S NN O

O O W O

To avoid storing the matrix of all ones and to eliminate the redundant computation of
w*1 entailed by thecommandw*ones(N),the MATLAB commandM_dft=w. " Power
-~ supports mixed-mode operands.

could be used because the operator

M_dft =

Using these matrix building functionsand operators, we construct the function dft2 matrix.m

w. Power =w.”

0 0

o O

1
2
3

o

DN O

0

O O W

&£ & & &

0
0
0
0

0
1
2
3

€ £ & &

0
2
4
6

€ & & &

0
3
6
9

€ € &€ &

below. Observethat the codeworkswiththe contents of the vector or matrix directly
one need not address the individual elements according to their positions in the ar-
rays. Speci cally, comparing with dftl_matrix.m, we no longer address the elements

M_dft(r+1,ell+1) explicitly in the code of dft2_matrix.m.
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function M_dft = dft2_matrix(N)

%

% Input N: order of the DFT matrix

% Output M_dft: the DFT matrix (without division by N)
%

w = exp(-j*2*pi/N); % j is MATLAB constant for sqrt(-1)

v = 0:N-1; % content of v is [0,1, ..., N-1]
Power = v’*v; % store outer product in matrix Power
M_dft = w."Power; % compute DFT matrix w/o division by N

Sincethe inverse DFT matrix is the complex conjugate of the (Symmetric) DFT matrix,
the command M_inv = conj(dft2.matrix(N)) produces the inverse. Alterna-
tively, one may choose to output both matrices as shown in the modi ed listing below.
Note that we have added the second output argument M_inv.

function [M_dft, M_inv] = dft2b_matrix(N)
%

% Input N: order of the DFT matrix
% Output M_dft: the DFT matrix (without division by N)
% M_inv: the inverse DFT matrix

%
w = exp(-j*2*pi/N); % j is MATLAB constant for sqrt(-1)

v = 0:N-1; % content of v is [0,1, ..., N-1]
Power = v’*v; % store outer product in matrix Power
M_dft = w."Power; % compute DFT matrix w/o division by N

M_inv = conj(M_dft); % compute the inverse DFT matrix

For DFT matrices of order N = 100, 200, 400, 512, and 800, the execution times and
total op countsare givenin Table 4.7. Comparing these results with those in Table 4.6,
we see the dramatic decrease in execution times, although both functions perform essen-
tially the same sequence of arithmetic operations.

Table 4.7 Testing function dft2_matrix.m using MATLAB 5.3 and 7.4.

MATLAB 5.3 MATLAB 7.4

M-File Timings Total Flop M- le Timings

N (CPU 1.3GH2) Counts N (CPU 3.2 GH2z)
100 0.06 sec 980,146 100 0.03 sec
200 0.19 sec 4,657,486 200 0.08 sec
400 0.83 sec 21,555,046 400 0.36 sec
512 1.45 sec 37,022,806 512 0.61 sec
800 3.65 sec 97,836,676 800 1.58 sec

3. Reducing redundant arithmetic in building the DFT matrix: Insideboth of thefunctions
dftl matrix.mand dft2_matrix.m, eachindividua matrix element M, , = w7
is computed by literally raising w, to the power of » x ¢. By noting that

{+1
wg( ) :w;é*w;n
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and that

MdFE(r+1,el1+2) = i Y,
M.dFt(r+1,ell+1) = o, and MdfFt(r+1,2) =u’,

N

we obtain
Mdft(r+1,ell1+2) =M dfe(r+1,ell+1) « M dft(r+1,2).

Accordingly, to compute the entire column M_dft(:,ell1+2), we smply apply the
componentwiseoperator . * to multiply columnM_dft(: ,el 1+1) and columnM_dft(:,2)
element by element. That is, using the DFT matrix of order 4 as an example, the com-
mand

Mdfe(:,ell+2) = MdFtE(:,ell+1). «M dft(:,2)

computesthe third and the fourth column as shown below:

r,0 r,07 r,0

w w w
1 1 2
MdFt(:,2). «Mdfe(:,2) = |“,| .« |7, | = |, | =Mdft(:,3).
w w w
UJB w3 w6
07 007 M0
w2 wl w3
MdFE(:,3). «Mdfe(z,2) = |“,| .« || = || = Mdfe(:,4).
w w w
UJ6 w3 w9

Thus, the cost for computing the V elementsin each columnis N (complex) multiplica-
tions. To generate column 2, which is needed for computing all subsequent columns, we
tailor the command C=A. "B introduced earlier to a special case. Here A isascalar in-
stead of amatrix, and B and C are vectorsinstead of matrices. Thus, the same command
now computes vector element C, = AP¢. That is, the MATLAB commands

w = exp(-j*2*pi/4); f =0:3; v =w."F
compute

_ —j2m/4

0 0
1 1

v:w.'\2 =|,|,where w=e
3 3

€ € &€ &g

The code of function dfFt3_matrix isgiven below.

function M_dft = dft3_matrix(N)
%
% Input N: order of the DFT matrix
% Output M_dft: the DFT matrix (without division by N)
%
M_dft(:,1)=ones(N,1); % generate the First column
ITN>1
w = exp(-J*2*pi/N); % J is MATLAB constant for sqrt(-1)
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v = (0:N-1)"; % column vector v=[0,1,2,...,N-1]"
M_dft(:,2) = w."v; % generate the second column
for ell = 2:N-1
M_dfe(:,ell+1) = M_dft(:,ell) . *M_dft(:,2);
end
end

For DFT matrices of order N = 100, 200, 400, 512, and 800, the execution times and
total op countsaregivenin Table 4.8. Comparing these results with thosein Tables 4.6
and 4.7, we see the dramatic reductionin total  op counts (as expected), but such reduc-
tion does not necessarily reduce execution times! On the contrary, the execution times
of function dft3 matrix are signi cantly longer than function dft2 matrix. This example
shows that we must be aware of such potential tradeoff when we apply the conventional
wisdomin op count reduction.

Table 4.8 Testing function dft3_matrix.m using MATLAB 5.3 and 7.4.

MATLAB 5.3 MATLAB 7.4

M-File Timings Total Flop M- le Timings

N (CPU 1.3 GHz) Counts N (CPU 3.2GH2)
100 0.02 sec 64,259 100 0.004 sec
200 0.12 sec 250,287 200 0.065 sec
400 1.62 sec 984,143 400 1.188 sec
512 4.03 sec 1,605,603 512 2.625 sec
800 16.70 sec 3,895,455 800 10.078 sec

4. Generating DFT matrix one column at a time: If the matrix columns can be generated
and used one by one in forming the matrix-vector product, we will not need to store
the entire matrix, and can reduce storage from © (N?) to ©(N). To accomplish this
goal, we need to view the matrix-vector product as a linear combination of the matrix
columns. For example, we compute X = 3> M, where

1 1 1 1 To 1 1 1 1
A — 1wl w? W | . 1 ta wl to w? ta w3
1 w?2 1 W?| |29 o1 w2 211 31 w2
1 w? w? Wl s 1 w3 w? wl

Note that such computation can be done literally in MATLAB sinteractive environment
by entering the following command:

X
X

x(L)*M_dFe(:,1)+x(2)*Mdft(:,2)+x(3)*MdFt(:,3)+x(4)*Mdft(:,4);
X/N;

where x(k) denotes the kth element in vector x, and M_dft(:,k) denotes the kth
column in matrix M_dft. Therefore, in order not to store all columns, we must nd an
efficient way to generate the columns one at atime. We show next how this can be done
for the DFT matrix de nedby M, , = wif for0 <r,{ < N — 1.
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Observe rgt that since w? = 1, one has Wk ™ = wk for 0 < k < N — 1, which
impliesthat W = wf withg = £ mod N. Since0 < ¢ < N — 1, w{ isthe (¢ + 1)st
element in the second column (or row) of the DFT matrix M. This relationship is
demonstrated below using the DFT matrix of order N = 4, inwhichw = wy = e~ 727/4,

1 1 1 1 wO w() UJO mod 4 w() mod 4 wO wO UJO wO

M. FE— 1 w! w2 w3 - W0 Wl W2 mod 4 w3 mod 4 - WO Wl w2 W3
- 1 w2 wt W - W0 w2 Wl mod 4 w6 mod4 [ WO w2 WY w2

1 w3 Wb w? W0 w3 Wb mod 4 w? mod 4 WO Wl w2 oWt

Clearly, the N distinct values of w”’ are contained in a single vector  column 2 of the

matrix M_dft, and the other columnsare formed by asubset of elementsfrom column 2.

In MATLAB, whentheelementsof u=[b b a ¥ g c c] areto be chosen from an-
othervectorv=[a b ¢ d e F g],onecouldusethecommandu=v([2 2 1 6 7 3 3]),
in which the integer index vector contains the original positions of the desired ele-

ments in vector v. It can be easily veri ed that u(1)=v(2)=b, u(2)=v(2)=b,
u(3)=v(1)=a, and soon.

Note that the MATLAB command
u=v([22167 33D

is equivalent to the command

u=[v(2 v v(@) v v(? v(3) vi3D.

Thisis a convenient programming technique when the rel ationship between the contents
of vectors u and v isreected by the index array, assuming that such an array can be
easily established. We next show that thisisindeed the case when building other columns
in the DFT matrix from column 2.

Recall that for correctnessin MATLAB code, wemust store M., = w%f inM_dft(r+1,
ell+1), because 0 < r, ¢/ < N — 1, whereas array indicesin MATLAB begin at one
instead of zero. By noting that

MdFt(r+1l, ell+1) = W'l = WrfmedN — 4 where £ > 2,

and
Mdft(g+l, 2) =wi,

we obtain the value of M_dft(r+1,el 1+1) by entering these MATLAB commands:
q = rem(r*ell,N); Mdft(r+l1l, ell+1) =M dft(g+l, 2).

Note that rem.m is the MATLAB built-in function for computing the quantity ¢ = ¢
mod N. Applying this relationship to the DFT matrix of order 4, we see that from the
second column of matrix M_dft,

M.dfe(:,2) = v =

£ & & &
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one obtains the third and fourth columns of matrix M_d ¥t as shown below.

[u(1)] w
Mdfe(:,3)=Vv([1 3 13])=v([1313])= ZE‘Z’% = gi :
(3)]  Lw?]
and
[u(1)] w07
} , v(4) w3
MAfeC:.4) = v([L 43 2) =v([L 43 2) = | ) = |
0(2)]  Lw']

Note that the index vector, i.e., theinteger vector [1 3 1 3] inthe MATLAB expres-
sonv([1l 3 1 3)]), can be either a row vector or a column vector, and the result
is always a column vector if v is a column vector. As expected, if either index vector
is used with arow vector, the result will always be a row vector. Therefore, one should
never need to transpose an index vector for such usagein a MATLAB program.

Another unique feature of MATLAB is that many of its built-in functions accept both
scalar and array input arguments. Thisisso for function rem.minthe DFT computation.
For example, suppose v is an integer column vector of length N = 4, the command
p=rem(Vv,N) produces a column vector p with p(r) = v(r)mod N:

rem(v(1),N) v(1)
rem(v(2),N)| |v(2)
rem(v(3),N)| |v(3)mod N
rem(v(4),N) v(4)

p=rem(v’,N) =

Finally, recall that MATLAB s hinary operators accept operands in mixed-modes. For
example, let p be a column vector of length N = 4, the MATLAB command p+1 adds
the scalar 1 to each element of vector p. That is,

p(1) p(1) +1
@] L ) et
PrI=le| T ) 1
(4) (4)+1

As expected, if g isarow vector, the MATLAB expression g+1 produces a row vector
with ¢(r) = q(r) + 1.
The programming techniques introduced above are now used to build function dft.m.

function Xout = dft(x)

%

% Input X: One period of the sequence to be transformed.
% Output Xout: Xout = (1/N)*M_dft*x

%

% Reference: Introduction to Scientific Computing by

% Charles F. Van Loan (p. 181)
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%

N = length(X); % determine period N
Xout = x(1)*ones(N,1); % M_dft(:,1) is a column of all ones
ifN>1
w = exp(-j*2*pi/N); % J is MATLAB constant for sqrt(-1)
v = (0:N-1)"; % column vector v=[0,1,...,N-1]"
MdF2 = w."v; % compute 2nd column M_dft(:,2)
for ell = 1:N-1 % start with column ell+1 = 2
q = rem(v*ell, N); % compute row vector g=r*ell mod N
% for building index vector qg+1
Xout = Xout + x(ell+1)*Mdf2(g+1);% accumulate partial
% sums: add one column
end % each time
end
Xout = Xout/N; % including division by N in Xout

For sequences of randomly generated complex numbers x of length N = 100, 200, 400, 512,
and 800, the execution times and total op counts are given in Table 4.9. Note that because
only one column of the DFT matrix is actually computed, and the matrix is not stored in its
entirety, function dft requires ©(NN) storage. However, for transforming « of length IV, it
is till a© (N?) agorithm in time. Comparing with the results in Tables 4.6, 4.7, and 4.8,
function dft is the fastest © (V) algorithm for transforming & note the huge reduction of
execution time: for N = 800, the M- letiming is 0.34 seconds, which compares with 25.13
seconds, 3.65 seconds, and 16.70 seconds reported in Tables 4.6 to 4.8.

Table 4.9 Testing function dft.m using MATLAB 5.3 and 7.4.

MATLAB 5.3 MATLAB 7.4

M-File Timings Total Flop M- le Timings

N (CPU 1.3GH2) Counts N (CPU 3.2 GH2z)
100 0.02 sec 135,360 100 0.003 sec
200 0.04 sec 532,488 200 0.008 sec
400 0.11sec 2,108,544 400 0.029 sec
512 0.15sec 3,446,304 512 0.047 sec
800 0.34 sec 8,384,256 800 0.114 sec
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Chapter 5

Sampling and Reconstruction of
Functions—Part I

In Chapter 2 we introduce a number of fundamental concepts in function sampling through
the Fourier series representation of a periodic band-limited function. In the real world we
encounter many signals which are not periodic and they are not time limited. Although it is
useful to think of such a signal as a periodic signal with period T' = oo at times, the unmod-
i ed Fourier series which represents a periodic signal with nite period is no longer a proper
representation.

In this chapter we consider sampling asignal «(¢) which isnot required to be periodic and
it isnot required to be time-limited either. The frequency-domain contents of z(t) are de ned
by its Fourier transform (to be derived in this chapter)

(5.2) X(f) = / h x(t) e 72Tt qt,

where the independent variable f represents the continuously varying frequency, and the fre-
quency domain isthe entirereal axis. If X(f) isareal-valued function, its frequency-domain
plot isthe graph of X (f) versus f; if X (f) iscomplex-valued, its frequency-domain plot con-
sists of the graph of Re(X (f)) versus f and the graph of Im(X (f)) versus f. The frequency
contents may be formally represented by { (£, Re(X(f)),Im(X(f)))}: anin nite set made
up of a continuous spectrum of the frequency f.

Under conditions which are to be discussed, the analytical form of the original function
in the time domain can be recovered from the inverse Fourier transform (to be derived in this
chapter) of X (f), i.e,

(5.2) z(t) = /_ h X (f) eIt df.

The right-hand side of this equation is called the Fourier integral representation of z(¢). Note
that there is a noncountable number of frequencies in the Fourier integral because each real
number f correspondsto one frequency.

For afunction z(t) which is de n ed for every ¢, the suf cient condition for the existence
of aFourier transform X (f) isgiven by

(5.3) /_OO | z(t) | dt < co.

157
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That is, the function z(¢) is absolutely integrable. Since thisis not a necessary condition, there
are functions which have Fourier transforms even though they are not absolutely integrable.
For example, a Fourier transform can be formally de ned for a periodic function x?(¢) (see
Chapter 7) with the help of the generalized functions (see Chapter 6.)

Observe that the Fourier transform X (f) de ned by the integral (5.1) remains unchanged
if welet the absolutely integrable function x(¢) take on different valuesat any nite number of
points. Thismeansthat if x(¢) is not continuous, then it is possible that two different functions
share the same transform X (f). Therefore, the function z(¢) cannot be uniquely determined
by inverse transforming X (f) unlessit is continuous or it satises two more conditions: (i)
x(t) hasonly a nite number of maximaand minimaon any niteinterval; (ii) z(¢) hason any

n iteinterval at most a nite number of discontinuities, each of which isajump discontinuity.
Inthelatter case, theinverse Fourier transform of X (f) produces z(¢), which agreeswith z(¢)
at every t at which z(t) is continuous, and z(t) equals the average of the left-hand limit z(t,)
and the right-hand limit x(¢7) at every t, at which a jump discontinuity occurs. The proof
for the existence of the inverse Fourier transform may be found in texts treating the theory of
Fourier integrals[3, 22, 51, 54].

We shall begin this chapter by deriving the sampling theorem for nonperiodic band-limited
functions in Section 5.1. The theorem determines an appropriate choice of sampling rate so
that the original (unknown) function x(¢) can be reconstructed analytically. This process is
directly connected to the inverse Fourier transform of a frequency-limited X (f) as de ned
by (5.2). The Fourier transform pair de ned by (5.1) and (5.2) is derived next in Section 5.2.
Thefrequency contents represented by the Fourier transform are then examined, the properties
of the Fourier transform are derived, examples of Fourier transform pair are given, and the
relationship between Fourier seriescoef cientsand sampled Fourier transformsof time-limited
and almost time-limited «(t) is established in the sections that follow.

5.1 Sampling Nonperiodic Band-Limited Functions

The nonperiodic z(t) is said to be band limited up to the maximum frequency fq. if its
Fourier transform X (f) is zero outside the interval [—F/2, F/2] = [~ fimaz, fmaz), Which
is called the Nyquist interval as introduced in Chapter 2. (Notethat F' = 2f,,4..) By as
suming that X (f) is a real-valued function with a nite range of independent variable f, we
de ne aperiodic X?(f) which is the protracted version of the frequency-limited X (f); i.e.,
XP(f) = X(f)for f € [-F/2,F/2]and XP(f £ F') = XP(f) holdsfor arbitrary f. The
sampling theorem for nonperiodic band-limited functions makes use of the Fourier integra
representation of x(t) as well as the Fourier series representation of X?(f) (which is a peri-
odic extension of X (f)). To proceed, we assume that the following two conditions have been
met: (i) z(t) is suf ciently well-behaved so that its Fourier transform exists; (ii) X?(f) is
real-valued and it satis es the Dirichlet conditions given by Theorem 3.1 (in Chapter 3) so it
possesses a Fourier series.
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5.1.1 Fourier series of frequency-limited X (f)

Since XP(f) isperiodicwitha niteperiod F' = 2 f,,,4, its Fourier series representation can
be written (using complex exponential modes) as

(5.4) XP(f) = Z Cy 7> /F  where
{=—0c0
1 [F2 ,

(5.5) c, = = Xp(f)e—,;%éf/F df.
FJ g

Since X?(f) = X (f) for f € [-F/2, F/2], weimmediately obtain

(5.6) X(f) = > Coe?™/T where
{=—00

(5.7) Cr = — X (f)e I2mt/E gf
F J_py

So the frequency-limited X (f) has a Fourier series representation in the frequency domain.
(Notethat thereisanin nite number of termsin the Fourier series above.)

5.1.2 Inverse Fourier transform of frequency-limited X (f)

To construct x(¢) analytically, we begin with Equation (5.2), which expresses z(t) as the in-
verse Fourier transform of X (f), and recall that frequency-limited X (f) = 0 outside the
interval [—F/2, F/2]; hence,

oo , F/2 _
59 w0 = [ xeta= [ xperty

-0 —F/2
Since z(t) is not time-limited, the temporal variable ¢ may take on any value. If welet ¢ =
—{/F,

F/2
(5.9) x (-) = X (f)e I2m/E gf

—F/2
Note that the integral on the right-hand side of the last equation isidentical to the integral that
occursin equation (5.7) which de nesthe Fourier series coef cient C,. Thus, the coef cients
C are now connected to the discrete-time samples of z(t) at t = —(At if wedene At =
1/F. Thatis, for every integer ¢,

(5.10) Cy= %a: (—%) = w, where F' = 2 f,,44-

The Fourier series coef cients of X (f) are therefore isomorphic to the values of its inverse
transform xz(t) sampled at intervals of At = 1/F. The corresponding sampling rate is given
by 1/At = F = 2 fnaz, Which is the Nyquist rate de ned in Chapter 2. Since f,,.. (cycles
per unit time) is the highest frequency present in the band-limited signal «(¢), a sampling rate
of 2 fa. (SAMples per unit time) results in two samples per cycle for the highest frequency
present, which is the lowest sampling rate we can possibly use to avoid aliasing.
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5.1.3 Recovering the signal analytically

To reconstruct z(t) from the equally spaced discrete-time samples, we combine the inverse
Fourier transform with the Fourier series representation of X (f) so that

(5.12)
= / X(f) e’ df  (by theden ition of inverse Fourier transform)

F/2
:/ eI It gf X(f)=0when f < —F/2or f > F/2
F/2

F/2 .
= / ( Z Cy eﬂ”ff/F> e2™ft df  (use Fourier series representation)

{=—00
F/2 00
= / / Z x éAt JQﬂEfAt ej27Tft df . Op _ w At _ l
F/2 ’ . ¢ ja ) F
l=—00
i z(—LAL) / I2TEHEAN S g
=00 F —F/2
. x(—LAL) [ ITEHAOE _ o—jn(tHADE
g;,o < J2m(t + LAL) )
o0 sin(mF(t + (At)) il _ =0
= —INt LT e
/_Zoo a ) aF(t+(At) . % sin
. sm 7rF( ZAt))
/_z_:oo TF(t — LAt)
= Z z(CAL) sinc(F(t — éAt)), - sinc (\) = Sln;\r)\
™
f=—00

Note that each component function is a sinc function de ned by sinc(\) = sin(7wA)/(7wA).
Sincesinc(\) = 0/0 a A = 0, we apply L Hospital sruleto evaluatethelimitas A — 0:
sin T\ . T COSTA

lim sinc(A) = lim = lim =cos0 =1,
A—0 A—0 A A-0 T

and we de ne sinc(0) = 1 based on the limit obtained. Observe that sinc(\) = 0 for A =
+1,+2,43,.... Observe further that the function sinc(\) = sin(7w\)/(7\) is not periodic,
because when the numerator sin(A) does repeat over each 2 interval, the denominator will
never be the same, and the function sinc(\) will never repeat itself.

The results we have derived are summarized in the sampling theorem given below.

Theorem 5.1 (Sampling theorem) If the signal «(¢) is known to be band-limited with band-
width F' = 2,42, then z:(t) can be sampled at the Nyquist rate 1/ At = 2 f,,4., ad we can
determine aunique z(t) by interpolating the sequence of samples according to the formula

2(t) = 3 a(thr) Sinﬁ;@ (’5_—[ i?)t))

l=—o0
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5.1.4 Further discussion of the sampling theorem

To clearly show the nature of the interpolating formula and the properties of the individual
sinc function, welet t, = {At and de ne
sin(wF(t —ty
Lg(t) — M
wF(t — ty)
Now we express the same interpolating formula as

oo

p(t)= Y x(t)Le(t),

l=—o0

and we show next that at each Nyquist sample point ¢, = kAt, we have

1, ifl=k
Let) =90, o2

Note that when the running index ¢ = k, because L (tx) = sin0/0 = 0/0 isin an indeter-
minate form, we establish L, (¢) = 1 inthelimit ast — ¢, by applying L Hospital s rule:

=cos0 = 1.

Feos(nF(t —t
mmm:m”mw( )

L5ty t—tp TF

When ¢ # k, wehave (ty, — t;) = (k — ) At = (k — ¢)/F, yieding

sin(mF (tx — tr)) B sin(m(k — ¢))

TFle =t xi—0)

L(ty) =

Since Ly(ty) = 1 and Ly(t,,) = 0 for every m # k, the sinc function denoted by L (¢)
crosses the t-axis at all Nyquist sample points except for the one at t;, = k/At. The graphs of
L_5(t), Lo(t), and L, (t) are shown in Figure 5.1.

Accordingly, for every integer k € (—oo, 00), we have

o0

ptr) = Y a(te)Le(ty)
l=—0c0
= x(tx) Lk (tr) (. Le(te) = 0if £ # k)
= z(ty), (o Li(ty) = 1)

which means that p(t) takes on the sample value x(t;) at t = t;, for every k. Therefore, the
interpolating formula p(t) passes all sample values as long as they are spaced At = 1/F =
1/ (2 fmax) @part asrequired.

While the sampling theorem gives us insight and guidance to the sampling process, we are
il faced with the following dilemma: in order to sample the signa at the Nyquist rate, we
need to know the bandwidth a priori. Strictly speaking, the bandwidth is not known unlesswe
have aready obtained the complete set of values of X (f) th isis not possible when z(t) is
an unknown function, which we wish to sample in order to recover its frequency contents. In
practice this dilemmais usually resolved by sampling the signal frequently enough so that its
graph resemblesthe physical signal. Of course, for signalswith known bandwidth (e.g., speech
or voice information of certain quality), we would be able to sample at or above Nyquist rate
to suit our processing needs. There are other legitimate concerns:
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Figure 5.1 Thegraphsof L,(t) for¢ = -3, 0, 1.

L_3(t) L_,(t)=0ifk=-3.

| Ll(t) L (t)=0ifk=1.

. To use the interpolating formula given in the theorem, we need an in nite number of

samples extended from —oo to oc.

. In theory we can interpolate x(t) between sample points. However, this interpolating

formulaisvery expensiveto compute, becauseit involvestrigonometric functionin every
term.

. As mentioned earlier we actually need two nonzero samples per cycle for the highest

frequency present. Therefore, when this cannot be guaranteed by the sampling process,
we must sample at arate higher than the minimum Nyquist rate required by the sampling
theorem.

. Many signalsin thereal world are not band limited. In fact, the uncertainty principle of

guantum mechanics[21, 27, 37] does hot permit asignal to be arbitrarily narrow in both
time and frequency. For example, several rectangular pulses and their Fourier transforms
are shown in Figure 6.1 in Chapter 6: we see that the narrower the pulse becomesin the
time domain, the wider its transform spreads out in the frequency domain.

We will return to address these issues after we learn more about the Fourier transform.

5.2 Deriving the Fourier Transform Pair

We derive the Fourier transform of xz(¢) by thinking of it as a periodic signal with period
T = oo in the time domain. We then investigate how the Fourier series representation of a
periodic function should be modi ed when the period T" approaches oc.

We begin with the Fourier series of a periodic signal zP(t), which is expressed using the
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complex exponential modes bel ow.

(5.12) al(t) = Y Crel*™/T where
{=—c0
T/2 .
(5.13) C, = — / e 92T gy
T/2

We are interested in representing the nonperiodic signal

x(t) :Tli_rgoxp (t) = Th—{r;ofz c, et/ T
=—00

To have a closed-form representation of the right-hand side, we modify the Fourier series and
the formulafor the Fourier coef cientsin the following manner:

1. WhenT — oo, the frequency spacing A f = 1/T becomesin nitesimal, and we may
replaceit by df when turning the summation into an integral in the limit.

2. WhenT — oo, Af = 1/T — 0, the set of discrete frequencies f, = k/T = kAf
turnsinto a noncountable set of continuousfrequencies f € (—oo, c0) each  frequency
isrepresented by areal number f.

3. With regard to the formulafor the Fourier coef cient C,, we preserve the closed-form
integral by evaluating
T/2

lim TC; = lim 2P (t) e—d2mt/T gy
T=eo T—oo J_1/2

:/ z(t)e 72"/t 4t (Thisisthe Fourier transform of z(t).)

= X(f).

Note that in evaluating the limit as 7" — oo, we have replaced zP(t) with x(¢) in the
integrand, and we replace the particular discrete frequency ¢/T' = (A f in the exponent
with areal number f. The outcomeis the Fourier transform of z(t).

4. With these changesin place, we return to modify the Fourier series representation itself:

= lim Z Cye??mt/T

T~>oo
= o 1

:/ X (f)el? It df. (Thisistheinverse Fourier transform of X (f).)

Thetwo functionsz(t) and X (f) arede ned in terms of each other, and they form the Fourier
transform pair. It will be convenient on many occasionsto denotethe Fourier transform of ()
by F{x(t)}, so wehave

oo

F{z(t)} = X(f) = / x(t) e 72Tt gt

— 00
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Similarly, theinverse Fourier transform of X (f) may bedenoted by 7~1{ X (f)}, and we have
FUX(DY=al) = [ XD

Observethat by evaluating the integral forms of x(¢) and X (f) at the central ordinates, i.e., at
t = 0and f = 0 respectively, we obtain another useful relationship:

(5.14) X(O):/_OO (1) dt: x(O):/_OO X(f) df.

The operators F and 7! may be used to express the relationship between transforms of
different functions conveniently. For example, we may use the compact notation

Flo(t —t,)} = X(f) e 927 fta

to express the rel ation between the Fourier transform of the shifted function (¢ — ¢, ) and that
of the original function z(t). (The relation itself needs to be proved and that will be shown in
Section 5.6.)

5.3 The Sine and Cosine Frequency Contents

In the last section we derived the Fourier transform from the Fourier series using complex
exponential modes, and we saw some connection between X (f) = F{x(¢t)} and the Fourier
series coef cients . Recall that the Fourier series has alternate forms; in particular, it may be
expressed using sine and cosine modes. Sincethe different setsof coef cientsused by alternate
forms of the Fourier series are directly convertible from each other, we expect to obtain the
sine and cosine frequency contents of x(¢) from its Fourier transform X (f) too. We begin our
derivation by seeking an alternate form of the Fourier integral representation of z(t).

o) = [~ x(ery
= /_Oo X(f)(cos(2m ft) + j sin(2m ft)) df
= /Ooo (X(f) cos(2m ft) + X (—f) cos(2m(—f)t)
+ X (f)sin@nft) + X (= f)sin(2m(~)t) ) df
= [ e+ Xy eostempiar + [T - X(-1) sinenfo) o
_ / " Xeon(f) cos(2n 1) df + / " Xun(f) sin(2r 1) df.
0 0
where we have obtained the cosine and sine contentsin terms of X (f) and X (—f), namely,

Xcos(f) = X(f) +X(_f)7

and

Kan(f) =3 (X (f) = X(=1))-
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By combining the integrals dening X (f) and X (—f), we may also express X..s(f) and
Xsin(f) each as an integral transform of z(t). In the derivation below, we apply Euler sfor-

mulas ‘ , ‘ ,
el? + =90 elf — =99

cos(f) = 5 and sin(f) = 2

with 6 = 27 ft, and we obtain
Xcos(f) = X(f) +X(_f)
— / x(t)e 2™t gt + / w(t) e 32Nt gy
= / x(t) (e_ﬂ”ft + ejz’rft) dt
= 2/ z(t) cos(2m ft) dt  (by Euler sformula)
and

:j/oo x(t) (e‘jQ’Tft - ejz’rft) dt
=2 /Oo x(t) sin(2w ft) dt. (by Euler sformula)
We now have two integral representationsfor x(¢):
o) = [~ x(erita

_ / " Xeoa(F) cos(2r f1) df + / T X () sin(2m f4) df.
0 0

Notethat for f € [0, 0o), the complete set of thevaluesof X..s(f) de nesthe cosinefrequency
contents of x(¢), and the complete set of the values of X, (f) de nes the sine frequency
contents of x(¢).

5.4 Tabulating Two Sets of Fundamental Formulas

We have seen earlier that the interplay between the Fourier series and the Fourier transform
is critical in developing the sampling theorem, and we will continue to rely on the connection
between the two in future development. Since there are commonly used aternate forms for
both, we tabulate the fundamental formulas and their alternates for easy referencein Table 5.1.

5.5 Connections with Time/Frequency Restrictions

Our derivationsin this chapter and Chapter 3 show that under suitable conditions, agiven signal
z(t) may be represented by a Fourier integral, a Fourier series, or an interpolating formula.
These alternate forms are valid and connected under the conditionsidenti ed in Table 5.2, in
which we use the shorthand notation x(t) <= X (f) to denote aFourier transform pair.
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Table 5.1 Two sets of fundamental formulasin Fourier analysis.

Fourier series and its coef cien ts of
periodic real-valued function xP (¢)

Fourier transform and its inverse of
nonperiodic real-valued function z(t)

Ced2mht/T

2P (t) = 2kt

T/2 j2mkt /T
_TIT/2‘TP t) e=32mkt/T gt

ej27rft df

= [ X()

X(f) = [, w(t) e 210t

aP(t) = A0+ S50, A cos2mkt
+> ey B sin27r%t
TfTﬁQ P(t) cos 2wt dt,
k=01, 2
TfTﬁ2 P () 5111271' t dt,
k= 1,2,...

= [ Xeos( cos(27rft)df

+ o7 Xain(f) sin(2m ft)df
cos = 2f COb 27Tft) t
Xain(f) = Zf ) sin(27 ft)dt

A, =Cr+C_ = QRQ(Ck)

Bk = ](Ok — O_k) = —ZIm(C’k)

Xcos(f) :X(f)+X(_f)
Xein(f) = 5(X(f) = X(= 1))

Cix = 5 (A F jBy)

X(£f) = %( Xeos(f) :Fszin(f))

Table 5.2 Connections with time/frequency restrictions.

Generic pair Assumptions:
z(t) <= X(f) = [T X (f) e Itdf, x(t) isrea-valued;
t € (—o0,00) X (f) iseither real-valued
fe(—00,00) | X(f)= [ x(t)e 9> I dL. or complex-valued
Time-limited pair Fourier series connection:
z(t) <= X(f) = [2_X(f) e, 2(t) = X ___ Cped2mht/T,
€[-T/2,T/2] fort € [-T/2,T/2], where
f € (—o0,00) fTéz )e 2™ Itdt. | coef cient Cj, = £ X (%),
fork=...,—-1,0,1,...
Band-limited pair Sampling theorem connection
z(t) = X(f) | z(t) = fﬁQX(f) e?2mftqf, | (assume X (f) isreal-valued):
t € (—00,00) 2(t) = T2 altn) gl
€[-F/2,F/2] | X(f)= [T x(t)e 7" Itdt. | wheret, = kAt, At =1/F,
fork=...,-1,0,1,...
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5.5.1 Examples of Fourier transform pair

Example 5.1 The Fourier transform of the decaying exponential function

2(t) = {e‘“t, fort € [0,00) (a>0);

0, fort € (—o0,0)

can be easily obtained from the de n ition

X(f)=/ a:(lt)e‘jz’”‘tclt:/0 e—ato—i2mft g

—0o0
oo
— / 67(a+j27rf)tdt
0

1
a+ j2nf
_ a . 2nf
T @2ranzfr a2 fanepr

Since X (f) is complex-valued, the frequency-domain plot of x(t) consists of the graph of
Re(X (f)) and the graph of Im (X (f)) versus f for every f € (—oo, c0), which are shown in
Figure5.2.

Figure 5.2 Time-domain and frequency-domain plots of z(t) = e~%.

x(t) =e ™ (a=0.5)

amplitude

0 1 1 1 \: 1
-20 -15 -10 -5 0 5 10 15 20
time t (seconds)

2 | - -
15F X(f) = (a+j2nh) Re(X(f) i
g1 mX@®
£ osf B
§ op=mmmmmm T T S
-0.5 B
_l L 1 1 1 1 1 ]
-2.5 -2 -15 -1 -0.5 0 0.5 1 1.5 2 2.5

frequency f (cycles per second)

Example 5.2 The Gaussian function

2(t) =e " (a>0)
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isden edfor every t € (—oo, 00). We nd its Fourier transform by evaluating the integral
X() = [ e e ia

_ /00 e—a(t*+52mft/a) gy

_ / ¥ mal(tintf)P 422 e gy

_ o fa / T attint/a)? gy

=e ™ fa /OO e N d\ (changevariableto A = t + jrf/a; d\ = dt)

— %e*ﬁﬂ/“ /Z e du (changevariableto u = /a\; du = vad))

=/rjae ™ /e, (using the known re@eult/OO e~ du = /7
We thus have

X(f)= }"{e_at2} =/7/a e~ /e for every f € (—o0,00).

Observe that X (f) isrea-valued and it is also a Gaussian function (see Figure 5.3). In this
example, z(t) is neither time limited nor band limited. Furthermore, when the scalar constant
a = 7, we have salf-reciprocity: F{xz(t)} = x(f).

Example 5.3 (Figure 5.4 Time-Limited Pair) We consider the rectangular pulse function (also
known as the square wave or boxcar function), which is assumed to have a pulse width of 2t

anditisdened as )
—, fort e [—tg,to];
«Trect(t):{%o [ ’ 0]

0, for|t| > to.

Its Fourier transformis

oo

X(f)= / Trect (t) e 2Tt gt

—00
L[

= — eI ftqy
2%,
e—i2nfto _ gi2nfto

—J4m fto
_sin(27 fto)
N 27Tft0

= sinc(2fty), *sinc(z) = sin(rz)/(rx).

—t0

(by Euler sformula)

Thusthetime-limited rectangul ar pulse and the frequency-domain sinc function formaFourier
transform pair (see Figure 5.4). By letting ¢y = 1/2, we obtain the pair

sin(nf)/(xf), f#0;
1, f=o0.

1, tel-1/2,1/2] — sinc(f) =
Zrect(t) - {0, |t| > 1/2. = Z(f) - (f)
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Figure 5.3 Gaussian function and its real-valued Fourier transform.
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© 1+ 4
0.5f |
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Figure 5.4 Time-limited rectangular pulse and its Fourier transform.
T
1
1 Time-limited '
%:» x(t) = 1/(2t0),
£ forte (—to, tO).
£
©
(t.=0.5)
O o
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;
1r 1A R
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s
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Notethat Z(f) isden edfor every f € (—oo, 00).

To demonstrate the Fourier series connection, we give the Fourier series representation of
xhet (t), which is the periodic extension of xe(#), and the two functions agree over the period
[-T/2,T/2]. The periodic pulse function zk(t) with period T isde ned as

D 2 9 0,00}
II'GCT (t) tO

0, forty<|t|<T/2.

It isworth noting that because there are discontinuitiesat ¢t = +t,, the Fourier series obtained
for 2k, (t) actually convergesto the normalized function shown in Figure 5.5:

1
—, fort e (—tg,to);

2{0’

~P

Trea(t) = ¢ —. fort = +t,:
r 4t07 0

0, forty<|t|<T/2.

Thisis so because the Fourier series convergesto the average of the left- and right-hand limits
at the point of discontinuity.

Figure 5.5 Connecting Fourier series coef cientsto Fourier transform.

The normalized periodic pulse function
T T T T

T T T

05 o 6 o 6o 6 0 6 0
: - period
S T=2
O .............................................. F R R
1 1 1 L 1 1 1
-4 -3 -2 -1 0 1 2 3 4

Fourier series coefficients

T T T T T T T

1t ——X(Ff)=TC 1
Fourier coefficients () 0

_ . L X(f)=TC
C,, = X( )T (f)=TC,

05F

We can now nd the Fourier series of ah(¢), which converges to ., (t). Using the
complex exponential modes, we write

ifea(t) = D Cre>™M/T,

k=—oc0
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where the coef cients are computed from xh():

1 [T/2 .
Cr = —/ 2l (t) e I2mRUT gt
T ) 72

= l ! xra;t(t) eijgﬂ—kt/Tdt
T
¢
_iir / 0 gmi2mkt/T gy
T \ 2ty J_4,

1
= ?sinc(2kt0/T).

_to

Comparing the equation de ning C with the Fourier transform of the pulse function, we
immediately have

Ch = %sinc(kato) - %X(fk), o= k/T.

That is, we may obtain the Fourier series coef cient C by evaluating the Fourier trans-
form X (f) = sinc(2fty) a f = fr = k/T, and scale the result by 1/7, for al k =
...,—1,0,1,.... Thisconnectionisillustrated in Figure 5.5.

Example 5.4 (Figure 5.6 Band-Limited Pair) We now consider the Fourier transform of the
time-domain function sinc(2 f.t), which turns out to be the rectangular pulse function

1 .
Xoea(f) = {W for f € [~ fe. fel;
0, for|f|> fe.

We show thisby nding the inverse Fourier transform of Xect(f):

.F_l{Xrect(f)} = /_Oo Xrect(f) ejQﬂftdf

1 /f:, o ft
= — [ enmitgy
2fc 7fc

ej27rfct _ e—j27rfct

Jamfet
sin(27 f.t)

= cht (by Euler sformula)

= sinc(2f.t).

We have thus shown that the time-domain function z(t) = sinc(2f.t) is band limited with
bandwidth 2 f. (see Figure 5.6). Note that by letting f. = 1/2, we obtain the pair

— sinc(t) — sin(wt)/(wt), t#0; _ )L fel-1/2,1/2);
2(f) = sine({) {1, =g 0 Zelf) {0, If] > 1/2.
5.6 Fourier Transform Properties

The Fourier transform is a linear operation and obeys superposition. Its mathematical prop-
erties are summarized in Table 5.3, and their derivations follow the summary. While most of
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Figure 5.6 A band-limited Fourier transform pair.
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Time—-domain function 1 |
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2 ¢ :
EL forfe (—fc, fc). 5
© (f=05) §
""""""
-2 -15 -1 -0.5 0 0.5 1 1.5 2

frequency f (cycles per second)

the derivations are fairly straightforward, the experience and technical details are useful when
these properties need to be re-derived for alternate forms of Fourier transform. (For example,
the Fourier transform may be de ned using angular frequency w = 27 f instead of the rota-
tional frequency f. We will follow up on this later.) These properties are operational and their
utilities are demonstrated by examples.

5.6.1 Deriving the properties

1. Linearity

Flax(t) + By(t)}

/OO (c(t) + By(t)) e I It dt

— 00

a/ x(t) e_jz”ftdt—kﬂ/ y(t) e 92 It qt

— 0o

aX(f)+BY(f)



5.6. FOURIER TRANSFORM PROPERTIES

173

Table 5.3 Fourier transform properties.

1. Linearity
2. Time shift
3. Frequency shift

4. Modulation

5. Timescaling

6. Folding

Flaz(t) + By(t)} = aX (f) + BY (f)
‘F{x(t - ta)} = X(f) e_jzﬂ'fta

Fla(t) et} = X(f - fa)

Flalt)cos2mfut) = 3 (X(F + fu) + X(F  fu)

Fla(t)sin2nfut} = (X (F + fa) = X(f — f2))
EERSATS

F{x(at)} = |a|X (a)' # 0.

Fa(=t)} = X(= /)

7. Transform of atransform  F{F{z(t)}} = F{X(f)} = z(-t)
8. Transform of the derivative F{z'(t)} = j2nf X (f)

9. Derivative of thetransform  X'(f) = —j2nF{tz(t)}

2. The Time-Shift Property

Flz(t —tq)} =

© .
/ z(t —t,) e 72t dt
— 00

/ x(s) e 927 (s+ta) g (rs=t—ty, t =35+1tq, dt =ds)

oo
/ x(s) e I fs =12 fta g

— 00
oo
{ x(s) ™IS gg| em9%m fta
— 00
X

(f) e,

3. The Frequency-Shift Property

F{a(t) e??fat} = / [z(t) ej%f“t} e It gt
= /OO z(t) e 72— fa)t gy

= (f_fa)'
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4. The Modulation Property
X (f A fa) + X(f = fa) = Fla(t) e 2Tt} + Fla(t) ™"} (by frequency shift)

= Fa(t)[e I fat 4 ei2mlat]} (by linearity)
= 2F{x(t) cos 2w ft}, (by Euler sformula)

- F{a(t) cos 27 fut) = %(X(f I+ X (- fa).
Similarly,

U X(f A fa) = X(f = fa) = Fla(t) ety — Fla(t) ™"} (by frequency shift)
= Fla(t)[e 2/t — eI?mlat]} (by linearity)
= —2jF{x(t)sin 27 fot}, (by Euler sformula)

s Fla(t)sin2mfuty = S(X( + fa) = X(f = fa)-

5. The Time-Scaling Property

Case (i) When a > 0, we have

o0

Fla(at)} = / (o) e=727It gy

— 0o

= / 3;(5) e-J?ﬂfS/Ozi ds < s=at, t= £7 dt = = dS)
o o «a

= é [/Z z(s) e*ﬁﬂ(é)s ds]

Case (ii) When o < 0, the new variable s = ot changes sign. Thuswhent — —oo,
s — oo; whent — oo, s — —oo. We have taken into account the sign changein
the lower and upper limits of the integral in the derivation below.

Fla(at)} = /_  i(at) e tgy

= / x(s) e_jz’rfs/o‘é ds (.- s = at changessign)

- [(—1) | x(s)e—jQ’T(i)Sds}

« — 00

— _é [/OO 2(s) e 2 (£)s ds}

— 0o

:iX (i> (- —a=]alwhena < 0)

lal” \a
Combining the two cases, we have

F{x(at)} = iX (i

lal \a

>,a7é0.
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6. The Folding Property Thisis adirect result of the time-scaling property: let « = —1 in
the time scaling formula above, we immediately obtain the folding property.

7. Transform of a Transform

cal) = FXWY = [ X)erar

8
—~
|
~
~—
|

| X et = FX()} = FF0O).

8. Transform of the Derivative

F{z'(t)} = / 2! (t) e 2™t dt (by den ition of Fourier transform)

= z(t) eIt >

—/ x(t) {—j2rfe ¥/} a4t (viaintegration by parts)

= j27Tf/ x(t) e 72t gt (assume z(t) — 0 as|t| — o)

9. Derivative of the transform
CFTHX(H)) = /OO X'(f) 2> Itdf (inverse Fourier transform)
= x(p e
— /OO X(f) {j2nte?® '} df (viaintegration by parts)
= —jomt [~ X(PeIty (assme X (1) — 0as]f] — o)

= —j27t z(t).

S X(f) = F{—jg2rtz(t)} = —j2nF{tz(t)}.

5.6.2 Utilities of the properties

We demonstrate how to use these propertiesto nd Fourier transform pairs by several exam-
ples.

Example 5.5 (Figure5.7) Given the Fourier transform pair (from Example 5.3)

1
—, fort e [—to, tol; ) sin(27 ft
Treat(t) = { 2o <~ X(f)=sinc(2fty) = %,
0, for[t| > to. Tt
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we apply the time-shift property and obtain the following pair:

erm(t —_ Q) = { 2t07

0, for|t—al > to.

fort € [—to + o, to + af;

= X(f) e Il — sinc(2ftg) e I fa

= sinc(2ftg) cos 27 fa — jsinc(2 fty) sin 27 fa.

Figure 5.7 lllustrating the time-shift property.

1 Time shift: _ i .
. 2(t) = x(t-0) = 1/(2t) - 2(t) = x(t-0))
% forte (=t ta, t+a). i
g (t,=0.5, a=1) :
-t +o o t +o
O v .........................................
-2 -15 -1 -0.5 0 0.5 1 1.5 2
time t (seconds)
1 T T - T T
Fourier transform '-' | — Re(Z(f)
il T Im(Z() |

2(f) = X(he 2

amplitude
o

|
-8 -6 -4 -2 0 2 4 6 8
frequency f (cycles per second)

Example 5.6 (Figure 5.8) Given the Fourier transform pair (from Example 5.1)

e ¥ forte0,00) (a>0); 1
x(t) = [ ) ) = X(f)= ———,
0, forte (—o0,0) a+ j2nf
we obtain the pair
te=  forte[0,00) (a>0); 1
t)=txz(t) = — Y ="
y(t) ®) { 0, fort € (—o0,0) () (a+j2nf)?

by using the deri vative of thetransform property: —j2nF{tz(t)} = X'(f), whichyields

-1, . -1 —Jj2r — 1
Y(f)=F{tz(t)} = ijX (f) = o [(a+j2ﬂf)2} ~ (a+j2nf)?
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Figure 5.8 Illustrating the derivative of the transform property.
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Example 5.7 (Figure 5.9) Given the Fourier transform pair z(t) <= X (f), if F{z("™(t)}
exists, it can be found by applying the transform of the derivative property n times, and the
following pair is obtained

2 (1) <= (j2r f)" X (f)-

On the other hand, given z(t) < X (f), wecan nd F{t"xz(t)} by applyingthe derivative
of thetransform property n times:

(—j2m)"t"a(t) <= X(f).

Continuing with the result from the last example, we immediately have the transform pair for
every n > 1:

_Jtrem, forte[0,00) (a>0); B n!
0= { 0, fort € (—o0,0) = 2= (a+j2mf)ntt

5.7 Alternate Form of the Fourier Transform

The Fourier transform may be expressed as a function of the angular frequency w instead
of the the rotational frequency f. Noting that because w = 27 f, we have f = w/27, df =
(1/27) dw, and we modify thetwo de ning integralsby changing the variable as shown below.

X(f) = /_oo z(t) e It gt = /m z(t) e 7t dt = X (w).

— 00
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Figure 5.9 lllustrating the derivative of the transform property (n = 2).

25
2r _.n _.n _-at b
® z) =t x@®)=t'e :
T 15+ g
2 (n=2,a=0.5)
o
E 1r g
©
0.5 N
0 1 1 1 y 1 1 1
-20 -15 -10 -5 0 5 10 15 20

time t (seconds)

20
— Re(Z(f)

15 Fourier transform = ImZ(f) H
o 10F Z(f) =n! (a+j2n f) "D 1
E
s °r 7
£
© 0

-5 o T

i
-10 L L L L \i; L L L L
-25 -2 -15 -1 -0.5 0 0.5 1 15 2 2.5

frequency f (cycles per second)

() = /fo X(f) ISt gf — % /jo X (w) ! da.

We have thus obtained the mathematically equivalent de nition expressed in the angular fre-
guency w, namely,

X (w) = F{z(t)} = / x(t) e 99t dt,
z(t) = FYX(w)} = 21/ X (w) e’ dw.
T J-—x
Observe that the mathematically equivalent counterpart of (5.14) is
(5.15) X(O)z/ () dt: x(O):;/ X (W) do.
—00 T J -

Using this modi ed de nition, all properties given previoudly in Table 5.3 can now be re-
derived in exactly the same manner. We give the resultsin Table 5.4.

5.8 Computing the Fourier Transform from Discrete-Time
Samples

In this section we return to address several issues raised earlier concerning the sampling theo-

rem, and we show how the theorem can help with the task of constructing and computing the
Fourier transform from the discrete-time samples.
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Table 5.4 Fourier transform properties (expressed in w = 27 f).

1. Linearity Flaz(t) + py(t)} = aX (W) + BY (w)

2. Time shift Fla(t —ta)} = X (w) e @ta

3. Frequency shift Fla(t)e? et} = X(w — 21 f,)

4. Modulation F{a(t) cos2m fat} = %(X(w +27fa) + X(w—27fa))
F{a(t)sin 2m fot} = %(f((w +271fa) — X(w—27fa))

5. Time scaling Fla(at)} = ﬁx (g) a 0.

6. Folding Fla(—t)} = X(~w)

7. Transformof atransform  F{F{z(t)}} = F{X(w)} = 2ma(—t)
8. Transform of the derivative  F{z/(t)} = jwX (w)

9. Derivative of thetransform X' (w) = —jF{txz(t)}

5.8.1 Almost time-limited and band-limited functions

Recall that the sampling theorem is only valid for band-limited signals, and we have expressed
the following concerns:

1. To use the interpolating formula given in the theorem, we need an in nite number of
samples extended from —oo to oc.

2. Many signalsin the real world are not band limited.

Fortunately, many signals we encounter in the real world are decaying signalsthe y decay to
zero in the long run in both time domain and frequency domain, and they are described to be
both almost time limited and almost band limited. The almost band-limited property alows
us to apply the sampling theorem (with acceptable accuracy) when the bandwidth is properly
chosen; the aimost time-limited property allows usto use a nite interpolating formula (with
acceptabl e accuracy) when the number of termsis properly chosen. The Gaussian function (see
Example 5.2) is an obvious example, becauseits Fourier transformis also a Gaussian function.
In this section we consider a function z(¢) which is almost time limited to [-77/2, T /2]
and amost band limited to [—F/2, F//2], where T and F' are chosen to be suf ciently large
so that both x(¢) and its Fourier transform X (f) can be deemed essentially zero outside the
respective range. Observe that because F{X (f)} = z(—t), s0 X (f) isalso both amost time
limited and almost band limited. Therefore, if we can apply the sampling theorem to construct
z(t) using a nite number of samples, we can also apply the sampling theorem to construct
X (f)usinga nite number of samples, and we will see how this plays out below.
Itiscommon in practiceto use asampling rate veto ten timesthe minimum Nyquist rate,
and we will follow this practice by using the sampling rate 1/At = 5F = F. Applying the



180 CHAPTER 5. SAMPLING AND RECONSTRUCTION—PART 11

Sampling Theorem 5.1, we obtain

x(t) = i x(LAL) Sinc(ﬁ'(t —(A)).

l=—00

Since x(t) is a decaying function and almost zero outside [—7'/2,T'/2], if we choose a suf -
ciently large (but nite) number of samples so that NAt = 57 = 7" and assume z(t) = 0
outside [-7"/2, 7'/2], then we can safely truncate the interpolating formulato N terms:

N/2
a(t)= Y x(At)sinc(F(t - (AL)).
l=—N/2+1

To obtain the Fourier transform of (), recall that we have obtained the following Fourier
transform pair (from Example 5.3)

p(t) = sinc(Ft) <= P(f) = {;/F, :Z: |ff|€>[—lf//;7ﬁ/2};

Since p(t — LAt) <= P(f) e 727/tAt py the time-shift property, we have

N/2
X(f)y=Fla)}= > a(tAt) F{sinc(F(t—LAt)}  (by linearity)
l=—N/2+1
N/2
= Y a(tAt) Fisinc(Ft)}e ?7/40 (by time shift)
l=—N/2+1
N/2
= > a(tAyP(f)e PR

f=—N/2+1

We may now compute N equally spaced samples of X (f) over theinterval [—F'/2, F'/2]. The
sampling interval isthus A f = F'/N, and we compute X (f,.) at f, = rAf for —N/24+1 <
r < N/2 using the formuladerived above, i.e.,

N/2
X(fr)= >, @(lL)P(fy)e it
l=—N/2+1
N/2
=(UF) Y a(ean) e PTUADAL (L P(f) = 1/F, fr=rAf)
l=—N/2+4+1
N/2
=Nt Y w(eAt) e PN, (- At=1/F, AfAt=1/N)
l=—N/2+1

By letting t, = (AL, zp = x(t,), and X, = X (f,), we rewrite the equation above as

N/2

1 —j2nrl /N
X, = NAt {N Z xee? .

(=—N/2+1
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Letting X, = X,./(N At), we obtain the discrete Fourier transform (DFT) of the discrete-time
sequence {x¢}:

N/2
X 1 ,
X =5 § xeeI¥YN - for —N/24+1 <1 < N/2.
=—N/241

Since the sequence { X} can be computed using the FFT, and it differs from {X,.} only by
a constant factor N At, an ef cient method is available to compute the sequence of Fourier
transform values { X} from a sequence of discrete-time samples {z,}. A graph of X (f) can
then be obtained by plotting X, values versus f,. or index r.

We show next how to construct X (f) (analytically) from its N samples. By the trans-
form of the transform property, F{(X(f)} = =(—t), so X(f) is amost band-limited to
[—T/2,T/2]; with the sampling rate 1/Af = N/F = NAt = T = 5T ( ve times the
minimum Nyquist rate), we can apply the sampling theorem and obtain

o0

X(f)= Y X(rAf)sine(T(f —rAf)).

T=—00

Since X (f) isalmost time-limited to [~ F'/2, /2], assuming X (f) = 0 outside [~ F'/2, F'/2]
(recall F= 5F"), we may safely truncate the interpolating formulato N terms:

N/2

X(f)y= Y. X@rAf)sine(T(f —rAf)).

r=—N/2+1

5.9 Computing the Fourier Series Coefficients from Discrete-
Time Samples

Letus rstrecall thatif z(t) isasignal time-limitedto [—7'/2, T'/2], we may obtainits periodic
extension zP(t) by repeating x(t) over period 7' inden itely. Conversely, given a periodic
function 2P (t), we may obtain the time-limited =(¢) by restricting 2 (¢) to a single period.
In either case, x(t) = «P(t) fort € [-T/2,7/2], and z(t) = 0 otherwise. Assuming that
aP(t) satises the Dirichlet conditionsand it has a Fourier series, we may use the same Fourier
series to represent the time-limited =(¢) over [—T'/2,T/2]. Thisresult allows us to relate the
Fourier series coef cientsfor periodic 2P (t) (or time-limited z(¢)) to the Fourier transform of
time-limited x(¢) as shown below (previously shown in the middle of Table 5.2):

We also gave an example to demonstrate this connection (Example 5.3).

In this section we shall combine the sampling theorem with the connection above to com-
pute the Fourier series coef cients for a periodic function xP(¢) based on its discrete-time
samples. We will only need equally spaced samples from a single period of z” (¢), which may
be interpreted as samples from atime-limited function x(¢), and we assume further that «(¢) is
almost band-limited (for the sampling theorem to apply.) The latter condition also implies that
2P (t) isalmost band-limited, because it is represented by the same Fourier series.
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Table 5.5 Connectionswith time-limited restriction.
Time-limited pair | Fourier transform of x(t) Fourier series connection:

wt) <= X(f) |=(t) = [7, X () hdf, |a(t) = aP(t) = 132 Cre>™T,

te[-T/2,T/2] fort € [-T/2,T/2], where
f e (—00,00) | X(f)= iﬁz z(t) e 921t dt. | coef cient Cp, = LX (&),
fork=...,—-1,0,1,...

5.9.1 Periodic and almost band-limited function

Let 2P (¢) denote a periodic and almost band-limited function. As explained above, we de ne
x(t) = zP(t) over asingle period [-1/2,T/2] and z(¢) = 0 otherwise, and we further assume
x(t) to be almost band limited to [—F/2, F//2]. Since z(t) is time limited and almost band
limited, we may now apply the sampling theorem to compute the discrete Fourier transform
of z(t) following the same process developed in the last section  with only one adjustment:
the sampling interval is now T for time-limited z(¢); i.e., we choose the number of samplesto
satisfy NAt =T (in contrast to choosing N At = 5T for the almost time-limited function.)

Retracing the steps in the last section, we use the same practical sampling rate 1/At =
5F = I, apply the sampling theorem, and obtain

a(t) = Y w(tAt) sinc(F(t — LAL)).
{=—
Since z(t) = 0 outside [-T'/2,T/2], if N isthe total number of sampleswithin [-1"/2,T'/2],
we have NAt = T and thereare only N termsin the interpolating formula:
N/2
z(t)= > z(tAt)sinc(F(t — (AL)).
{=—N/2+1

Following exactly the same derivation in the last section, we obtain the same expressions for
X(f) = F{x(t)} and itsdiscretevalues X,, = X (rAf), where Af = 1/(NAt) = 1/T (in
contrastto A f = 1/(5T) inthelast section), namely,

) N/2 ) N/2
_ - —j2nrl/N | _ - —j2nrl /N
X, = NAt N Z zee =T N Z xpe 7 .

f=—N/2+1 f=—N/2+1

Since the Fourier coef cient
1 T 1 1
Cr=3X () = gX0LH = 7%,
the IV Fourier series coef cients can be obtained directly from the discrete Fourier transform
(DFT) of the N discrete-time samples, i.e.,
L
Co=~ Y we >N forr=-N/2+1,...,-1,0,1,...,N/2.
{=—N/2+1
Fromthereciprocity relation A fAt = 1/N, it canbeeasily veri ed that the N coef cients C..
correspond to discrete frequencies f, € [—F/2, F'/2] = [-5F/2,5F/2] as one would have
expected.
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Chapter 6

Sampling and Reconstruction of
Functions—Part 111

In this chapter we build on the material developed in Chapters 3 and 5 when we study the
impulse functions and the Fourier transform theorems on convolution, and we show how these
mathematical tools interplay in developing the sampling theorem and other digital signal pro-
cessing tools.

6.1 Impulse Functions and Their Properties

We begin with the familiar rectangular pulse function (with area = 1):

! fort e li

— —7,T|;
d.(t) = 27’ ’

0, forjt|>7>0.

Since the pulse represented by d(¢) gets taller and narrower when the interval of length 27
gets smaller, it is commonly used to describe a sudden force of large magnitude over very
short time intervals. Recall that we have derived the Fourier transform of a rectangular pulse
functionin Example 5.3, so we immediately obtain

sin(27 f1)

F{d-(t)} =sinc(2fT) = on fr

In the last chapter, the Fourier transform pair consisting of the rectangular pulse and the sinc
function was shown to play a key role in sampling and recovering a function and its Fourier
transform. In this chapter, we base our development on a generalized function de ned as the
limit of d, asT — 0 (seeFigure6.1),i.e.,

§(t) = lim d ().

T—0

The generalized function §(t) is usualy called the Dirac delta function and it has the fol-
lowing properties:

185
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Figure 6.1 De n ing the Dirac delta function.

Rectangular pulse Fourier transform

2
4 :
dt=12t) : =12
2 T :
Op v N I
-2 -1 0 1 2
4 :
Cot=1/4
2 T
Ofr o % g
-2 -1 0 1 2
4 —
o1 =1/8
2 s
O I .
-2 -1 0 1 2 -5 0 5
2
S(t) T—0 1
0 “““““““““““““““““““““““““
-1
-2 -1 0 1 2 -2 -1 0 1 2
1. Whent # 0,

8(t) = lim d.(t) = 0.

T—0

2. Theimpulseof §(¢) isden ed by ff‘;o o(t)dt. Accordingly,

[e%S) [e%S) . . T 1 . 7__(_7_)

Since 6(t) = 0 for ¢ # 0, it is said to impart a unit impulse a ¢ = 0, and §(¢) is
called the unit impulse function. Graphically, §(t) is represented by a single spike with
unit strength at ¢ = 0. The unit strength may be explicitly expressed by putting the
label (1) next to the spike. Note that §(¢) is formally continuousin time, but it is not
continuousin amplitude, so it is not an analog signal which refers to signal's continuous
in both time and amplitude (see Figure 6.2).

3. From the two properties above, we also have (via change of variables)
M#%Q:Qt#u;/ S(t—t)dt = 1.

Graphically, 6(t — t,,) isrepresented by asingle spikeat t = ¢, (see Figure 6.2).

4. Theimpulse of the product of asignal «(¢) and 6(¢ — ¢,) can be obtained by scaling the
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Figure 6.2 lllustrating properties of the unit impulse function.

eeeeeeeeee )
ST

unitimpulseimparted at t = ¢, by x(t,):
t+

/ D2t 8(t — to) dt

/OO o(t) 8(t — to) dt

ta
i
a:(ta)/ St — t,)dt
g

a

z(ty) /OO 5(t —t,)dt
x(tq)-

Theresult expressed as
/ 2(8) 8(t — to) dt = 2(ta)
is also caled the sifting property of the impulse function; in addition, the following

expression of equality
x(t) 3t —tg) = x(ta) O(t — ta)

is commonly inferred from the equality of their impul ses.

5. Anin nite sequence (or train) of equally spaced impulses may now be de ned as

Graphically, Pa¢(t) is represented by a spike train (see Figure 6.2).
From computing the impulse of the product of asignal z(t) and P, the expression of
equality

o0

(t) i S(t— Aty =Y w(tAt)s(t — LAL)

l=—o0 l=—o0
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isagain inferred from the equality of their impulses.

6.2 Generating the Fourier Transform Pairs

With properties of the Fourier transform and the impulse functions available, we can now
generate the following Fourier transform pairs:

1. z(t) = 6(t) < X(f) = 1 (Figure 6.3). This pair can be generated in two ways. (a)
We make use of the Fourier transform of the rectangular pulse function, and we obtain

=1

X(f) = F{6(t)} = j—“{lii%df(t)} = PL%]:{dT(t)} = lli% Sigj}rfT

(b) We interpret the integral F{(¢)} as the impulse of the product of g(t) = e~727/t
and 0(t) = 0(t — 0) so that we can apply the sifting property of the impulse function:

X(f)=F{s(t)} = /_OO 5(t) e I¥ It gt

= /_OO g(t)o(t —0)dt (- g(t) = e 727
=g(0)  (by sifting property of §(t — t,) with ¢, = 0)
1 (. g(0) = e = 1)

Figure 6.3 Fourier transform pairs involving the impul se function.

x®=80 @ L XO=1
O Dy O
0 0
1| X021 X(0 = 5(9) Im
[ [0
0
real-valued specftrum
(112 : 112
o2 boote
-05 : (=05
0
2 .
sin(xt) : pure imaginary spectrum
(112) T . f,=05
Of e
05 l(—l/z)
0
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2. 2(t) = 1 <= X(f) = 6(f) (Figure6.3). Wegeneratethispair by showing F~1{5(f)} =
1:

e]27‘rft df

2(t) = FH8(f)

— 0o
o0

\\

—0)df (. a(f) =)

q(0) (by sifting property of 6(f — f.) with f, = 0)
L (rg0)=e=1)

3. By applying the Fourier transform frequency-shift property
w(t) et = X (f — fa)
tothepair z(t) = 1 <= X(f) = o(f), weimmediately obtain
It = §(f = fa)-
By linearity, we have
eI2mIal 1 B2 = 5(f — fa) +6(f — fo)-

If welet f,, = —f, and apply Euler s formula, we can express the Fourier transform
of cos2x f,t and sin 27 f,t in terms of the shifted impulse functions. The two Fourier
transform pairs so obtained are

5(f_ fa) +5(f+fa)
2 3

5(f B fa) _5(f+fa)
27 ’

cos 27 fut <—

Sin 27 ft <=

and they are shown in Figure 6.3.

6.3 Convolution and Fourier Transform

The convolution of two functions z(¢) and h(t) in the time domain is another function of ¢
de ned as

oo

(6.2) w(t) = x(t) * h(t) = / x(A)h(t =N d\ = / x(t — ) h(X) dA.

We note that each particular value of ¢ istreated as a constant (with respect to the variable \) in
theintegrand. For every ¢, w(t) computesthe areaunder the curve of the point-wise product of
z(A) and h(t — X). Sincethe curveof h(t — A) continuesto shift along the A-axiswhen ¢ takes
on each different value, the curve of the product changes with ¢; hence, the area computed by
the convolution integral isafunction of ¢. This processisillustrated graphically in Figure 6.4.
(Theconvolution stepsillustrated in this  gurewill be re-examined and discussed further when
we study how to obtain numerical approximation to the convolution result in Chapter 9.) For
x(t) and h(t) used inthe examplegivenin Figure 6.4, the convolutionresult w(t) = x(t) x h(t)
is shown in Figure 6.5.
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Figure 6.4 Illustrating the steps in convolving x(t) with h(t).

Step1l. Choose stationary function z(t), and change ¢ to A.

—tp = —1 0=—tq

Step 3.

N - A
P15 —t,

Step4. Samplevauesof w(t) att = —0.5,¢t = 0.5, and ¢t = 1.5 are equal to
theth;\ee shaded areas:

A A

Figure 6.5 Theresult of continuous convolution w(t) = x(t) * h(t).

4 A
1 L
X « h@
1 0 1 "t 0 17t
05
= W(t)
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Using this de n ition, the convolution of two functions X (f) and H(f) in the frequency
domainis expressed as

Z(f) =X /X H(f = A)d\ = / X(f = NH(\) dA.

The convolution integral together with its Fourier transform plays a crucial role in wide-
ranging applications. Given the two Fourier transform pairs

2(t) == X(f), h(t) = H(f),

it is not immediately clear how the Fourier transform of either the convolution x(t) * h(t) or
the product z(¢)h(t) can be expressed in terms of X (f) and H(f). To answer this question,
we have the following two theorems.

Theorem 6.1 (Convolution theorem) If F{x(t)} = X (f) and F{h(t)} = H(f), then
Fla(t) «h(t)} = X (FH(f).
Proof: By den ition,
F{a(t)« h(t)} = /_O; [2(t) * h(t)] e 72"/t dt
_ [ b [ O:O 2\ At — N) dA} 92t gt

= / / 2(N) h(t — X) e 272N gaxat

— 00

= / z(\) [/ h(s)e=927/s ds] e ITINAN (rs=t— ), ds=dt)

:/_ c(N)H(f) e 72 ax ( H(f):/_o; h(s)e—ﬂ’ffsczs>

[ |
Thefollowing corollary on the convolution of identical functionsis an immediate result of
Theorem 6.1.

Corollary 6.2 If w(t) = x(t) * 2(t), then

Proof: By den ition,



192 CHAPTER 6. SAMPLING AND RECONSTRUCTION—PART 111

Applying Theorem 6.1 to w(t), we obtain F{w(t)} = X (f)? and the Fourier integral repre-
sentation of w(t):

wl) = FHXUPE = [ X

At¢ =0, we have

w(0) = [ T X

By evaluating w(t) = z(t) x 2(t) at t = 0, we also have

w(0) = /_ T 2N 3(=A) .

Hence,

w(0) = /OO 2OV 2(—A) d\ = /jo X(f)2df.

Theorem 6.3 (Product theorem) If F{x(¢t)} = X (f) and F{h(t)} = H(f), then
F{x(t) h(t)} = X (f) * H(f)-

Proof: We apply the proof given for Theorem 6.1 to show

o0

FUUX(D B} = [ X« B df = o(0) ()
Because the two de n ing integrals for direct and inverse Fourier transforms differ only in the
sign of the exponent of the exponential function in the integrand one uses e ~727f* and the
other usesusese 727/t | tisstraightforward to accommodatethe differencein the proof given
for Theorem 6.1, and we omit redundant details here. |

6.4 Periodic Convolution and Fourier Series

Given the Fourier series of two periodic functions (which can also be the protracted version of
two time-limited functions)

(E(t): Z Xk@jQﬂkt/T, h(t): Z erjQTrkt/T’

k=—00 k=—o00

it will be useful if we can computethe Fourier coef cients of the periodic convolution y? (t) =
z(t) @ h(t) and the product ¢(¢t) = x(t)h(t) fromtheavailable X s and H}, s. For thesetasks,
we have the periodic convolution theorem and the discrete convolution theorem  the former
involves continuous convolution of two periodic functions over a single period, and the latter
involves the discrete convolution of two sets of Fourier coef cients.
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Theorem 6.4 (Periodic convolution) The Fourier series coef cients of the periodic convolu-
tion y?(¢t) = x(t) ® h(t) can be obtained by multiplying the corresponding coef cients from
thetwo individual Fourier series. That is, if

T/2
yP(t) = 2(t) @ h(t) = 1 / (N h(t — \) dX,

T ) 12
then
yp(t) — Z YkejQﬂkt/T — Z (Xka) ejQﬂkt/T.
k=—oc0 k=—oc0

Proof: To obtain the Fourier coef cients of y?(t) = z(t) ® h(¢), we use the de ning for-
mula(3.12) for coef cient Y}, on the convolutionintegral y?(t):

1 [T/2 (1 fT/2 _
Y= / - / z(A) h(t — A)d\ p e 72mRUT gy
T J rp | T Jors2

1 T2 (1 T2 _
= —/ —/ 2(A) h(t — ) e TIZRE=AFN/T g & g
T J g | T Jor)2

1 [T/ 1 [T/2 ‘ ‘
= —/ z(M) —/ h(t — X) e I2mRE=N/T gp & e=32mkAT g\
T Jorys T ) 1)

1 [T/2 1 [T/2-A
_ _/ {,U()\) efj27rk)\/T d\ _/ h(u) efj27rk n/T d/fJ
T J_ 7/ T J_1/2-x

= X Hy, .

Note that after the change of variable from ¢ to . = ¢ — A in the second integral, we obtain
the de n ing formulafor the Fourier coef cients Hy, of the periodic function h(t), because the
interval de n ed by the limits of integration from = —T/2—Xto u=T/2— X congtitutes a
single period of A(t). [ |

The next theorem concerns the discrete convolution of two sequences. The convolution of
sequence { X, } by sequence { H;, } resultsin another sequence {G},} de ned as

G = Z XoHy_y, foral k € (—O0,00).

{=—c0
The convolution of sequencesis commonly denoted by {G} = { X} * {Hy}.

Theorem 6.5 (Discrete convolution) The Fourier series coef cients of the product g(t) =
x(t)h(t) can be obtained by convolving the two available sets of coef cients, i.e,

o) =l ) = Y <§ XH> P2,

k=—0c0 \l=—00

Proof: It isclearer and more convenient in this proof if we use the power seriesforms of x(t)
and h(t) obtained by changing the variable from ¢ to § = 27t /T and letting z = 7°:
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The Fourier series of #(#)h(6) is thus the product of two power series:

§(6) = 7(0) h(6) = ( > X> ( S Hmm>

{=—0c0 m=—o0

i < > XgHm> P

k=—oco \l+m=k

io: <§: Xng_g>Zk. (€+m:km=k—€)

k=—o00 \l=—00

Since the values of the Fourier coef cients are not affected by the change of variablefrom ¢ to
6 or vice versa, we have thus proved

g(t) = z(t) h(t) = i < i Xer—e> od2mkt/T

k=—oc0 \U=—00

6.5 Convolution with the Impulse Function

When we convolve a signal z(t) with the unit impulse function §(¢), we have the following
results.

1. Theconvolution of asignal «(¢) and §(t) recoversthe original signal:

a(t) % 6(t) = /7 h z(t — \)(N) dA
- /0 z(t—A) (N dx (o 8(A) =0, A #0)

ot

—a@) [ s ax
.

— () / T 50y da

= z(t).

(the original signal recoverd)
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2. Theconvolution of z(¢) and (¢t — t,) produces the shifted signal = (t — ¢,):

a(t) % 8(t — tq) = x(t) * O(t) (de ned(t) = 6(t —t,).)
:/OO A) dA
/Oo (A —tq)dA
:/ a(t —ta)dA (o 6(A—t) =0, A £ 1L,)

=z(t —t, / 0N —ta)

ta

x(t —tg) / O(A—ta)

= 2t — ta) (the shifted signal obtained)

We note that the rst result is simply the specia case with time shift ¢, = 0.

3. Theconvolution of z(t) and theimpulsetrain P, (¢) producesa periodic signal:

z(t) * Pay(t) Z 5(t — LAL)

l=—o0
oo

= Y a(t) x5t — LAL)

{=—o00
oo

= ) a(t—tAt)

{=—o00

= z(t).

The resulting z(t) is a superposition of copies of xz(t), each displaced by multiples of
At. Observethat z(t + At) = z(t). Examples are shown in Figure 6.6.

6.6 Impulse Train as a Generalized Function

In Section 6.1, we introduced the impulse train as an in nite sequence of equally spaced im-
pulsesde ned by

Pt Z 5(t — LAL),

{=—00

Since theimpulse train P, (t) isden ed for all ¢, it may also be viewed as a function (which
is known as the comb function or shah function in the literature). In fact, it may be interpreted
as a periodic function with period 7' = At, and it has a Fourier series representation given
below in Theorem 6.6, which is known as the Poisson sum formula.
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Figure 6.6 The periodic signal resulted from convolving x(¢) with an impulse train.

O\
_%T 0 ,,,,,,, %T ,,,,,
x(t) * 0(t) = x(t) : x(t) :*5(25 —tq) = x(t —tq)
- A/O\/\ ,,,,,,,,,,,,,,,,,, 01 ,,,,, e
Impulsetrain Pp(t)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LM
2T -T T 2T

x(t) * Pp(t): periodic repllcanon of x(t).

Y 7 0 T 2T

Impulsetrain Py (t) with A < T'.

S IS

—2A —A 2A

x(t) * P4(t): periodic replication of z(t) at intervalsof length A < T.

A
Sum of the overlapped portions [
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Theorem 6.6 The impulse train in the time domain can be represented by the Poisson sum
formula:

_ 1 = j2mwkt /At
(6.2) Ppy(t Z 5(t —LAt) = Ek;}oe] .

{=—0c0

Fourier series expansion

Sincee?? + ¢77% = 2 cos #, the Poisson sum formulamay also be stated as

1 > o2kt
. P — I =—11+2 S .
(6.3) nt(t Z 5(t — AL At( + ;m At)

l=—o0

Fourier series expansion

In either form the impulse train is aperiodic function representing anin nite sum of sinusoids.
Observethat Pa.(t + At) = Paq(t); hence, the sampling interval At is termed the period of
theimpulse train. The dual form of this formulain the frequency domain is given by

(6.4) Pype(f Z 5( ) At Z eIPTRIAE,

l=—o0 k=—0o0

Proof: Since Px isperiodic with period T' = At, we expressits Fourier series as

PAt Z C). ej?ﬂ'kt/At

k=—o0

where the coef cients C}, s arede ned as

1 At/Q )
Cp = — / Ppy(t) e 72mRU At gy

AN BN
L 2kt A
=— S(t — LAL) p e I2TR AL gy
At /At/2 é;w ( )
- / 5(t) e T2 D G (5t — OA) = 0 for £ £ 0 over
AN YN

theinterval [—At/2, At/2])

1o ,
=—— | 8(t)e PHIA gt (- 6(t) =0, t#0)
At Jo-
1 0 0+
=5 € . o(t)d
- / h S5(t)dt
A .
=1/At.
We thus have
1 = .
_ 2rkt/ ANt 2rwkt/ At
Pp(t Zdt (At) = Zceﬂ =5 2 ¢ :

{=—00 k=—oc0 k=—oc0
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To obtain its dual form in the frequency domain, we substitute A f = 1/T = 1/At
in the corresponding Poisson sum

Pry(f) = Z 5(f—€Af):ALf Z ej%kf/Af:Aif Z o I2mkf/Df

l=—o0 k=—o0 k=—o0
to obtain
0 ¢ o0 o [e'S) o
Pyyni(f) = Z 5(f—At>=At Z eI2TRIAt — At Z eIk fAL
l=—00 k=—0o0 k=—0o0

[
In the next theorem we show that the Fourier transform of animpulsetrainin¢ isanimpulse
trainin f, up to a scale factor.

Theorem 6.7 (Fourier transform of the impulsetrain)

o0

F{Pnr:(t)} = Aitpl/At(f) = Ait Z 0 (f — %) )
e

Fourier transform of { Pa+(¢)}

Proof:
F{Pns(t)} = / l > 6(t—£At)1 e 2t gt
TP t=—00
= > [ / §(t — CAt) e 72Tt dt}
f=—0c0 -0
= ) emat (by sifting property of 5(t — t,) with t, = ¢At)
l=—0c0
_ Z eI2nf(—0) At
l=—0c0
= Z el2mfkOt (F—oo<k=—-0< )
k=—oc0
L i 1) f—i (by Theorem 6.6)
At 4 At)” y '

|

The relationship between the impulse train Pa.(t) and its Fourier transform is demon-
strated for several choices of At in Figure6.7.

Mathematically, the Poisson sum formulain Theorem 6.6 isaspecial case of amoregeneral
result in our next theorem, which relates the periodic replication of x(¢) to sampled values of
itstransform X (f) viathe Fourier series expansion. Recall that the periodic replication of x(t)
with period T'= At isthe convolution of z(¢) and the shifted impulse train Pa.(¢), i.e.,

oo oo

2(t) =w(t) * Pag(t) = Y a(t) «6(t — LAt = > a(t —LAL).

l=—o0 l=—00
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Figure 6.7 The relationship between impulse train and its Fourier transform.

Impulsetrain Pag(t) Fourier transform =Py /a.(f)
HHLIT:TOLHH """ & Af}g """"
RRRRRREEEN R RRR NS
T ,,,,,,, L:J ,,,,,,,, T ,ﬁff,g HHTH_TLTLTOE

Theresulting z(t) is asuperposition of copiesof z(t), each displaced by multiples of At, and
we have z(t + At) = z(t). Exampleswere givenin Figure 6.6, and several more examplesare
givenin Figure 6.8.

Theorem 6.8 (The generalized Poisson sum) Given the Fourier transform X (f) = F{x(¢)}.
the Poisson sum isthe Fourier series expansion of the periodic z(t) *« Pa+(t), whichisgiven
by

= 1 kYN
6.5 t—LUAt) = — X | ) ed?2mht/At,
(63) p;m o ) = H k:Z_OO (At) c
periodic z(t)* Pa¢(t) Fourier Series expansion of x(t)* P+ (t)

Proof: Let z(t) denote the periodic replication of z(t) with period T' = At. If we express z(t)
by its Fourier series expansion

o0

2(t) = Z z(t — LNt) = Z Cped?m(k/ 80t

l=—o0 k=—00
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then the coef cientsC), s arede ned as

1 At )
Cy = —/ 2(t) e 12 (k/ B gy

At

= é/ l i x t—éAt] e I2mkt/ B gy

_ b i /At (t — L) e=I2mht/ B dt]
At = 1o

=2 i / HE y emkosean o d)\] (let A=t —LAL)
At~ | Jo—ent

_ L i Sne o—I2mkA/ Bt d/\] (e e I2TREDY D _ =2k _ 1)
A N il PN’

= Ait /fo x(\) e I2TRN AL gX (assume z(\) continuousat A = —//A\t for every /)

= é /_O:o z(t) e I2 R/ B0 gy (change variable: let t = X for clarity)

- lx (k) . < X(f) = /OO £(t) e dt)
A\ At .

Using C in the Fourier series expansion, we obtain
z(t) = Z_ioox(t —UINL) = k;oo Ce??m(k/ B0t Alt iooX (Ait) eI2mht/ At

Corollary 6.9 (Speci ¢ Poisson sums) The two formulas given in this corollary are special
cases of Theorem 6.8.

- _ 1 = j2mkt /At
(6.6) > ot —tat) = ~ > e ,
f=—0c0 k=—o00
impulsetrain Pa(t) Fourier series expansion
6.7) i st = - i x (£
' = At e T \AL)
z(t)*Pa¢(t) at=0 Fourier seriesat t=0

Proof: To obtain Formula (6.6), we apply Theorem 6.8 to x(¢) = d(t). Because X(f) =
FL6(t)} = 1, we have X (&) — 1foral k € (—oo, 00) in the right side of (6.5), and the
result is the Poisson sum proved directly in Theorem 6.6.

To obtain Formula (6.7), we evaluate both sides of Formula (6.5) at ¢ = 0, and the result
follows. |
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6.7 Impulse Sampling of Continuous-Time Signals

Recall that the product of asignal and the impulse train was introduced in Section 6.1:

oo

2(t)Pay(t) = 2(t) i S(t— LAty = Y w(LAt)6(t — LAL).

{=—o00 {=—o00

Since the right-hand side is a weighted linear combination of the shifted delta functions, and
the weight (or strength) of 6(t — ¢At) is exactly the value of the continuous-time signal ()
sampled at t = t, = ¢/At, we have

+ . ;
@ ty), if a=ty, wheret, = £/t forinteger £ € (—o0, 0);
[ atopadpyar= 200 e i wheel ertemooed
a- 0, otherwise.

Therefore, the information conveyed by the weighted impulse train z;(t) = x(t)Pa:(t) is
limited to the sequence of sample values {z(¢At)}, and the function

(6.8) er(t) = i 2(EA) 8(t — LAL)

l=—o0

is said to represent a signal ideally sampled by the impulse train. Since a signal cannot be
physically sampled by an impulse train, the latter is a mathematical tool we use to model the
sampling process, and the function z; (¢) is called the ideally sampled signal.

There is also a direct connection between the continuous-time signal z(t) and the ideally
sampled signal z;(t) as shown in the following theorem.

Theorem 6.10 (Approximation viathe weighted impulse train)

oo o0

(6.9) z(t) = lim Atz(LA)5(t — LAt) = At Y o(LAL) 5(t — LAL).

= {=—c0

weighted impulsetrain =7 (t)

Proof: Recall from Section 6.5 that the convolution of a signal z(¢) and the unit impulse
function J(t) recoversthe original signal. Accordingly

z(t) =x(t) x 0(t) = /:)O x(A)o(t — N)dA

Jim D @(LAN) S(t — LAN)AN

l=—o0

= lim Z; At z(0AE) §(t — LAE)  (use At to denote A))

~ At i 2(EAL) 5(t — LAY,

{=—o00
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6.8 Nyquist Sampling Rate Rediscovered

Recall that we need to physically point sample a band-limited signal «(¢) at arate greater than
the minimum Nyquist ratein order to recover its frequency content. For impulse-sampled sig-
nal x;(t) = x(t) Pat(t), we now investigate how to set the sampling rate so that we can recover
the Fourier transform of the continuous-time signal =(¢). We rst nd out how the Fourier
transform of theimpulse-sampled signal x;(t) = x(t) Pa+(t) isconnected to the Fourier trans-
form of x(¢) in the next theorem.

Theorem 6.11 If X (f) = F{xz(t)}, then the Fourier transform of the impul se-sampled signal
isgiven by

o0

(6100  X;(f) = Flar(t)y = Fla(t)Parlt)} = é >ox (f - %) :

k=—o0

Fourier transform of = (t) Pa (t)

Proof: By Product Theorem 6.3, a product in the time domain correspondsto a convolutionin
the frequency domain; we thus have

Xi1(f) = Far(®)} = X(f) * F{Pn:(t)}

= X(f)* {é >, ¢ <f— %)} (by Theorem 6.7)
k=—oco
1 i k
“m 2 K0 (1 g)
1 = k . '
N k:z_:mX (f - E) . (convolution result from Section 6.5)

[
According to Theorem 6.11, the Fourier transform of the impulse-sampled signal z;(¢) is
a superposition of copies of X (f) = F{z(t)}, each displaced by multiples of 1/At. (See
Figures 6.9 and 6.10 presented with Example 6.1 later in this section.) Therefore, the shifted
replicationsof X (/) will not overlap only if thefollowing conditionsare met: (1) X (f) iszero
outside aband [— fiaz, frmas); (2) the period of replication 1/At > F = 2 fp,4,,. Combining
these two conditions, we conclude that the Fourier transform X ( f) can be recovered in full if
x(t) is band limited to [— finaz, fmaz] @nd the ssampling rate 1/At > F = 2,4, Which is,
of course, the Nyquist sampling rate rediscovered for the impulse sampling of =(¢). (In other
words, the frequency contents of band-limited x(¢) are preserved by impulse sampling at the
Nyquist rate.) Thisresult isformally given below as an corollary of Theorem 6.11.

Corollary 6.12 If a band-limited signal x(¢) with bandwidth F is sampled at
(or greater than) the Nyquist rate, then

(6.11)  X(f) = Fla(t)} = At F{a(t)Pas(t)} = At X, (f) for f € [—F/2,F/2).

Proof: As discussed above, the shifted replications of X (f) on the right-hand side of Equa-
tion (6.10) will not overlap if z(¢) is band limited to [~ finaz, frmaz] = [—F/2,F/2] and
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the sampling rate 1/At > F' b oth conditions are met in this corollary. Therefore, by re-
stricting the values of f to the nite band [—F/2, F/2], we simplify the right-hand side of
Equation (6.10) to obtain

o0

Xi(f) = Fla®)Paclt) = 52 S X (f _ é)

{=—o00

1
:EX(f)7 ('~'f€[_F/27F/2]71/At2F)7

which yields
X(f)=ALt X (f)for f e [-F/2,F/2).

Two more related formulas are also given as corollaries of Theorem 6.11.

Corollary 6.13 (The generalized inverse Poisson sum) The Fourier transform of an impulse-
sampled signa has two forms, and by equating the two forms one obtains the generalized
inverse Poisson summation formula:

oo

_ 1 = k
6.12 (At) eI AE — X(f—-—).
612 2o e a2 U
Fourier transform of «(t) Pa (t) X(f)xF{Pne(t)}

Proof: We prove this equality by showing that the left side is an aternative formula for the
Fourier transform of the impulse-sampled signal z;(t) = x(t) Pa+(t).

oo

l=—00
%)

- Z z(LAt) [ /_ O:O §(t — LAt) e~ 92T dt}

l=—o00
= Z x(CAt) e~ I2mfeLL,
l=—00

By Theorem 6.11, we also have

FlPs0) = 2= Y X (f— Ait)

k=—o00

Because the two formulas represent the same result, we have

oo

Z z(LAt) e T2 fent — é Z X (f— L)

l=—o0 k=—00

[
Observe that Formula (6.12) in Corollary 6.13 is the dual of the generalized Poisson sum
in Theorem 6.8.
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Example 6.1 (Figures6.9 and 6.10) Recall the Fourier transform pair from Example 5.1:

x(t) = X(f) =

e fort€[0,00) (a>0); 1
= _
0, forte (—o0,0) a+ j2nf

The discrete-time samples of z(¢) aredened by

—atht - for >0  (a>0)
0, otherwise,

2(EAt) = {e

and the Fourier transform of the impulse-sampled signa z;(¢) can be obtained in two forms
according to Corollary 6.11. Using the summation formula, we obtain

oo

. s . 1
_ —j2n feAt —(alt+g2nfAL)E
Xi(f) = § z(LAt)e™ = E e ! T 1 _ e (atienf)nt”
=0 =0

Using theknown X (f) = 1/(a + j27 f), we obtain

1 = k ad 1
X = — X —— | = .
=5 k:z—:oo (f At) k:z—:oo alt + j2r(f Ot — k)
By equating the two forms of X;(f), we obtain
i 1 3 1
L alt+g2m(fA — k) T 1 — e (atg2mnAe’

where the right side provides a closed-form expression for thein nite sum on the left side.

Thegraphsof z(t), X (f), {x(¢At)}, and X (f) for At = 1 and At = 0.5 are shown in
Figures 6.9 and 6.10. Observe that the central period of X;(f) deviatesfrom X (f) dueto the
effect of aliasing. Since z(t) is not band limited, the effect of aliasing cannot be eliminated
although it is reduced when the signal is sampled at a higher rate.

Corollary 6.14 (Speci c inverse Poisson sums) Two special cases of (6.12) are

o~ 1 o k
1 /—jQﬂfeAt - A
(6.13) /;me ~ k; o0(f-%;) and
(/L) Pryne(f) Fourier transform of Pa ¢ (t)
(6.14) i s(UAt) = 1 i x (X
' = At = AL

Fla(@)Par(t)}a f=0  X(f)xF{Pa:(t)}at f=0

Proof: To obtain Formula (6.13), we apply Corollary 6.13 to x(¢t) = 1, which results in
z(lAt) = 1fordl ¢ € (—oo,00) on the left side of (6.12); because the Fourier transform
X(f) = Flz(t) = 1} = o(f), we have X(f — k/At) = §(f — k/At) on the right side
of (6.12), and the result follows. (Thisresult isthe dual of (6.6) in Corollary 6.9.)

The result in (6.14) is obtained by setting f = 0 on both sides of (6.12). (Thisresult is
identical to (6.7) in Corollary 6.9, which was obtained by setting ¢t = 0 in the generalized
Poisson sum.) [ |
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Figure 6.9 Fourier transform of the sequence sampled from z(¢) = e,

The Effect of Aliasing (At = 1)

x(kAt) = e 3Kt (At = 1) x() = e (a=0.5)

0.5

B NS UL UL g

0_—..—.‘_....“._._.w...”..‘.._,_.,..u_‘—-.f \\
Re(X(f)) :
-1t I L I i I I I
-2.5 -2 -15 -1 —0.5 0 0.5 1 15 2 25

| L | 1 L [ | 1 |

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 2.5

Figure 6.10 Reducing the effect of aliasing by increasing sampling rate.

The Effect of Aliasing (At = 0.5)

—akAt

x(kAt) = e A (At = 0.5)

At |m(x|(f)) Vo imx®)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25




6.9. SAMPLING THEOREM FOR BAND-LIMITED SIGNAL 207

6.9 Sampling Theorem for Band-Limited Signal

The results developed in preceding sections have paved the way for the sampling theorem to
re-emerge. We are speci cally interested in applying those results to band-limited signals,
for which the sampling theorem is to be developed once again. We speci caly recall for-
mula (6.12) from Corollary 6.13, which is cited below for easy reference.

Xi(f) = Flalt)Pact)) = Y althn e 920t = - é; X ( _ Ait) ,

{=—o00

Observe that thisformulaisde ned for all values f € (—oo, 00). Applying this result and the
Nyquist sampling rate to a band-limited signal, we have the following lemma.

Lemma 6.15 If aband-limited signal x(¢) with bandwidth F' is sampled at the Nyquist rate,
its Fourier transform my be expressed as a Fourier series whose coef cients are discrete-time
samplesof z(¢) (multiplied by ascale factor). That is,

o0

(6.15) X(f) = F{z(t)} :% dow (-%) IREIE  f e [—F)/2,F/2].

k=—o0

Proof: Since the given signal z(t) is band limited with bandwidth F', we have X (f) = 0
outside the band [ /2, F'/2]. Following Corollary 6.12, we have

X(f)=ALtX(f) forfel|-F/2,F/2].

Following Corollary 6.13, we have

X1(f) = i z(LAL) e I2m Lt for f € [—o0, 0]

{=—o00

Combining these two results, we obtain

o0

X(f) =0t Y w(est)eTIB for f e [-F/2,F)2]
{=—0c0
= At Y a(—kAt)eTIRA (o k=—10)
k=—o00

:% Z x(—%) eI2mkf/F (- At=1/F)

k=—o0

[
Since the result we obtain in Lemma 6.15 is identical to an earlier result given by Equa-
tions (5.10), we simply repeat the derivation beginning with Equation (5.11), and Sampling
Theorem 5.1 re-emerges! The derivation serves as adirect proof of the sampling theorem.
Alternatively, we can prove the same theorem based on the properties of the impulse train
and the convolution theorem. To demonstrate this process, we state the sampling theorem again
and provide the second proof below.
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Theorem 6.16 (Sampling theorem) If the signal «(¢) is known to be band-limited with band-
width F' = 2,4, then z(¢) can be sampled at the Nyquist rate 1/At = F, and we can
determine a unique z(t) by interpolating the sequence of samples according to the formula

B > sin(mF (t — (A))
z(t) = ) a(thr) TF(t — 0Ot

l=—o00

Proof: Recall from Corollary 6.12 that

AtX((f) = ¢ Xi(f), fe[-F/2,F/2];
0, otherwise.

Flz(t)} = X(f) = {

To facilitate further mathematical manipulations, an equivalent de n ition for X (f) isgiven by
asingleformula

(6.16) X(f) = X1(YE(f), f € (—o0,00),

where YE5%( ) isthe familiar rectangular pulse function (with area= 1) dened as
1/F, forfel[-F/2,F/2];

0, otherwise.

(6.17) ViR (f) = {

Since X (f) is the product of two functions in the frequency domain according to Equa-
tion (6.16), we apply Convolution Theorem 6.1, and we obtain
a(t) = FHX(A)} = FHX(HYEE ()}
(6.18) = FHX(N)} = FHYER ()}
= xr(t) * y(t).
To evaluate the convolution on the right-hand side, we substitute

o0

(6.19) wr(t) = x(t)Pac(t) = Y w(tAt)§(t — LAL),
{=—c0
(6.20) y(t) = FHYS3(f)} = sinc(Ft), (aresult from Example5.4),
and we obtain
o(t) =arlt) < ylt) = [ e =)y ax
_ / - li 2L 5(t—)\—éAt)] sinc(FA) d\
X Y=—

I
M8

x(LAE) {/OO sinc(FA) 6(=A +t —LAL) d/\}

(6.21) . N
) { / sine(FA) 5(A — (t — (A1) dx}
{=—00 -
= i z(CAt)sinc(F(t — (At))  (by sifting property)
{=—c0
R sin(mF (t — (At))
- z;w A — Fa —inn
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6.10 Sampling of Band-Pass Signals

A signal z(t) is called aband-pass signd if X (f) # 0 for f € [f1, f2] U [~ f2, — f1], where
0 < fi1 < fo. (Examples of band-pass signals include radar signals and AM and FM radio
signals.) On the one hand, we note that because X (f) = 0 outside the band [— f5, f2], the
signal z(t) is band limited to f,,q = f2, and we can simply treat the band-pass signal as a
band-limited signal and sampleit at the Nyquist rate 1 /At = 2 fs.

On the other hand, we have X (f) = 0 for f € [— f1, f1] C [—fa2, f2], So the bandwidth of
aband-passsignal can bede ned as2(f2 — f1) (for the two nonzero bands). If the bandwidth
2(f2 — f1) isasmall fraction of 2 f,, we would like to know whether alower sampling rate
determined by the bandwidth 2(f, — f1) can alow full recovery of X (f) from X;(f) in
Theorem 6.11.

To avoid complication, we consider rst the case when fo = m(fo — f1), wherem isa
positive integer. If we lower the sampling rate to

1 2f2

(6.22) Ay = A2 )=

the Fourier transform of the impulse-sampled signal is given by Theorem 6.11 as
(6.23) Xi(f) =2(f2— f) }:;Y (f = 2k(f2 = fr)).
k=—o00

The right-hand side is again a superposition of copies of X (f) = F{x(¢)}, each displaced
by multiples of 2(f, — f1). To show that the nonzero portions of the shifted replications
of X(f) will not overlap, we need to determine, for every k, the ranges of f over which
X (f —2k(f2 — f1)) # 0. Tosimplify the notation, welet 3 = f> — f1, f2 = m/3, and note
that f1 = f2 — B = (m — 1)B.

1. Fortheright band, X (f — 2k3) # 0if f — 2k8 € [f1, f2]; wethusrequire
(m—1)8 < f —2kB < mf3.
Solving for f, we obtain
2k +m—1)B < f < (2k +m)B.
Therefore, the k" nonzero right band of width 3 beginsat (2k +m — 1).
2. Fortheleft band, X (f — 2kB) # 0if f — 2kB € [— f2, — f1], wethusrequire
-mfB < f—=2kB < —(m—1)8.
Solving for f, we obtain
(2k —m)B < f < (2k —m + 1).
Therefore, the £ nonzero left band of width 3 beginsat (2k — m) (3.

If m iseven, then (2k + m — 1) isan odd number for all k, and (2k — m) isan even number
for all k, so the nonzero bands cannot overlap; if m is odd, we have even (2k + m — 1) and
odd (2k — m) for al k, so the nonzero bands cannot overlap, either.
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For the general case, instead of assuming fo = m(f2 — f1), wecanadways nd fo < f;
so that fo = m(fe — fo), and m > 1 is an integer. Our derivation above shows that if
we set the sampling rate 1/At = 2(f2 — fo), then the portions of X (f) over [fo, f2] and
[— f2, — fo] will not overlap the corresponding portions of the shifted replications of X (f).
Since[f1, f2] C [fo, f2], thenonzerobandswill not overlap each other. Asaresult, the nonzero
frequency content of aband-pass signal is preserved by the sampling process as desired.
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Chapter 7

The Fourier Transform of a
Sequence

In Chapter 6 we were able to treat a discrete-time signal as aformally continuous function by
representing the sampled signal as aweighted impulsetrain

(7.1) wr(t) = a(t)Pai(t) = Y a(t)5(t — LAt = > a(LAt)5(t — LAL),
l=—o0 l=—o0
and we derived its Fourier transform in two forms (recall Theorem 6.11 and Corollary 6.13):
= : - k
7.2 X = = P(UAE) e 927 flot .~ x(r—=2
72 Xi(f) =Flu(®)} /;mrw t)e ~ k:Z_OO F=%)
Fourier seriesof X1 (f) F{x()}xF{Pas(t)}

where X (f) = F{x(t)}. Notethat X;(f + 1/At) = X;(f), so X;(f) isaperiodic function
with period equal to the sampling rate R = 1/At¢. Recall that if z(t) is band-limited with
bandwidth F* < R, then we may extract X (f) = F{x(¢)} from the central period of X;(f);
otherwisethe shifted replicasof X (f) will overlap, and X;(f) # X (f)for f € [-R/2, R/2].

Aswe indicated in Chapter 6, we used the impulse train P, (t) (also known as the comb
function) as a mathematical tool to model the sampling process, but we cannot physically
sample a signal by the impulse train. In order to process the point-sampled signal datain the
digital world, we need to formally de ne the Fourier transform on a sequence of discrete-time
sampleswithout explicitly involving the sampling interval At. Such ade n ition can bederived
from relating z(¢At) in (7.2) to the Fourier series coef cient of the periodic X;(f) as shown
in the next section.

7.1 Deriving the Fourier Transform of a Sequence

To derive the Fourier transform of a sequence {...,z_1,xg, 1, ... }, we denote z(¢At) in
Formula (7.2) by z, and we express X;(f) as a function of the digital frequency F = fAt¢
(cycles per sample) by a simple change of variable in Formula (7.2):

(7.3 X[(F) = io: Ty e I2mE,

l=—00

211
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Since the period of X;(f) is equal to the sampling rate R = 1/At, the period of XI(IF) is
expected to be R/t = 1 after the change of variable. We can easily verify the period of X (F)
by showing that

(F£1) Z zp e 2THEED) — Z xp e 92T — XI(IF‘)

{=—00 f=—0c0

Hence the central period of X;(F) is[—1/2, 1/2]. Because X;(F) isaperiodic function (with
period 2 = 1), we can also interpret the right-hand side of Equation (7.3) asits Fourier series
expansion, namely,

0o
_ 2 T4 67]27%]17‘

{=—o00

(7.4) = Z x_ge I2m(=OF

{=—o00

o0
= ) &l (rename z_, as ¢y, recall = 1)

{=—00
where the Fourier series coef cients {¢,} areden ed in Dirichlet stheorem 3.1 by
1 Q/2 . .
(7.5) b=~ X1 (F)e 72 E/2qF Q =1, (€ (—o0, c0).
QJ_qs
Because z, = ¢_,, we obtain
Q/2 A ) 1/2 N )
(76) ¢ Q / *32”(*5)F/leﬁ‘ — X](F) e]27r€]FdIF.

Q/2 —1/2

We can now extract the following Fourier transform pair from Formulas (7.3) and (7.6):

o 1/2
(7.7) Xi(F) = Y 2™ = 1y = / X1 (F) 2™ F g .
{=—0c0 —1/2
Fourier series expansion Fourier seriescoef cienté_,

Because the continuous X (F) is periodic and it is formally the Fourier transform of equis-
paced discrete-time samples {..., z_1, zo, x1, ... }, it issaid that sampling in the time do-
main leads to periodicity in the frequency domain.

It is also common to express the Fourier transform pair in the angular digital frequency
0 = 27IF (radians per sample), which is obtained by changing the variablein Formula(7.7):

o - : 1ot
(78) Xi(0) = 3 we = wo= [ Xi(0)e*do.

{=—o00

Note that we have used 6 instead of the previously proposed W to denote the angular digital
frequency in (7.8), and that we have X (6 + 27) = X (6).
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Remark 1: By changing the physical frequency variable f to the digital frequency F = fAt,
wewere ableto focus on transforming the data sequence { z, } itself and present aderiva-
tion which is more direct and clear than using X;(f). Nevertheless, the mathemati-
caly equivalent pair derived from X;(f) can now be obtained directly from the pair
X;(F) < {x,} in (7.7) by changing variable F back to f th e following result is

immediately obtained:
e . 1/(24¢) _
(7.9 | Xi(f) =) :c(mt)e‘ﬂ”f“<=>x(mt)=m/ /(MXI(f)eJmedf.
l=—00 —1/(2At

Recall that the second form of X;(f) in (7.2) was obtained in Theorem 6.11. With
the relationship (7.9) now established between X (f) and {x(¢At)}, we can verify the
second form directly from evaluating z(t) = F~1{ X (f)} att = (At: we rst express
z(t) intheintegral form

o0 = [ T x(p) ey,

then we evaluate theintegral at ¢t = /At forall £ € (—oo, 00):

x(LAL) :/OO X (f) el ot gf

o (—k+3)R .
Z / X(f) ej?ﬂ'féAt df

§ / X(\— kR) 2 O—kREAL gx (let A = f + kR)
iR
2

k=—o0
o0 1/(2At) k ) )
= / X ()\ — —) IPTANBL T2 N (et R = 1/At)
e S YIC YN\ At
0 (1/(24t) k , )
_ / X <f _ _) ej?ﬂ'féAt df ( 67‘727”%:1; let fZA)
S o1y At

A /Wmt) 1 i (f k > jentfae gy
= At — X - — el df.
71/(2At) At k= —oo At

extract the integrand

extract the integrand

1/(2At)

200 = At / [ X:() | @2 ar trom (7.9)forall £ € (~oc, o0),

—1/(2A¢)

J - k
S Xi(f) = Ek;wx (f— E) .
We have thus derived the same result previously given in Theorem 6.11 by taking an

entirely different path.

Remark 2: We have used different function names X7, XI, and X to denote the three forms
of the same function this is necessary, because if we don t change the function name,
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we can only explicitly substitute the variable of X;(f) by expressing

X[(f) = X[ <Et> ZX] <27T9At> 5 0 = 27F.

Therefore, to be mathematically correct, we must refer to the result expressed in each
new variable by a different name; i.e., we de ne

X;(F) = X; (%) ,

and

Xi(0) = X <27r9At) '

Of course, the fact that they represent the same function does not change, and we have

Xi(f) = X1(F) = X;(0).

Remark 3: We emphasize the mathematical equivalence of the following formulas:

Xi(f+1/At) = X (F+1) = X7(0 £ 2n),
where§ = 27FF = 27 fAt; and
1/(2At) ‘
z(LAt) = At / X;(f) eI 2taf
—1/(2At)
1/2 . )
= X;(F) ™ dF
—1/2

1 (" - ,
= %[WXI(H) 10 = x4, 1€ (—o0,0).

Remark 4: We have shown that sampling z(t) in thetime domain leadsto periodic replication
of its Fourier transform X (f) = F{«x(t)} in the frequency domain, which was described
by the second form of X;(f) in (7.2):

oo

Xi(f) = Aitk_z X(f—%)-

shifted (scaled) replicas of X (f)

Hence discrete-time signals have continuous periodic spectra X ( f), and the sampling
space At in the time domain is the reciprocal of the period of X;(f) in the frequency
domain.

Remark 5: We emphasize that the central period of X;(f), which covers frequencies
fe[-R/2, R/2],isnot required to beequal to X (f)=F{xz(t)} r ecal that the shifted
replicas of X (f) in the periodic replication described by (7.2) overlap each other if the
the sampling rate R = 1/ /At does not exceed the bandwidth of x(¢). (Recall Figures 6.9
and 6.10 as well as our discussion on the Nyquist rate in Section 6.8, Chapter 6.)
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Table 7.1 Properties of the Fourier transform X (FF) of a sequence.

1. Linearity Flo{we} + B{ye}} = aXi(F) + BY7(F)
2. Time shift Fl{weom}} = X1(F) e-327Fm
3. Frequency shift F{{z, e Fal}} = X1(F — F,)
Special case ., = } Fi{an (-1} = % (F - 1)
4. Modulation F{{z¢ cos2nFl}} =1

Xr(F+Fy) + %X{(F —F,)
F{{we sin2nFol}} = L X[ (F+Fo) — 1X1(F —Fo)
5. Folding F{{z_e}} = X(~F)

6. Derivative of thetransform ~ X}(F) = —j2rF{{¢x,}}

7.2 Properties of the Fourier Transform of a Sequence

A subset of the Fourier transform properties (for continuous-time signals) in Table 5.3 is di-
rectly adapted for discrete-time signals in Table 7.1, and their derivation from the den ing
formulafor X (F) follows.

1. Linearity

Flafze} + By} } = F{{awe + By}

= Y (ame+Bys)e > by Formula(7.3)
{=—c0
= Z Ige_jzﬂ]N—Fﬂ Z yge_jQﬂIW
{=—0c0 {=—0c0
= a X[ (F) + 8 Y;(F). by Formula (7.3)
2. The Time-Shift Property
Fl{wem}} = Z Loy e I27E by Formula(7.3)
{=—c0
= Z xy, e 92 (k+m) (letk =£¢—m)
k=—o0
— [ Z Tk e—jQﬂFk] e—jQﬂIFm
k=—o0

= X;(F) e 92, by Formula(7.3)
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3. The Frequency-Shift Property

F{{ze ejQ’T]F“e}} = Z xg 32l g=327FL hhy Formula (7.3)

{=—00
_ Z e e~ d2m(F~Fa)l
{=—00
= X[ (F - Fa). by Formula (7.3)

Observe that when F,, = 1, the frequency shift e/2"Fef = ™ = (—1)*, and we have
F{{x¢(~1)*}} on the left-hand side and X;(F — 1) on the right-hand side for this
special case.

4. The Modulation Property

F{{xe cos2nFol}} = > (x4 cos2aFol) e 7>™ by Formula(7.3)
l=—0c0
1 & , , )
=3 > o {e*ﬂﬂaf + eﬂ’“w}e*ﬂ’rw (by Euler sformula)
{=—c0

= 1 Z X0 {e—jQﬂ'(]FHFa)E + e—j27r(]F_]Fa)g:|
2 C

l=—00

1 — : 1 — :
_ = —j2n(F+Fqy)e - —j2n(F—Fq )L
) Z ree + 2 Z Tee

l=—00 l=—o0

1

Similarly,
F{{zy sin27F o0} } = %f(z (F+F,) — %f(z (F—F.,).

5. The Folding Property

Fl{{a—e}} = > x4 by Formula(7.3)

l=—0c0

= Y @ 2R (leth = —0)
k=—oc0

_ Z oy 92T (—E)k
k=—oc0

X;(—F).
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6. Derivative of the Transform

= Z xg (—j2ml) e~ I2mEE

l=—00

= —j27 Z () e I2EE

l=—o0

= —j2nF{{lx}}.

In Table 7.2 we list the same propertiesin terms of the alternate form X'I(e) de ned by (7.8),
where § = 27TF.

Table 7.2 Properties of the Fourier transform X, (9) of asequence (§ =27F).

1. Linearity Flafad} + B{ye}} = aX1(0) + BY1(6)
2. Time shift Fl{ze-m}} = X1(0) e=m?
3. Frequency shift F{{zee}} = X1(0 - 0,)
Special casef, =7 Fl{ae (-1} } = X1(0 — )
4. Modulation Fl{we costio}} = IX (0 + 00) + 1 X1(0 — 6,)

Fl{aesintlo}} = X710+ 00) — 2X1(0 — 60,)
5. Folding Fl{z_e}} = X1(-0)

6. Derivative of thetransform ~ X}(6) = —jF{{¢x,}}

7.3 Generating the Fourier Transform Pairs

7.3.1 The Kronecker delta sequence

The counterpart of the impulse function for discrete-time signals is the Kronecker delta se-
quence {z,=4(¢) }, where
1 ife=0
M@={ S

0 if¢+#0.
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To obtain the Fourier transform of the Kronecker delta sequence, we apply thede ningformula
to obtain

(7.10) Z1(F) = i zp e I2mE — i 5(0) e 2™ = 5(0) = 1.

l=—0 {=—c0
We denote a shifted Kronecker delta sequence by {z;_, =8(¢ — m)}, where
1 ifm=1¢
s(e—my=4""Mm=5
0 ifm#4,
and we obtain its Fourier transform using the time-shift property:

{Zg_m =60 — m)} e ZA[(F)e_jQ”]Fm = ¢ I27Fm

7.3.2 Representing signals by Kronecker delta

In analogy to the impulse train, we may use the weighted sum of the shifted Kronecker delta
to represent a discrete-time signal:

o0

Ty = Z Tm 5(6_ m)’ te (_OO’ OO)

m=—0o0

For each speci ed value of ¢, the right-hand side has only one nonzero term x, 6(0) corre-
spondingto m = /.

Example 7.1 We denote the discrete unit step function by {Z@ =u(¥) } where

1 ife>0
7.11 u(l) = =
(740 ) {o if £ < 0.

Theden itionissatised by the sum of the shifted Kronecker delta
(7.12) z0 = Z 5l —m), (L€ (—o0, x0);
m=0

or the equally valid

4
(7.13) 2= Y_ 6(m), L€ (—o0,00).

m=—0oo

Example 7.2 We denote the discrete unit ramp function by {z,=r(¢) }, where

¢ ife>0
7.14 r(6) = =
(714 ) {o if £ < 0.

Theden itionissatised by the weighted sum of Kronecker delta expression

(7.15) 20 = i 060 —m), e (—o0, ),
m=0
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or the equally valid

14
(7.16) z= Y L8(m), (€ (o0, ).

m=—0oQ

The discrete unit ramp can also be expressed as a sum of the discrete unit step as

(7.17) 2= Y u(m), (€ (—o0,00).

7.3.3 Fourier transform pairs

Example 7.3 (a) (Figure 7.1) We denote the discrete exponential function by {z, =a‘u(¢)},
where || < 1, and we obtain its Fourier transform by the de ning formula

oo

Z e —j2mlF _ Z O/u(é) efj27r€]F
l=—o00 {=—00
= Zo/ eI E ( u(l) =0,¢< O)
(7.18) =

0o , Y ,
= Z[a e‘ﬂ’ﬂ (note |ae 72| < 1)

o~
I
o

=—————. (sumof geometric series)

(b) (Figure 7.2) We obtain the Fourier transform of {y, = ¢ a‘u(¢)}, where |a| < 1, by
relating it to the result from part (a) through the derivative of transform property

%Z}(F) = —_]27'(.7:{{42’/}} or .7:{{62’/}} = Q_%ZI(F)

Letting z, = ofu(f), we have y, = £ z;; hence,

F) = F{{ye}} = F{{l2}}

7 d
S AT
o ar 21 (F)

= 2% dF [HNM} (result from part (a))

_J —j2na e~ 927F
2m (1 - aeszmF]?
o e—327F

[1 — e—jQ’TF] >

(c) (Figure 7.3) We next make use of the property of linearity to obtain the Fourier transform
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Figure 7.1 Discrete exponential function and its Fourier transform.
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Figure 7.2 Obtaining Fourier transform pair by derivative of transform property.
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of sequence { (¢ + 1)a‘u(¢)} by adding the results from (a) and (b):

FUHE+ Da'u(0)}} = F{{talu()}} + F{{au(t)}} (by linearity)
a e—j27'r]F
— . ae*ﬂ’”ﬂ? + 1= Oéi_jQﬂ']F (resultsform (a), (b))
1

[1 -« e*j%ﬂq 2

Figure 7.3 Obtaining Fourier transform pair by the property of linearity.
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Example 7.4 (Figure 7.4) In this example we evaluate the Fourier transform of a sequence
{z¢} de ned by discrete exponentia for ¢ € (—o0, x0):

ot >0
X = ,  Where|a| < 1.
a=t <0
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Using the technique from Example 7.3(a), we obtain

o) —1
]_-{{x/}} _ Zaf e—jQﬂ'Z]F + Z a—f e—jQﬂ'Z]F
=0

l=—o0
=3 e 43 [ae )t~ 1 (leth=—10)
£=0 k=0
1 1 . .

= oot F T gt 1 (sum the two geometric series)
_ 1—a?

(11— ae92F) (1 - v e27T)

1—a?

T 1-2a cos(27F) + a2’

Figure 7.4 The Fourier transform of a bilateral exponential function.

1.2 T T T T T T T

1 =
| Sequence: z

= alkl (a=0.5) :

0.8 k

0.6

0.4
0.2
0
-0.2

-20

Il Il Il

X -
T B B L e R R R

X
EREECRIE JF 8 SR I R S P PP

L Il Il Il

-15 -10

10 15 20

4 T

T

T T T T T T T

Real—\?alued ZI(F)

2 § § 5 :
1 : : : :
ok ““““““““““ <—>‘ ““““““““““ Do
: :  period : :
-1 I ) I 1 E i L 1 L
=25 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Digitél frequency F = fAt

Example 7.5 Recall that given a Fourier transform pair z(t) < X(f), we may obtain
X;(f), the periodic Fourier transform of the sample sequence {x,}, in two forms: (i) X;(f)
may be expressed as a Fourier series with its coef cien ts appropriately de n ed by the data
sample; (ii) X;(f) may be expressed as the sum of the shifted replicas of the known X (f).
Therefore, if we can obtain a closed-form expression for X;(f) in one of the two forms, we
would have also found the closed-form expression for the in nite sum in the other form

a result which may not be obtained by working with the in nite sum directly. For the pair
z(t) = e < X(f) = 1/(a + j2nf), we have shown such results in Example 6.1
(Figures 6.9 and 6.10).
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In this example we combine this approach with the use of the derivative of transform prop-
erty: we will show that for z(t) = e~*"u(t), the two forms of Y;(6) for y(t) = t x(t) can be
obtained from the known X (f) and X(f). In order to make full use of previously obtained
results, we connect relevant examplesin a diagram shown in Figure 7.5. The results obtained
in those examplesare labeled as such and they are displayed in the shaded boxes; the new tasks
are those leading to the results displayed in the unshaded boxes.

Figure 7.5 Connecting previously obtained results to new tasks.

Example 5.1 Apply the Example 5.6
z(t) = e~ %u(t) derivative of y(t) = tx(t)
X(f)= —L Transform Y(f) = =Lx/
()= rransfon (f) = 5-X'(f)
Sample z(t) Sample y(t)
Example 6.1 Sequence {y,}
Sequence {z,} Y:(f) (In nitesum)

X1 (f) (two forms)

Change variable

Y7(#) (In nitesum)

Change variablein

the closed form
Apply the
Sequence {z:} derivative of Sequence {y} ,
X1(9) (closed form) Transorm Y1(6) = jAtX7(6)
property (closed form)

Two formsof Y7(6) are
now obtained from the
known X (f) and X (f).

Following the action plan in Figure 7.5, we use the closed-form X (f) from Example 6.1
to obtain the closed-form X ; (0) by changing the variable f to the angular digital frequency 6:

1

om0 =2 f A

{zp = e "Ply(l)} <= X;(0) =

Because y(t) = t x(t), wehavey, = (¢ At) zp = At (£ z,), and we can use the derivative of
the transform property to obtain the closed-form Y7 (6):

d |: 1 :l At ef(aAtﬁLjG)

- B v A, d
Yi(0) = At F{{lx}} = jALX](0) = j ot 70 | 1= o=@atrio) - e—(aAt—&-jG)}Q.

To obtain the other form, weuse Y (f) = ﬁ from Example 5.6 to express Y; (f) as
a—+ 32w
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aninn ite sum:
oo

YI(f)ZAltiYO—L):Z =

W W [ast+ j2n(far— k)]

Letting f =

N inY;(f), weobtain

> At

0= [ast + (0 — 27k)) %

k=—o00

By equating the two formsof Y; (9), we obtain the closed-form expression for thein nite sum:

0o 1 e—(aAt+j9)

[alt + (0 — 2xk)]*  [1— e-(abt+i0)]?

k=—oc0

Example 7.6 Inthisexamplewe shall derivethe Fourier transform of the sequence of constant
1, denoted by {z,=1}.

Method 1. We apply thede ning formula(7.2) to z, = x(¢At) = 1, and we obtain

oo

Xi(f)= Z a:(éAt)e_jQ’TﬂAt

{=—0c0

_ Z efj27rf€At ( a:(éAt) — 1)
l=—0c0

_ Z ej?ﬂ'chAt (Iet k= —Z)
k=—oc0

- s <f - %) (by Poisson sum from Theorem 6.6 )

At k=—o0
_ ki@ [éa <%)} (- f = /A1)
- > Eh ([ [rs@)] o= [“aan)
Accordingly,
(7.19) Xi(F) = F{{zg = 1}} = f} 3(F — k),

k=—o0

and X;(F) = &(F) over theprincipal period [~ 3, 3]. Notethat X, (F) isalways periodic
with unit period.

Method 2. We may use our knowledge about the Dirac delta function to obtain =z, = 1 by
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integrating & (IF)e?2™“F over the principal period:
oy — / " 5(F) 92

_ /  S(F) 5(F—0) dF, where g(F) = 2" (recall () = 0, F  0)

g(0) (by sifting property of 6(F — F,,) withF, =0)
1 (-9(0)=e"=1)

Hence §(F) plays the role of X;(F) for F € [-1, 1] in Formula (7.7). The periodic
extension of §(FF) yields X (F) with unit period:

X;(F) = i 5(F — k).

k=—o0

To obtain the alternative form X (6), observe that we must obtain 2, = 1 from X(6)
using Formula (7.8), namely,

Y .
xp=— [ Xr(0)edo =1.
2 J_,
By recognizing that

[%5(9)} eI gy = / 5(0)e7dh =1,

),

we determine that
X;(0) =276(0), 6 ¢ [—m, ).

Since X () is always periodic with period 27, we have

(7.20) Xr(0) = F{{ze =1}} =21 Y 6(0 — 2kn).

k=—o0

Method 3. Since we derived previously the continuous Fourier transform pair z(t) =1 <—
X(f) = o(f), we can obtain the second form of X;(f) directly from the given X (f)
according to Formula(7.2):

= 3 x(r- )
1 k -
5 Y 6<f—E> (- X(f) = 6(F)
= i o(F — k). (by stepsidentical to Method 1)
k=—c

Remarks: Comparing the results from this example with those of the last three examples, we
see that when X (FF) involves an impulse train, thein nite sum is reduced to asingle impulse
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within the principal period [—%, %]. In such case, it is common practice to express X ; (F) for
the principal period only. Therefore, when the following expression is used,

{zy =1} <= X[(F) = §(F),

it is understood that the values of F are restricted to the range [—1, ]. Confusion occurs

when thispracticeisadopted without quali cation, becausethissimpli ed expressionisneither
periodic nor valid for F outside the principal period, while X ; (F) was supposed to represent a
periodic function valid for al F € (—o0, o). Such discrepancy in the den ition of X;(F) is
often tolerated, probably because we usually only need to study or plot one period of aperiodic
function.

Example 7.7 Using the modulation properties on the pair {y, =1} <= 6(F), F € [-1, 1],
from last example, we obtain

(7.21) F{{ye cos2nFol}} = F{{cos2aF.l}} = %5(IF +F,) + %5(IF —F.),

(7.22) F{{ye sin2naFyl}} = F{{sin27Fy}} = %5(1? + ) — %5(&? — ).
Recall from Section 1.9.1 that a discrete-time sinusoid has the general form
¢ = Dy cos(2nFol — @), €=0,1,2,...
To obtain its formal Fourier transform, we apply trigonometric identity to express
g = Dy €08 ¢ c0s(27F o) + Do, sin ¢, sin(27F o, 0),

and, by linearity, we superpose the transform results from (7.21) and (7.22) to obtain

X;(F) = %Da cos o [6(F +Fo) +6(F —Fo)] + %Da sin g [6(F+Fq) — 6(F — Fq)]

= %Daej%é(ﬂ? + IFa) + %Dae_j%é(lﬁ‘ — Fa) (" cosf £ jsinh = eije)
=7 Dae?® (0 + 0,) + 7 Dae 7%5(0 — 0,). (. (F)=274(6) from (7.20))

7.4 Duality in Connection with the Fourier Series

Observe that the relationship between the pair X;(F) <= {x,} mirrors that of a periodic
function y?(t) with period 7" and its Fourier series coef cients {C}:

0 ) T/2 ‘
(7.23) yP(t) :Z C, &2mRT s O = %/ yP(t) e~I2mRT gy
—T/2

k=—o0

Recall that if we extract one period of y?(t) to de n e the time-limited function

0, otherwise

() = {ym), te[-1/2,T/2]
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thenyP(t) isformally the periodic extension of y; (¢), and it can be expressed asthe convolution
of y1 (¢t) and the impulse train Pr(t) (for examples, see Figures 6.6 and 6.8 in Chapter 6):

convolution
/—/ﬁ
(7.24) yP(t) = y1(t) % Pr(T) = y1 (¢ Z §(t— 1) Z yi(t — 7).
{=—00 f=—0c0
periodic extension of y1 () shifted replicas of y1 (¢)

Assuming that the time-limited y, (¢) has Fourier transform

o0 ) T/2 )
(7.25) n = [ m@erta= [ e ra

s —T/2
the Fourier seriescoef cientsCy, of y?(t) = y1 (¢)+Pr(t) are equally spaced samplesof Y1 (f)
scaled by thefactor 1/7,i.e,,

Cy = %Yl(g)’ k € (—o0, 00).

Hence the sequence {C}, } represents the impulse sampled Y7 (f) scaled by the factor 1/7°:

P = 3 aE)a(r-5) = S as(r- b,
k 0o k=—o0

and we see that sampling Y1 (f) = F{y1(¢)} in the frequency domain results in the periodic
extension of y; (¢) to y?(¢) in the time domain.

Since the sampling space A f = fry1 — fr = % is the reciprocal of the period of y”(¢),
the Fourier series pair y*(t) <= {C}} issaid to bethe dua of the Fourier transform pair
X;(F) <= {2/}. In both cases, periodic extension in one domain is the consequence of
sampling in the other domain. Observe that the Fourier series pair y?(t) <= {C}; } represents
the result expected from Convolution Theorem 6.1

(7.26) y1(t) * Pr(t) <= F{y(t)} - F{P: (1)},

periodic yP (t) impulse sampled Y1 (f)

where the Fourier transform of the impulsetrainis given by Theorem 6.7;

(7.27) FE) = P =5 3 (1= 5]

7.4.1 Periodic convolution and discrete convolution

In this section we obtain the duals of Theorem 6.4 (Periodic Convolution) and Theorem 6.5
(Discrete Convolution) for discrete-time signals.

Theorem 7.1 (Frequency-domain periodic convolution) The convolution of periodic X (F)
and H; (F) in the frequency domain corresponds to the multiplication of sequences {z,} and
{h¢} inthetime domain. That is,

G[ f{{l‘ph/}} X] F)@H}(F),

where
1/2

X1(F) @ H;(F) = o Xr(\) H(F — )\) dA.
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Proof: Recall from Equation (7.4) we may express X (F) and H; (F) by their Fourier series
expansions, namely,

Xi(F)= > &e?™/0  wherety=xz_4, Q=1

l=—o0

ﬁ](F) = Z CZ@ €j27ré]F/Q, WheredAg =h_p, Q=1.

{=—o00

By the Periodic Convolution Theorem 6.4 for the Fourier series, we immediately have the
Fourier series expansion of X (IF) ® H; (F):

X(F)® Hy(F) = Y (¢eds) e/, whereQ =1 (by Theorem 6.4)
f=—oc0

_ Z (‘Tf[ h,fg) ejQﬂf]F

l=—00
oo

= 3 (eh) e (leth = )

k=—oc0
= F{{zp hi}} by Formula(7.3)
= Gy(F). u

We show next that the multiplication of the continuous Fourier transforms in the frequency
domain corresponds to the convolution of the discrete-time signals in the time domain. Recall
that the discrete linear convolution of two sequenceswas de n ed in Section 6.4 as

o0

g = Z Ty hp_p, foral k e (—OO7 OO)

l=—o0

We also expressthe discrete convolution as {gi. } = {x} * {hx}.

Theorem 7.2 (Time-Domain Discrete Convolution) The Fourier transform of the discrete con-
volution of the two sequences {x,} and {h,} isthe product of X;(F) and H;(F). That s,

X;(F) H;(F) = i ( i Xy hké) eI,

k=—o00 \f=—00

Proof: We again use Equation (7.4) to express X ; (F) and H; (F) by their Fourier series ex-
pansions,
Xi(F)= > e /0  whereéy =24 andQ =1;

{=—o00

H(F)= Y dpe/> /¢ whered; =h_sand Q= 1.

l=—o0
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By Theorem 6.5, we immediately obtain the Fourier series expansion for the product of two
Fourier series as

Xi(F)H (F) = > < d Jk_,g> eI2mHE/2 - whereQ2 =1 (by Theorem 6.5)

k=—oc0 \f=—00

_ Z < Z Ty h—k+€> e]27rk]F
k=—oco \{=—00

= Z < Z Tm hkm> I (letm = —0)
k=—o00 \m=—o0

= Z < Z Tm hrm> eI (letr = —k)

= Z < Z Ty hk_g> e I2TRE (relabel r =k, m=1¢)
k=—oc0 \f=—00

7.5 The Fourier Transform of a Periodic Sequence

In Section 7.4 we have derived the Fourier transform of the envelope signal y?(t) of the peri-
odic sequence {y,}, namely,

(7.28) Periodicy”(t) = yi(t) * Pr(t) <= Fly(t)} - F{Lr(t)} = V1(f) - %Pl/T(fL

where
Ch
1 =1,k k
(7.29) Yi(f)- TPl/T(f) = > fyl(f) Y (f - f) :

Fourier transform of y? (t)

Hence an impulse train weighted by the Fourier series coef cients shall be adopted as the
formal Fourier transform of aperiodic signal, which is simply another useful mathematical ex-
pression for the same frequency contents represented by the Fourier series coef cients. Recall
that C, — 0 as k — +o0, S0 the impulse train weighted by decaying C, s will not be periodic.
(If the periodic signal is band limited, we shall have only a nite number of nonzero Cj, s.)

We show next that it isindeed justi ab le to treat F{periodicy?(t)} given by (7.29) as
the formal Fourier transform of y”(t), because we get back the original signal by invoking the
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inverse Fourier transform as usual:

FH{F{periodicy” (t)}} = /OO F{periodicy? (1)} 2™t df

£ o] e

k=—0o0

- kioo /O:O Ck5(f — %) eI2m it g
= k_ioock /0:05(f - %) ejQWftdf

o
_ 2 Ck €j27'rkt/T

k=—o0

= yP(t). (. Fourier series of y”(t) has been obtained)

Assuming that NV equally spaced samples are taken from each period of y? (¢), we can now
express the periodic sequence {y,} asthe shifted replicas of the impulse sampled y; (¢), which
istime limited to asingle period of y?(¢). That is,

yP (t)Paq(t): N samplesiperiod shifted replicas of N samples
(7.30) Periodic Sequence 2 () = (yl(t) Pa (t)) s Py(t),
—_—
N samples

where NAt = T, which is the time duration of y;(¢) as well as the period of the extended
yP(t) = y1(t) * Py A.(t). For the corresponding sequence {y, }, we have y,. y = y, dueto the
shifted replicas of the N samples (or weighted impulses.) Using Convolution Theorem 6.1 on
Equation (7.30), we obtain

F{periodic sequencey¥(t)}
= F{(y1(t) - Pae(t)) «{Pr(t)}, whereT = NAt,
= F{yi(t) - Pas(t)} - F{Py(t)} by Convolution Theorem 6.1

11 & k > k
= — _ Y —_ —_ =
E X ()] X e(-h)
periodic Yr (f): period R = 1/ At Pyyr(f)

(7.31) _l s Ly _k _k
Tk;w Atk;wyl = )P\ -7

periodic V1 (f)

1 — k k

-7 X u(r)o(r-7)

k=—oc0

1 1 k k 1 1 R
ZEkaﬁyf <f>5<f_f)’ T-NALC N

periodic sequence: N samples per period R
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Observethat the continuousperiodic function Y; (f) isimpulse sampled at intervalsof R /N =
1/T. Since the sampling rate R = 1/At is the period of Y;(f), there are exactly N equally
spaced samples over each period of V;(f). If the periodic signal y?(¢) is not band limited,
the N samples taken over one period of %y,( f) will not be identical to the corresponding N
samples of Y1 (f)= Y1 (f) dueto the effect of aliasing.

On the other hand, if the periodic signal y?(t) = y?(t + T') is band limited, then there are
only a nite number of nonzero Fourier series coef cients:

(7.32) band-limited periodicy? (t) = > Cj, ™/ 7.
k=—n
Using the Fourier transform pair e727fat <= §(f — f,) from Chapter 6, we obtain
imi i0di _ 2nkt/T\ __
(7.33)  F{band-limited periodicy”(t)} = > Cy F{e*™/ T} =" ¢ 5(f - T)'

k=—n k=—n

The Fourier transform of the impul se-sampled band-limited periodic function y7(¢) can now
be expressed as

JF{band-limited periodic sequence y¥ (¢)}

=F{y"(t) - Pae(t)}}, where sampling interval At = %
= F{yP(t)} =« F{Pa:(t)} by Convolution Theorem
TS B
k=—n
= k - m
> cui(s- 1) *[E o2
(734) k:__" m=—o0
1 n k 00 m
1 [ n 0o )
== _k;nck 5(f - kAf)] *m_z:ooé(f - mNAf) Af—f— e
1 [ & R oo 1
=% _k;an 6(F — k) *m_zooé(f ~mR), R=—=NA/.

Replicate N weighted impulses spaced by A f =R/N

Note that the N = 2n+1 Fourier coef cients C s become the strengths of the NV impulses
spaced by A f =1/T over the frequency range [—nA f, nA f]. We also identify one period
of the Fourier transform as R = NAf = (2n+1)Af, which begins with (—n + 0.5)Af
and ends with (n 4+ 0.5)Af. SInce fiax =n/T, N =2n+1, the choice of sampling interval
At=T/N < 1/{2fmax}, ardtheNyquist conditionissatised. Hencethe periodicreplication
of the V impulses (spaced by A f) over the distance R = NA f does not cause overlap, and
no aliasing effect will result from sampling a band-limited periodic signal at or above Nyquist
rate.
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7.6 The DFT Interpretation

In this section we show that equispaced sample values of the Fourier transform of an in nite
sequence {x,} can be interpreted as the Discrete Fourier Transform (DFT) of a formally
n ite sequence {uy }. We begin with the de n ing formula(7.2):

o0

Xi(f) = Flart)y = > w(tAr)e et

{=—c0

Supposethat we choosethe DFT length to be N =2n+-1. Since N samples are taken over each
interval of duration T = N At, we can express the sample point (At = (k + mN)At, where
—n <k <n, —oo<m < oo, which allows us to express the summation involving z(¢At) asa
double sum:

Xi(f)=Y a(ent)esriat
{=—00
(7.35) = Z Z (k +mN) At)e j2m f(k+mN) At
m=—oo k=—n
= Z Z k+mN At) —j2n f(k+mN)At
k=—nm=—o0

If we now evaluate & X (f) at f = fr = r/T =r/(N/At), we obtain

n o0

1 . —j27r m
N <NAt> N > > a((k+mN)At) e kEmN)/N
—_—

k=—n m=—0o0

U, in(7.37)
Jif Z Z a: k—l—mN At) —j2ark/N

k=—n m=—o0
(7.36) ]1[ l Z ((k + mN)AL) | e=azmrk/N

k=—n Lm=-—o0

_ i Z m wfrk
k=—n
where up = Z a:((k—l—mN)At), wy = &2/

Observe that the familiar DFT formula emerges from the right side of (7.36).
Since X;(f) de ned by (7.2) is periodic with period determined by the sampling rate
R = 1/At, weobtain N equally spaced samples of X;(f) over one period R when they are

spaced by

R 1 1
A = — = — = —,
f N NAt T

If welet

1 1 r
U, NXI(rAf) NXI (N t) , wheeN =2n+1, —n<r <n,



7.6. THE DFT INTERPRETATION 233

then U,y = U,; that is, the sequence {U..} is periodic with period N, and we can obtain U,
by evaluating the DFT de ned by (7.36); i.e., we compute

1 n
(7.37) Ur =~ > upwy™, whereN =2n+1, —n<r<n.
k=—n
Remark 1: Observethat because

o0 n

u = Z z((k+mN)At) ~ Z z((k+mN)At),

m=—0o0 m=—n

in practice the values of U,. can be approximated using the DFT formula (7.37) on {uy}
computed from finite sample sequence {z,}.

Remark 2: The DFT relationship

]. k
U. = — E < r< —
r NX (N t> ukw y 0 T N 1,

holds with the V-sample sequence {u, } de ned by

up = Z a:((k—l—mN)At), 0<kE<N-1.

m=—0o0

Example 7.8 Recall the following result from Example 7.3(a) and Figure 7.1:

1
LettingF,. = f.At = % we obtain
1., /7 1 1
U, = —2 (—): , - . 0<r<N-1.
NN N(1 —ae=d2m/N)  N(1-awy") ==

We show next that if weden e
k N k - k
S zmmN—Za*’" =af Y (M) =

m=—00 m=0

then we obtain the same value of U,. by performing DFT on {uy}. That is, we compute

- 1 = k
= 7]\[(1 mpvy kgo (awy")
_ 1 |:1—an;”\/]
N(l-aoN) | 1-awy’
= 1 (cwy™ =1)

N(l —ocwgr) '
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We have thus veri ed that
r R r N-—1 [e%s)
7 () = 21 (3) = X | oo

Note that if we apply the DFT directly to the truncated N-sample sequence {z; = ¥}, 0 <
k < N —1,then

1 N—-1 1 N—-1
ZTZN zkw;m:N akw;m, 0<r<N-1
k=0 k=0
1 [1 — anTN}
N | 1-awy"
_ 1—alv
N N(l - awNT)
1
7 N(l —awy" < )
Therefore, using nite N samples we can only expect Z, ~ + Z;(r/T) for —n < r < n,

n=(N-1)/2,T=NAt

7.6.1 The interpreted DFT and the Fourier transform

We can dso relate the DFT of formally n ite sequence {uy} to the Fourier transform of the
continuous-time signal x(¢) through the second form of X (f) given by (7.2), namely,

o0

X =P} = 35 3 % (1 55).

where X (f) = F{«(¢)}. Accordingly, we can express U,. by values of X (f):
1 r 1 > r k
Ur=§X1 (NAt) T NAt k;ooX <NAt B Eﬁ)

S X((r—kN)%) (- T=NAY)

(7.38) h=roe o
=NAf Z ((r — kN)AF) (;-Af:T:N)
k=—oc0

=Af Y X(r+mN)AS). (letm =—k)

m=—0o0

Hence the equality of the two forms of X (f) given by (7.2) alows usto relate the sampled
x(t) to the samples of itstransform X ( f) = F{x(¢)} through the DFT:

1 n
(7.39) UT:N Z ukw;Tk, forN=2n+1, —n<r<n,
k=—n
where
samples of z(t) samples of X (f)

X e— A
up = a((k+mN)At); T_Afz ((r +mN) f),Af:ﬁ.

m=—0o0 m=—oo
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Notethat up+ny = ux and U,y = U...

Example 7.9 The following Fourier transform pair was obtained in Example 6.1 (see Fig-
ures 6.9 and 6.10):

> 1

{ze= e "Mu()} = X1(f) = k:z_:m alt+ j2m(fAt — k)

Recall that the sequence {z,} was sampled from x(t) = e~ **u(t), and we show the complex-

valued X (f)= ﬁ in Example 5.1 (see Figure 5.2). In this example we verify that

Ur:%XI (Nlt)ZAf 3 X((r+mN)AS).

m=—0oQ

The DFT U, wasde ned by

1 r - 1
U =~Xi (| = < :
N I(NAt) Nk;oo al\t + j2m(r — kN)/N

o0

1 3 At
- NAt 4= alt+ j2n(r — kN)/N

:Afk:z_:ma+j27r(r—kN)Af ('.'Afzfzm>

1
- Afm;w a+j2r(r+mN)Af

The same result can also be obtained from summing the values of X (f)= %2][
a+ 32w

1
Ur=247 Z ((r+mN)AS) = Of Z a+j2r(r+mN)ASf

m=—oQ m=—0o0

7.6.2 Time-limited case
If z(t)=0fort<—T/20rt>T/2,thenfor At=T/N=T/(2n+1), we have z(¢At)=0 for
¢ < —nor {>n, andtheinner sum de ning the DFT input u isreduced to one single term:

up = ix((k—l—mN}At):xk, —n<k<n, n=(N-1)/2.

m=—0oQ

We can thusreinterpret (7.39) asthe DFT of the N-sample sequence {x }:

1
(7.40) Ur =+ S apwy™, —n<r<n, N=2n+1,

k=—n

where

1 1 1
(74D U= X (NN> Afz X(r+mNaf), Af=1o =

m=—0o0
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When atime-limited function z(¢) is not band limited, the Nyquist condition will not be sat-
ised by any choice of At, and we must account for the aliased frequenciesin this case. We
show next how the Fourier series coef cients of 2”(¢) th e periodic extension of x(¢) are
aliased into the DFT of the sampled sequence {x,}.

Recdll that if we interpret the time-limited x(t) as one period of its periodic extension
function «(¢) (with period T = NAt), thenfor t € [-T/2, T/2] we can express z(t) by the
Fourier series expansion of z?(t):

- : 1
z(t) = 2P (t) = Z Cred?™ T Oy = TX <k> )

k=—o0

where X (f) = F{x(t)}. We can now rewrite U, in (7.41) as

1 r 1 r+ mN >
UT_NXI(NAJ_’JI‘ 2 X( T )‘ 2 Cremy,

m=—0o0 m=—0o0

and we have once again proved the relationship between the DFT {U,-} and the Fourier series
coef cients {C }:

(7.42) U= Y Crimn.

m=—0o0

Recall that we proved the same result from a different perspectivein Section 3.11. The Fourier
transform and the Fourier series expansion of a time-limited rectangular pulse function were
given in Example 5.3 (Figures 5.4 and 5.5).

7.6.3 Band-limited case

If 2(t) is band-limited with bandwidth F = 2 f,. and we have chosen the sampling rate R =
1/At> F, then the Nyquist condition is satised, and from Corollary 6.12, we have

o0

Xit) =55 XX (£ 55) = g XU forf e R/ R/

k=—o0

-
NA; € [-R/2, R/2] for

Ir| < % we can express U,. by asingle samplevalue of X (f) intheright side:

1 r 1 r
U, NXI(NAt> NAtX<NAt>’ n<r<n, N=2n+1

Note that [—-F/2, F/2] C [-R/2,R/2]. Because f, =

Letting T = NAt, we can now obtain the sample values of X (f) = F{z(¢)} through the
DFT on {u}:

1 1 n
(7.43) TX(%):UT‘:N Zukw;m, —n<r<n, N=2n-+1,

k=—n

where, as before,

oo

up =Y o((k+mN)At).

m=—0o0

A band-limited example was given in Example 5.4 (Figure 5.6).
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7.6.4 Periodic and band-limited case

If the periodic signal zP(t) = aP(t + T') is band-limited, then it has a n ite Fourier series
expansion:
2P (t) = Z C,el?mrt/T.

When N =2n + 1 samples of z?(t) are taken over one period T'= N At, we obtain

xp = aP(LAL) = Z Crwt, wherewy = />N 1 =0,1,...,N—1,

r=—m"n

which is identical to the system of equations (in complex exponential modes) described by
Equation (2.5) in Chapter 2, and the latter leads to the DFT formula given by Equation (2.7),
by its alternate form (2.8) we obtain the N Fourier series coef cients, i.e.,

(7.44) C,

1 .
Xp= D wwy™, for —n<r<n, N=2n+1

l=—n

Recall also that in Example 4.5 (Table 4.1, Figure 4.2) in Chapter 4, we computed DFT
coef cientsfrom samplestaken from one period (and three periods) of aband-limited periodic
function

y(t) =4.5cos (1.2wt) + 7.2 cos (1.87¢),

and we show how to identify the Fourier series coef cients (expressed as complex-valued Y,
or real-valued A, and B,) from the computed DFT coef cientsdisplayedin Table 4.1.

According to Formulas (7.33) and (7.34), the C'. s are the strengths of the N = 2n +
1 impulses which de ne F{z?(t)}, and the periodic replicas (with no overlap) of these N
impulses (scaled by 1/At) de ne F{z¥(t)}, the Fourier transform of the periodic sequence
formed by taking N samples over one period (or multiple full periods) of duration 7. Hence
thisisthe case (and the only case) in which we can use DFT formulason N samplesto recover
a signa s true frequency content. The DFT formulas for computing the N Fourier series
coef cients were given in Chapter 2 and Chapter 4; there we also addressed the related issues
including the sampling rate, sampling period, sample size, and alternate forms of the DFT.
After we derived the DFT and IDFT formulas in Chapter 4, we further explained the possible
frequency distortion by leakage and the effects of zero padding in Sections 4.5 and 4.6. We
shall revisit some of these issues from a different perspective after we discuss the windowing
of a sequence for DFT computation in the next chapter.
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Chapter 8

The Discrete Fourier Transform of
a Windowed Sequence

In Chapter 7 we established that after asignal z(¢) issampled, we can only hopeto computethe
values of X;(f) = F{x(t)Pa:(t)}, which is the Fourier transform of the sampled sequence.
Asdiscussed initially in Chapter 6 and more than oncein Chapter 7, whether the central period
of X;(f) agreeswith or closely approximates X (f) = F{x(t)} is determined by the chosen
sampling rate R = 1/At, which cannot be changed after the signal has been sampled. When
they don t agree with each other, the Fourier transform of the sequence X (f) issaid to contain
aliased frequencies. While we were concerned with the mathematical relationship between the
sample values of X (f) and the sample values of the signal «(t) in Chapter 7, in this chapter
we are concerned with computing the numerical values of X;(f) from a nite sequence of
N samples, assuming that we have some knowledge about the duration or periodicity of the
signal x(t) so that we can decide on the samplesize N.

8.1 A Rectangular Window of Infinite Width

To set the stage, we begin with the simplest case involving time-limited signals, because the
optimal samplesize N can be determined by the chosen samplingrateR = 1/ At andthe n ite
duration T of thesignal «(¢),i.e.,, N = T/At. If N isodd, the DFT of the N-sample sequence
{z1} was given by Equation (7.40), which computes

1 r 1
(8.1 U, = =X; <>= Z rrwy™ —n<r<n, N=2n+1.
N\ NA 2z

If N iseven, the corresponding DFT computes

n+1
1
(8.2) Ur = X1 <NA7‘> Zka , —n<r<n+1, N=2n+2.

Recall that when IV is odd, the V samples do not reach either end of theinterval [-T/2, T/2]
(see Figure 2.9), whereas when N is even, we must include a sample at one end of the inter-
a [-T/2, T/2] (see Figure 2.11). Because a window function for either case can be easily

239
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modi ed to take care of the other case, we shall assume N = 2n+1 in the remainder of this
chapter.

To unify our treatment of all windows, let us represent the sampled time-limited signal by
theimpulsetrain z;(t) = z(t)Pa:(t). Herewe interpret z;(¢) as containing NV impulses with
potentially nonzero strengthsaswell asanin nite number of impulseswith zero strengths. To
arti ciadly perform anull windowing operation, we multiply z;(t) by arectangular window of
infinite width, which is simply the constant function w., (¢t) = 1 for al ¢ € (—oo, 00). Recall
that Wo. (f) = F{w(t)} = 6(f); hence, by invoking Product Theorem 6.3 we may express
the Fourier transform of the windowed sequence F{xz;(t) - woo(t)} by

(83 Flar(t) - weo(t)} = X1 (f) * Woo (f) = X1 (f) * 6(f) = X1 (f)-

As expected, the null windowing operation does not alter X (f), which is aperiodic function
with period R = 1/At. The N equally spaced samples taken from one period of X;(f)
span one period of the sampled sequence [X(f)*Weo(f)] - Pr/n(f), and their values are
obtained by DFT formula (8.1). Note that the samplesof X;(f) arespacedby Af =R/N =
1/(NAt) =1/T.

Observe that the periodic sequence 1 [X;(f) * W (t)] - Py 7(f) isthe Fourier transform
of [x7(t) - weo(t) ] * Pr(t), and the latter is a periodic sequence resulting from replicating the
N samples of z(t) over intervals equal to its duration 7= N At. Accordingly, the periodic
sequence in the time domain repeats the original N samples with no overlap, the periodic
sequence in the frequency domain takes N samples from each period of X;(f), and the two
sequences form a Fourier transform pair:

identical to z 1 (t) identical to X7 (f)
—— 1] m———"—
(84) [21(2) - woo (1) | ¥Pr () = 5 [X1(f) * W (f)] -Pr/r(f) -

periodic sequence in time domain periodic sequencain frequency domain

Note that in obtaining the transform pair we invoke Convolution Theorem 6.1, and we make
use of the Fourier transform of the impulse train given by Theorem 6.7:

(8.5) Pr(t) %pw(f), where T = N AL,

We conclude this section with the following remarks:

Remark 1. Sampling X;(f)*W(f) in the frequency domain results in periodic extension
of the windowed sequence z; () -wo (¢) in the time domain.

Remark 2. The DFT andthe IDFT directly relate the two periodic sequences. Using the DFT
we obtain

86) U, =At {%X; (%)} - %X, (%) - % i sews™ —n <<

k=—n

using the IDFT we obtain

(8.7) Ty = Z Urwf\,k, —n<k<n, N=2n-+1.

r=—m"n
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8.2 A Rectangular Window of Appropriate Finite Width

In this section we consider windowing a periodic sequence obtained by sampling a periodic
signal yP(t) = =(t) * P,(t), where z(t) istime limited and has nite duration T'. We assume
that asamplingrate R = 1/ At hasbeen chosen, and that with N =T'/ At we areable to obtain
N samples over each period T'. Asbefore, we assume N =2n+1. The periodic sequence v} (¢)
may be viewed as the periodic extension of the N-sample sequence de ned by the impulse
trainz(t) = x(t)Pas(t); i.e, yi (t) = x1(t) * Pr(t), whereT = NAt. To extract N samples
over a nite duration 7' from the in n ite impulse train y7(t) = z;(t) * Pr(t), we multiply
y% (t) by arectangular window function of width 7", which isde ned by

1, forte (-T/2,T/2);

€8 wrea(f) = {07 for [¢| > T/2.

We recall from Equations (7.30) and (7.31) in Section 7.5 that the Fourier transform of an
in n ite periodic sequenceis given by
Flyr )} = Flar(t) « Pr(t)}
= Fla(t)Pac(t)}-F{Pr(t)}

1
T

o0

1 k
2 2 X<f_E)

'Pl/T(f)

(8.9)

periodic X (f), period R=1/At
1 & r r
-3 5 w(3)s0-5)

Fourier transform of 3% (t)

We may now determinethe Fourier transform of thetruncated N -sample sequence F{y/ (¢}
wreet (t)} by invoking Product Theorem 6.3:

f{y?(t)'wrect (t)} = f{y?(t)} * F{wreet (1)}
—_———

one period
|1 = r r sin(7T f)
= |z X x(z)i(r-7) *T[iﬁTf ]
(8.10) —
transform of periodic sequence y/7 (t)
L r sinwT (f — %)
- X0l T

transform of truncated N samples

Once again, sampling the periodic transform F{y7 (t)-wrec+(t)} resultsin the periodic exten-
sion of the truncated sequence yP (t) - w....¢(t), and we obtain the transform pair

> r sinwT (f — %
> 0 (7)o

rT=—00

@811 [y (t) - wrext(t) ] = Pr(t) <=

periodic sequence in time domain

% Pl/T(f)

periodic sequence in frequency domain
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We show next that the sampled transform returns the values of X;(f) at f = 7 forall r €
(—00, 00):

F{y7 () wiea ()}

! i X0 (% )Slnﬂ(“f(f T);) )

4 [ £ 06 o
(8.12) %_i X1 (z) _i %50_%)
o EO[E R

(
(G- f) e

same as Fourier transform of 37 ()

1 & 1 T T
“a 2 (7)) -7)-
In deriving the result above, we have made use of the fact that

blnﬂ'T(——%)_ 0, ifm=#mr
T (% = 7) 1, ifm=r(de nedby thelimitof sin0/0)

Note that these are the same results obtained when evaluating sinc(z) = sinwz/(7x) at zero
Or nonzero integers.

When DFT is applied to the truncated one period (/N-sample) sequence
yi(t) - wrea(t) = x(t)Pay(t), we know from Equation (8.6) that the DFT produces the pe-
riodic sequence

(8.13)

1 R
(8.14) Ur = X1 (%) =~ Y wmwyt, n<r<n N=2n+l,

k=—n

As before, the IDFT transforms the U, s back to the x;, s. Therefore, the DFT and the IDFT
directly relate the sampled periodic sequence to its transform provided that the width of the
truncating window wiect(t) is appropriately chosen to be the period T of the envelope signal.

The DFT resultsare equally valid if they are applied to M > N samples over multiple full
periodsT = kT, where k isan integer. (Thiscase was studied in detail in Section 4.3; see also
Example4.5, Table 4.1, and Figure 4.2 in Chapter 4.) This meansthat the width of the window
function may be chosen so that M samples span the duration M At = kT = T.

To incorporate this case in our derivation above, we can smply allow the time-limited
z(t) (which we use to generate the envel ope periodic function y? (¢)) to represents « periods of
2P (t) of period T, = T'/k, where x isaninteger. Clearly, theenvelopefunctionsy? (t) = zP(t);
hence, the sampled sequence y7(t) = 27 (t). Because we are talking about two identical peri-
odic sequences, the Fourier transform results we derived in terms of X;(f) in Equation (8.9)
remain valid for the sequence {z7}.
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8.3 Frequency Distortion by Improper Truncation

While we assume, as before, that the signal y(t) is periodic with period 7', and that it has
been sampled at intervals of At with T'= N At, we now consider modifying the width of the
rectangular window: we shall assume that the periodic sequencey (t) =[x (t) Pa+ (t) «Pr(t) =
xy(t) = Pr(t) is truncated by a rectangular window of width o1", where « is not an integer.
Hence we have either o«T' < T or oT > T, and the window functionisde ned by

(8.15) wrea (1)

{1’ fort € (=aT/2,aT/2); where « is not an integer

0, for|t|>aT/2,

Without loss of generality we assumethat oo < 1, and that there are L samplesin the windowed
sequence; i.e., the truncated sequence spans the duration LAt = oT'. Consequently, when the
DFT isapplied to the truncated L samplesde ned by the product % (¢)-wreut (), the results are
samples of the transform given by

f{y?(t)'wfec’t(t)} = }—{y?(t)} * F {wreet ()}
=F{ar(t)*Pr(t)} * F {wrect(t) }

= [ XiD-Pryat)] o [T
50

transform of periodic sequence y7 (¢)

= r sinwaT(f—ﬁ)
=X ex(g) Trpog 0 ot

r=—00

transform of truncated L samples
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If we sample the Fourier transform by the impulse train P,/ (t), we obtain the transform
pair:

periodic extension of 2 (t)

[y7 (1) - wrect(t) ] #Por (1)
—_——

zr(t): L samples

sampling Z; (f) atintervalsof A f = 1/(aT)

R ry sinwaT (f — &)
T T:Z_OOQXI (f)m Pryar(f)
Z1(f): transform of z(t)
(8.17) 1

ol
m=—0o0 r=—00

< [ & r\ sinmad' (f — 7 m
o 2| 3 e () R - )

Z1(f)

1 o0 [ o

i £ [ £ om0 2

raT ( m
m=—o0 Lr=—o0

valueof Z;(f) a f = m/(aT)

m
—At Z L (LAt)é(f—m>, coT = LAt

m=—0o0

What we have obtained above is the Fourier transform of the periodic sequence de ned by the
convolution product z;(t) x P, (t). Because z;(t) * P, (t) doesnot represent the original pe-

riodic sequence y} (t), we expect discrepanciesin the frequency domain as well. In particular,
we note the following:

e sinwal (ﬂ — %) =sinm(m —a-r) Z0foralintegerr # 0. (0 < o < 1)
o thefrequency content has been distorted:

o0

m r sinm(m — a-r) m
(8.18) %<LAJ T;%fxfcwu> ﬂm—am>7““<fzi

e using the DFT on L sampleswe can only obtain the distorted transform values:

1
) r= 7 7 - S S ’ =
(8.19) U, LZ <LAt) E ThWy T<r<rt, L=27+1

o the periodic extension of the L signal samplesin the time domain does not represent the
original periodic sequence because

(8.20) Yy = w1(t) % Pr(t) # 21(t) % Par(t).

8.4 Windowing a General Nonperiodic Sequence

Recall that in Section 8.1 we performed the windowing of a nite sequencex;(t) by w(t) for
DFT computation. To perform the task on an in nite sequence x;(t), we only need to replace
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the transform pair w. () <= J(f) used in Section 8.1 with a rectangular window of nite
width T:

6.21) e (t) = {17 fort € (=T/2,T/2);

0, for|t|>T/2,

and its transform:

(8.22) W(f) = F{wea(t)} =T [Sin L) } .

nTf

Assuming that T = N At, where At denotes the predetermined sampling interval, the Fourier
transform of the truncated /V-sample sequence becomes

(8.23) Ur(f) = Flar(t) - wrea(t)} = X1(f) * W(f) = X1(f) * T [

N samples

sin7T f
«Tf } '

ripples are added to X7 (f)

Therefore, the DFT of the N samples computes the values of U;(f), and Equation (8.1) may
be used on U;( f) in exactly the same manner:

1 r 1 &
(8.24) U, = =U; (—) == Y mwy™ —n<r<n, N=2n+1
N\T) TN,

=—n

As has been donein every case, using the IDFT we obtain

(8.25) T = Z U-wk, —n<k<n, N=2n+1.

Asaways, wehave U, x = U, and z;.y = x1; hence, the DFT and IDFT results represent
two periodic sequences which form a Fourier transform pair (regardless of the fact that the N
samples were truncated from a nonperiodic signal):

sampling U
periodic extension of N samples pling Uz (/)

(27(t) - wiea(t) | * Pr(t) <= %U;(f)-Pl/qr(f), where T = NAt,

A S (E)s-5)

Since a nonperiodic signal of in nite duration must be truncated before we can apply the
DFT, the resulting frequency distortion cannot be completely eliminated. To improve the ac-
curacy and resolving power of the DFT, we need to study further the roles played by various
window functions in a quantitative manner. It turns out that a tapered window can truncate
and modify the sampled signal values at the same time; the latter role is particularly important
when jump discontinuities are caused by abrupt truncation. We shall examine the properties of
windows in the next section.

(8.26)

8.5 Frequency-Domain Properties of Windows

In order to compare different windows without bias, they are assumed to have the same length
T = NAt, where At denotes the sampling interval, and N = 2n + 1 represents the number
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of samples in the windowed signal sequence. The actual length of each window can be set
according to the application and the resolution required. In this section we shall characterize
each window based on the properties of its Fourier transform W ( f), because the severity of
frequency distortion, i.e., the extent of smearing and leakage, caused by the convolution of
W (f) and the signal s Fourier transform can be aleviated if W (f) has good properties.

8.5.1 The rectangular window

Recall the Fourier transform of a rectangular window given by

627)  Wialf) = Flua(t)} =T {%} T {%] — Tsinc(1),

where A = Tf = (NAt)f. Sincethelength T is x ed for all windows in this section (and it
is canceled out when convolving with the transform of the signal sequence), it issuf cient to
consider the normalized transform

sin(m\)
A

Wieat(A) = sinc()) =

whose magnitudeis plotted in Figure 8.1, where we identify the mainlobe as the central peak
between A = —1 and A = 1 th e nearest two zeros of Wrmt(A) surrounding the origin. The
cooresponding two zeros of Wit (f) are f_1 =—1/T and f; =1/T. Note that the maximum
height of the mainlobe in the normalized transform Wm()\) isnow one. In Figure 8.1 we also
identify the sidel obesto be those between two adjacent zeros of Wit (M), namely the peaksand
valleysbetween A=k and A=k+1, and they correspondto f, = k/T and fy4+1=(k+1)/T
the neighboring zeros of Wiect(f).

To illustrate the disproportionally small sidelobes at high frequencies, we plot the magni-
tude of Wrect(/\) using logarithm representations in Figure 8.1. Customarily, the logarithm of
the normalized magnitude spectrum

log1o|Wreat(V)]
isfurther scaled by 20 and expressed as
(8.28) 20-log, o|[Wrect(A)| d ecibel units or dB.

Since the maximum height has been normalized to one, we have 0 < |[Wiet(A)| < 1, which
leads to zero or negative decibel values. For example, we obtain

0dB = 20-log;, 1 a\=0;
—20dB = 20-log;;, 0.1 for a10-fold reduction in magnitude,
—40 dB = 20-log;, 0.01 for a100-fold reduction in magnitude;

and so on.

To measure how Wrect(/\) deviates from the ideal unit impulse §(\), we need to quantify
the width of the mainlobe as well as the relative magnitudes of the sidelobes. The narrower the
mainlobe and the lower the sidel obes (compared with the mainlobe), the closer the transform
f/Iv/m()\) approximates §(A). The following quantities are commonly used to describe the
spectral characteristics of a rectangular window:
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Figure 8.1 The rectangular window and its magnitude spectrum.

Rectangular window Normalized spectrum | W(L) |

1.2
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<— length T— :
[0 I IR e ....... AP 0

=T/2 AO T2 -8 —é —4‘1 —é 0 2 4 6 8
T = NAt A=Txf
Normalized |W()| in dB units
T T 3 T T

-13 dB sidelobe level

dB

ol mainlobe
width

-— >

1. The 3-dB bandwidth of the mainlobe in the graph of 20-1og10|Wm(/\)|: This quantity
measures the width of the mainlobe on either side of the origin when its height is reduced
I
to 75 = 0.707, because
—3dB ~ 20-log;, 0.707.
By solving Wrect(/\) = sin(wA)/(wA) = 0.707 for unknown )\, one obtains the 3 dB
bandwidth Asgp &~ 0.443 or fagy = A\/T = 0.443 /T, where T = NAt.

2. Thehighest sidelobelevel in the graph of 2010g10|W,m(A)|: For the rectangular window,
its spectrum in Figure 8.1 shows that the sidelobe level reaches as high as —13 dB at
A=15(or f =1.5/T):

(8.29) 20-logo|Wreat(1.5)| ~ —13 dB.

8.5.2 The triangular window

Thetriangular window is also known as the Bartlett window. A triangular window of length T
and unit height isde ned by

(8.30) wi (£) = {1 —2Jt|/T, forte (-T/2,T/2);

0, for|t| > T/2.

Note that a triangular window can be obtained by convolving two identical rectangular win-
dows of half length. If we requirethetriangular window to have certain height, the convolution
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product can be scaled accordingly. We can thus express a triangular window of length T and
unit height as

(8.31) wyi(t) :% Wrect () * Wrect(?) |,

where the rectangular window et (¢) and its Fourier transform Wieat (f) areobtained by using
T/2 toreplace every occurrence of length T in Equations (8.8) and (8.27), i.e.,

1, forte (-=T/4,T/4); . T [sin(éﬂl‘f}}
”rect(f) =5 1 .
§7TTf

8.32 Wreat(t) = =
(8.32) () {o, for [¢| > T/4. 2
By invoking Convolution Theorem 6.1, we obtain the Fourier transform of the triangular win-
dow as the square of Wi (f):

(8.33) Wai(f) = Fluw(t)} = | Weea(H) W )] = 5 | =105

2 }ﬂr[wm]

Before we quantify the properties of W (f), we normalize it so its mainlobe has unit height,
and we obtain

. 1 2
(8.34) Wi () = l%} —sinc (1)), where A=Tf = (N AL)f.
2

In Figure 8.2 we compare the magnitude spectrum |Wm (M| of the triangular window with
that of the rectangular window. While the triangular window shows lower sidelobe levels, its
mainlobe is wider than that of the rectangular window. Quantitatively, we obtain

(8.35) 20-log,o|Wei (0.64)| ~ —3 dB;  20-log,o|Wii(3.0)] ~ —27 dB.

Hence, the triangular window is characterized by the 3-dB bandwidth Asdo ~ 0.64 (or fag ~
0.64/T) and the highest sidelobe level of —27 dB. Observe further that |Wyi(\)| has zeros at
A=+2, 44, - -, and that the peak of its r st sidelobe reaches —27 dB at A=3.0.

8.5.3 The von Hann window

A von Hann window of length T and unit height isde ned by

0.5+0.5c0s 2L, fort € (—T/2,T/2);

(8.36) Whann(t) = {07 for |[t]| > T/2.
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Figure 8.2 The triangular window and its magnitude spectrum.
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Its Fourier transform is given by
Whann(f) = F{wham(t)}

> 2t .
:/ {0.5+0.5C08%:| e I It gy

— 0o

T/2
—0.25 / (2679201 4 =2 1/DE - =21/ gy
T/2

(8.37) sin7Tf

1 T _ 2 T
= 0.5T- +0.25"]I‘.bm(7r f-m) +0.25T.M

nTf aTf—mn aTf+mn
_ p.sin(rTf) [% 025 025 }
™ Tf 1-Tf 1+4+Tf
_Tsin(w’]l‘f) [ 0.5 ]
aTf 1-T2f2|"

We denote the normalized 2 Whann( f) by

sin(7\)  sinc(\)

(838) Whann(/\) = 7TA(1 . AQ) - 1— )\2 ’

where \=T f = (NAt) f.
Quantitatively, we obtain

(8.39) 20-10g ;0| Whamn(0.721)] & —3 dB;  20-1og; | Whamn(2.5)| ~ —32 dB.

Therefore, the von Hann window s 3-dB bandwidth is Azqp & 0.721 (Or f3qp = 0.721/T), and
its highest sidelobe level is —32 dB reached at A =2.5 or f =2.5/T as shown in Figure 8.3.
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Observe Lgrther that the zeros of Wham(/\) occur at A = £k for integeLk > 2. For A = +1,
because Whan(£1) = 0/0 isin an indeterminate form, we establish Whan(A) = 1/2 in the
limitas A\ — %1 by applying L Hospital srule:

— fim sin(7\) i &8 (mA) 1
Tl A (L= A2) asx1 1—-3X2 0 27

21, Whem(2)

Hence the height of the mainlobe has dropped 50% at A= 1. Because 20 log; % =—6dB, we
have obtained the 6-dB bandwidth A\gq, =1 for the von Hann window.

Figure 8.3 The von Hann window and its magnitude spectrum.
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8.5.4 The Hamming window

A Hamming window of length T and unit height isde ned by

0.575+ 0.425 cos 22t fort € (—T/2,T/2);
(840) wham(t) :{ T ( / / )

0, for|¢| >T/2.
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Its Fourier transform follows directly from our derivation of W ( f) for the closely related von
Hann window:

Wham(f) = f{wham(t)}

o omt]
:/ [0.575—1—0.425(305%] eIt gy

— 00

sinTf
= 0.575T- 0.2125T-

sin(zwT f—m) sin(7T f47)
ST, 0T
sin(7Tf) [0.575 02125  0.2125
' {Tf 1—’Jl‘f_1+’]1‘f]
T. sin (7T f) {0.575 - 0.15T2f2]

aTf 1—T2f2

=T

™

Again we normalize Wham(f) so that its height is reduced to unity, and the result is denoted by

(842 Wham(N)

1 sin(w)) [0.575 —0.15)2

= 0B T ], where A = Tf = (NAt)f.

Quantitatively, we obtain
(8.43) 20-10g ;0| Wham(0.608)| ~ —3 dB;  20-log,o|Wham(3.5)| ~ —35 dB.

Therefore, as shown in Figure 8.4, the Hamming window s 3-dB bandwidth is Azqy ~ 0.608
or fagp ~ 0.608/T, and its highest sidelobe level is —35 dB, which is the peak of the second
sidelobereachedat A = 3.5 or f = 3.5/T.

8.5.5 The Blackman window

A Blackman window of length T and unit height is de ned by

0.42 + 0.5cos 2t + 0.08 cos 42, fort € (—=T/2,T/2);

(8.44) Wpkm(t) = {O, for [¢| > T/2.

Its Fourier transform follows directly from our derivation of Wham(f) for the Hamming win-
dow in the last section:
Whin(f) = F{wokm(t)}

o0 ot Art] .
:/ {0.42—}—0.5608%4—0.08605%] e~ 127t gy

— 00

(8.45) _ . sin(rTf) [0.42  0.25 0.25 0.04 0.04
- [T—f 1-Tf 1+Tf 2-Tf 2+Tf

sin (aTf) | 1.68—0.18T2f2

CaTf | (1-T2f2) (4 - T252)

™

Thefunction Wim(f) isthen normalized to have unit height at the origin. We denote the result
by

(8.46)  Whm(N)

_ 1 sin(a)) | 1.68—0.18)°
S 042 A | (1-A2)(4-N2)

] , Where A =Tf = (NAt)f.



252 CHAPTER 8. THE DFT OF A WINDOWED SEQUENCE

Figure 8.4 The Hamming window and its magnitude spectrum.

The Hamming window 1 Normalized spectrum |W(X)|
1t :
08 mainlobe |:
@ @ =-°r :
E EP! I 5
= c -
= :
S S 0.4l .
© S sidelobes
0.2+
of T R ol
-T2 0 T2 -8 -6 -4 -2 0 2 4 6 8
(T=NA?Y) A=Tx f
Normalized |W(L)| in dB units
0 T T T T T T T T
o0l -35 dB sidelobe level |
_40 | -
m
©
-60 :
mainlobe
801 width
-100 | | | | | | \: | | | | | | |
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
A=Tx f
We now have

(8.47) 20-10,0| Whim(0.82)| = —3 dB;  20-log, | Wikm(3.5)| ~ —58 dB.

Accordingly, as shown in Figure 8.5, the Blackman window s 3-dB bandwidth is A3qy = 0.82
or fap ~ 0.82/T, and its highest sidelobe level is —58 dB, which is the peak of the rst
sidelobereachedat A = 3.5 or f = 3.5/T.

8.6 Applications of the Windowed DFT

For easy reference in this section, we summarize the performance characteristics of the ve
windows discussed in the last section in Table 8.1.

To illustrate how windows can impact various DFT-based applications, we shall use differ-
ent windows in the task of determining the sinusoidal components of an unknown signal z(t)
from a sequence of its samples. Since the signal underlying the given samplesis unknown, we
may encounter one of the scenarios discussed bel ow.

8.6.1 Several scenarios

Thesignal z(t) is periodic and band-limited, but we do not know its period. Let 7" denote the
signal sunknown period, and let z(t) be represented by a nite Fourier series:

(8.48) 2(t) = > Cpel™T,

k=—n
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Figure 8.5 The Blackman window and its magnitude spectrum.
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Table 8.1 Spectral characteristicsof vewindows (A = Tf = (NAt)f).

Window of Fourier transform Mainlobe Sidelobe Zeros of Fourier

length T: w(t) | W(f) = F{w(¢)} | 3-dBwidth | peak level transform W ()
Rectangular T-Wieat()) | Aawp=0.443 | —13dB | A==41,+2, 43, --
Triangular 0.5T- Wi (\) Map=0.640 | —27dB | A\=42, 44,46,
von Hann 0.5T Wham(A) | Asp=0.721 | —32dB | A==42,+3,+4, .-
Hamming 0.575T - Wham(A) | Aagp=0.608 | —35dB | A=+2,+3, 44, .-
Blackman 0.42T Wom(A) | Aagp=0.820 | —58dB | A==+3,44,+5,.--
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Our objective isto determine the numerical value of fi, = k/T for each sinusoidal component
with Cy # 0.

Because we do not know the period 7", we cannot choose the length T of the rectangular
window to be one or multiple full periods; we must assume that the sampled interval T =
NAt#mT for any integer m > 1. Since the effect of aliasing is caused by the sampling rate
R =1/At adone, we may assume, without loss of generality, that the signal has been sampled
above the Nyquist rate in this study, which means that we have

(8.49) 2fmw=2fn:2?"<é.

Recall that

@50  X()=Fla() = kz Cod (71— ) wherels] < 7 < 5
and it follows that 7

@51) Xih) = Falt) Pt} = 2> x (1= 5.

which represents the shifted replications of the entire X (f) over intervals of length 1/A¢t.
Because X (f) consists of 2n+ 1 impulses weighted by C}, for —n < k < n, and they spread
over the distance of 2 fmax < 1/At, thereis no overlap when the entire group of 2n+1 impulses
are replicated over intervals of length 1/ At to form the periodic X;(f). Hence X;(f) isa
periodic sequence, with 2n+ 1 weighted impulses per period. Again, the period of X;(f) is
the sampling rate R=1/At, and we have X (f)= ;- X (f) in the central period, i.e.,

n k
Xilh) = 2 X0 =57 3 € (£ 1) forldl < g
8.52 =
( ) 1 <« a-k\ .
= Ek;nck-a (f — T) if T=aT.

Observe that when T=«-T and « is not an integer, - k is not an integer, either.

Now, suppose al Cj, s are equal to zero except for C35#£0, C+y #0, and Cy,, # 0. How
could we detect them and obtain the numerical valuesof f3=3/T, f4=4/T,and f,,=n/T?
Remember that we know neither the value of k& nor the value of T', so what we shall try to
obtain are the numerical values of

3a
T )

4o n-o
f4a:Ta andfnazia

f3a: T

where T = o7, with both o and T' representing values unknown to us. For example, if it
happensthat T =2.2 T, then our task isto detect the presence of

6.6 8.8 2.2n

a= T a = T and no— "
f3 = fa T f =

from processing the N samples collected over the duration T = N At.
To proceed with such atask of frequency detection, weassume, at  r<t, that N sampleshave
been truncated from the sampled signal by a rectangular window of length T = NAt = oT,



8.6. APPLICATIONS OF THE WINDOWED DFT 255

andthat T > T'. Recall that
truncated sequence

——
Flar(t) - wea(t) } = Xr(f) * Wre(f)

_ lit zn: Cy-5 (f—o‘ﬁ,k)] * Wrea(f)

k=—n

k=—n

T o : .
:Ekz Cp- | M T

1 < -k
(8.53) == D O Wi (f - %)
k

=N z": Cr-sinc(Tf — a-k). (- T=NAt)

k=—n

For convenience we associate the factor 1/N with the left-hand side, i.e., we de ne

(8.54) Ur(f) = N Flor(t) - wiea(®)) = 3 Cisine (Tf — a-k).

k=—n

Because X (f) repeats the 2n+ 1 weighted impulses in each period, we obtain U;(f) =
+X1(f) * Wrea(f) by replicating and summing up sinc (T f — a- k), multiplied by Cy, at
locations f =a-k/T. Sinceal Cy, s are zero except for C13, C14 and Cy,,, we obtain the one-
sided spectrum of U;(f), as shown in Figure 8.6, for = 2.2 and n=11. Observethat U;(f)
has local maximaat f =6.6/T, 8.8/T, and 2.2n/T. Hence, by detecting the local maxima
of Uy (f) we aso determine the numerical values of f (at which each local maximum occurs),
and they represent the frequencies of the sinusoidal components present in the sampled signal.

Observe also that U;(f) is nonzero within all mainlobes and sidelobes present over the
entire spectrum. Since the mainlobe of the Fourier transform of a rectangular window of
length T covers a subinterval of 2/T centered at the location of each impulsein X;(f), we
see that it is desirable to choose T long enough so that any neighboring impulsesin X;(f)
are separated by more than 2/ T, otherwise the two adjacent mainlobes overlap and will smear
out (and merge) the closely spaced local maxima. Using our example, when T = 2.2-T,
the distance between 3/T" = 6.6/T and 4/T" = 8.8/T is 2.2/T, and there is no overlap of
mainlobes as shown in Figure 8.7; if T = 1.5-T, then the distance between 3/7T = 4.5/T and
4/T = 6/T is 1.5/ T, and the two adjacent mainlobes will overlap as shown in Figures 8.8
and 8.9. It is clear that when asigni cant portion of the two mainlobes overlap, we won t be
able to distinguish two closely spaced local maxima if they are of similar strengths. Recall
that the mainlobe width varies with both the length and type of the window. Therefore, if
we replace the rectangular window (which has the narrowest mainlobe) with a data-weighting
window (with increased mainlobe width), the reduction of frequency resolution is expected
unless we increase the length of the data-weighting window to compensate for that.

Assuming that thelocal maximaare distinguishablein U; (f), we still have to address how
to obtain them. Recall that the DFT computes the sample values of U;(f) at fr = k/T for
integer —n < k < n: for example, as shown in Figure 8.10, the local maximum at f =
6.6/T falls between fs and f7; the local maximum at f = 8.8/T falls between fs and fj.
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Figure 8.6 The one-sided spectrum of U;(f) = % F{z1(t) - wrex(t)}.

Consequently, if we do not proceed with further search of local maximum between fs and f;
(by chirp Fourier transform to be introduced in Chapter 9), either fs or f would be our best
estimate of f = 6.6/T, and in either case the error isbounded by A f = 1/T. Itis clear that
the longer the sampled duration T or the larger the number of samples N (because T = N At),
the smaller the error in the estimated frequency detected by the DFT.

A data-weighting window can play an important role in frequency detection when we need
to resolve large differencesin signal amplitudes. Since the rectangular window has high side-
lobe levels, a weak local maxima of U;(f) may not rise above the frequency leakage from
the sidelobes of a strong component. For example, the peak sidelobe level of the rectangular
window is —13 dB, which represents the reduction in magnitude from 100% to 22%; there-
fore, a weak local maxima with magnitude being lower than 22% of the strong component
is not distinguishable within the sidelobes of the latter. Note that when X;(f) is aweighted
impulse train, the sidel obes represent additional frequency contents (which were not presentin
the original signal), and the higher the sidelobe levels the more likely aweak local maximum
is masked. The sidel obe leakage can be reduced if a suitable data-weighting window presented
in last section is used, and the Fourier transform of the weighted or so-called windowed
sequenceis given by

windowed sequence

1 f_/\*
Ur(f) = 7 Az1(t) - wname(t)} = 7 X1(f) * Whame(f)
(8.55)

In Figure 8.10 we show the sidel obe |eakage caused by a rectangular window. In Figures 8.11

we show the Fourier transform U; (f) = & F{z1(t) - wname(t) using four different windows of
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Figure 8.7 Non-overlapped mainlobes and separate local maxima.
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Figure 8.8 The merging of local maxima due to overlapped mainlobes.
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Figure 8.9 A local maximum is smeared out by overlapped mainlobes.
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Figure 8.10 Vaues of U;( fi) obtainable by the DFT, where . = k/T (T = 2.2T).
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length T, where z;(t) are sampled from z(t) given by

67t 8wt 227t
Z(t)z1.2COS%+1.8COS%+O.2COSTW,

and the window length T = 2.27". In Figure 8.11 we illustrate that a weak local maximum
masked by the high sidelobes of arectangular window can be unmasked when therectangular
window is replaced by atriangular window, a von Hann window, or a Blackman window (of
the same length). Observe that while the Blackman window has the lowest sidelobe level, it
has the widest mainlobe and the smearing effect caused by that is also evident in Figure 8.11.

In Figures 8.12, 8.13, 8.14, and 8.15, we plot the one-sided discrete spectrum of z;(¢) -
wname(t). 1N each case the spectrum we show consists of the computed DFT coef cients
{Zv,Z1,...,Za9}, whichcomefromaset of N = 58 DFT coef cients{Z_ogs...,Zo,...,Z29}
we have obtained by performing the DFT on 58 samples of the windowed sequence z;(t) -
wname(t). The samplesof z(t) are truncated and weighted by each window de ned on theinter-
val (—-T/2,T/2] = (-1/2,1/2]. Thegraphsof the one-sided Fourier transform U (f) arealso
drawn in dotted lines in Figures 8.12, 8.13, 8.14, and 8.15. We demonstrate that in each case
the numerical values of the DFT coef cients are samplesof U;(f) = +F{z1(t) - wname(t)}
taken at f = k/T for integer k. Recall that the window length T = 2.2T"; hence, the sampled
sequence does not span an integer number of periods of z(¢), and the local maximamay occur
between the computed DFT coef cientsas showninthese gures.
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Figure 8.11 Fourier transforms of z;(¢) weighted by four different windows.
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Figure 8.12 The computed DFT of z;(t) truncated by arectangular window.
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Figure 8.13 The computed DFT of z;(t) weighted by atriangular window.
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Figure 8.14 The computed DFT of z;(¢) weighted by avon Hann window.

1
‘o
0.8 ENE Computed DFT coefficients 1
o |: form the discrete one-sided
11 spectrum of the windowed
06 . : sequence zl(t) . whann(t). |
. :

0.4 : : .
0.2 : 4
0¢ T .-e-e------?TT.--
o005 3 S e 000000 o—o

Note: The computed DFT coefficients are scaled by the same factor that
~0-21" normalizes the Fourier transform of the von Hann window to unit height.
| | | | | | | | |

0 3 6 9 12 15 18 21 24 27




8.6. APPLICATIONS OF THE WINDOWED DFT 263

Figure 8.15 The computed DFT of z;(¢) weighted by a Blackman window.
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8.6.2 Selecting the length of DFT in practice

From our discussion above, the length of thewindow T= N At also de nesthe DFT of length
N. This would be the case if computing the N samples of U;(f) spaced by 1/T serves our
purpose. However, in practice, this may not be the nal step, and we may want to change
the length of DFT for a number of reasons. However, let us rst say that changing the DFT
length to suit a particular FFT implementation is not our major concern here, because, as will
be shown in Part I of thisbook, FFT algorithmsfor arbitrary composite N or prime N are all
available, so the use of FFT imposes no restriction on the length of DFT. The need to change
the DFT length may arise under the following circumstances:

1. We recall the usage of zero padding from Section 4.6 in Chapter 4: when the DFT N-
sample spectrum is too sparse for us to visualize a continuous analog spectrum U (f),
one may wish to decrease the spectral spacing A f on the frequency grid. Recall that
Af = 1/(NAt); hence, Af can be reduced if we enlarge N by adding zeros to the
signal samples.

The method and effects of zero padding the truncated signal (before the DFT) were
studied in detail in Section 4.6.1 in Chapter 4 (with examplesillustrated in Figures 4.7,
4.8, and 4.9 and Table 4.3), and we show the same effects of zero padding the win-
dowed (truncated and modi ed) signal sequence in Figure 8.16, where the plot on the
left shows the 29 DFT coef cients of the 58-sample sequence z;(t) - wy (t) before zero
padding, and the plot on the right shows the effect after the sequenceis doubled by zero
padding. Observe that by zero padding we do not change U;(f); what we obtain are
additional sample values of the same U, ( /), and the additional data points are obtained
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by interpolating between the original N sample values.

Figure 8.16 The effects of zero padding a windowed sequence.
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. In case we can re-sample the signal, we may want to experiment the DFT on longer

sample sequences for better frequency resolution, because the mainlobe width of any
chosen window isinversely proportional to the duration of the signal.

In Figure 8.17 we compare the two different U (f) = \ X1 (f) * Wii(f) obtained from
using triangular windows of lengths T = 2.27 and T = 4.47T for the same examplein
Figures8.13. Recall that we computethe DFT coef cientsof z;(¢)-wyi (t) using window
length T =2.2T", and they are shown to be the sample values of the corresponding U; ( f)
at f = k/T in Figure 8.13. Consequently, when we double the length of the triangular
window, we not only halve the spacing A f on the frequency grid, the computed DFT
coef cients are actualy samples of a different U;(f), and we illustrate the improved
DFT resultsin Figure 8.18.

. In case we can re-sample the signal at different sampling rates, we may want to exper-

iment DFT on longer sample sequence obtained over the same duration T at increased
sampling rate (or decreased sampling interval At) until there is no change in the spec-
trum. Thisisoneexperimental way to make certain that the sampling rateis high enough
to eliminate the aliasing effect. In Figure 8.19 we compare the DFT results of z;(t)
weighted by atriangular window of length T = 4.4T" before and after the sampling rate
isincreased to satisfy the Nyquist condition. Observethat because the sampling duration
T =4.4T does not change, we have doubled the number of samples by doubling the sam-
pling rate; while the spacing A f = 1/T on the frequency grid remains unchanged, the
range of frequencies we can detect is extended because fmax = 1/(2At) doubles when
the sampling interval At ishalved.

. Recall that the error associated with the frequency measurement using the N-sample

sequence is bounded by the spacing A f = 1/(NAt). While this error bound may be
reduced to Af/N = 1/(N2At) using a N2-sample sequence, it may not be ef cient
(and it is not necessary) to compute the DFT of the whole N2 sample sequence. It turns
out that by using the chirp Fourier transform (to be covered in Chapter 9, Section 9.3),
instead of computing V2 samples, we can compute only N samples of U;(f) over a
chosen segment of length 1/(NAt), assuming that the particular segment is known to
containthelocal maximum of interest to us. By searchingthe N samplesover 1/(NAt),



8.6. APPLICATIONS OF THE WINDOWED DFT

Figure 8.17 Improving U (f) = + F{z1(t)-wyi(t)} by changing window length.

1

0.8

0.6

0.4

0.2

11 Fourier transform of windowed

sequence zl(t) . wm(t):

Ul(f) obtained using triangular window
of length = 2.2T:

Ul(f) obtained using triangular window
of length = 4.4T:

Figure 8.18 The computed DFT of z;(t)-wyi(f) after doubling the window length.
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1 T

Figure 8.19 Improving frequency detection by doubling the sampling rate.

1 T T T

o8t The effect of sampling 1 st Improving frequency
below the Nyquist rate: detection by doubling

osf a high frequency has 1 o sampling rate to satisfy
been aliased into lower the Nyquist condition.

oat frequencies. 1 o (Window length = 4.4T)

0.2f 4 o2f

ki L il 11

Note: There is no change in the DFT spectrum
-o2r 1 %1 if the sampling rate is doubled again.

L L L L L L L L L L L
0 3 6 9 12 15 18 21 24 27 0 3 6 9 12 15 18 21 24 27

we obtain a more accurate local maximum, with error bound reduced to 1/(N2At) as
desired.
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Chapter 9

Discrete Convolution and the DFT

In this chapter we shall introduce rst the linear convolution of two nite sequences, which, on
the one hand, allows us to approximate continuous convol ution using sampled function values,
and on the other hand, is algebraically equivalent to the multiplication of two polynomials.
Because we are familiar with the operations involved in multiplying polynomials of arbitrary
degrees, the algebraic de nitio n of linear convolution is easy to understand and verify by con-
structing examples in this context. However, for diverse applicationsin signal processing and
system analysis, it is essential that we interpret the de nition as the discrete counterpart of the
continuous convolution. For computational ef ciency we must also learn how to turn the lin-
ear convolution into a DFT-based periodic convolution, because the discrete cyclic convolution
theorem (to be given in this chapter) tells usthat a periodic convolution can beimplemented by
the DFT, and we aready know that DFT can be ef ciently computed by the fast Fourier trans-
form (FFT) algorithms. The periodic convolutionis also useful in computing the chirp Fourier
transform, which computes a partial DFT in the neighborhood of a particular frequency in
order to measure it to greater accuracy a topic to be covered in Section 9.3 in this chapter.

9.1 Linear Discrete Convolution

Because of its close connection to the continuous convolution, the linear discrete convolution
is also referred to as the regular or conventional discrete convolution in signal processing
literature.

9.1.1 Linear convolution of two finite sequences

We shall begin with areview of the continuous convolution of two  nite-duration continuous-
time signals. In Figure 9.1 we illustrate again the convolution of two signals ¢(¢) and h(t) as
de ned by Equation (6.1) in Section 6.3 of Chapter 6, which we restate herefor easy reference;

(9.) u(t) = g(t)«h(t) & /OO g(\)-h(t—N)d\, teR.

— 0o

We indicate in Chapter 6 that we will re-examine and discuss further the convolution steps
illustrated in Figure 9.1 when we study how to obtain numerical approximation to the convo-
[ution result in this chapter; we now explain the illustrated process step by step below.

267



268 CHAPTER 9. DISCRETE CONVOLUTION AND THE DFT

Figure 9.1 The stepsin performing continuous convolution u(t) = g(t) * h(t).
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Step4. Samplevaluesof u(t) at = —0.5,¢ = 0.5, and t = 1.5 areequal to
the th;\ee shaded aress:

A A




9.1. LINEAR DISCRETE CONVOLUTION 269

Step 1. Choose one function to be stationary. In Figure 9.1 we let g(¢) be the stationary
function. By renaming the variable ¢ as \ we obtain g(\) in the integrand.

Step 2. We rst obtain 4(\) by renaming the variable ¢ as A, then we obtain the moving
function h(—\) by folding h(\) with respect to the ordinate. Observe that the folded
function h(—2AX) is nonzero for —t, <A < —t, =0 sothat 0 =¢, < —\ <, as per the
origina den ition of A(t). (Theseresultsremain valid if ¢, #0.)

Step 3. For each value of ¢, we obtain shifted h(¢ — \) by moving h(—\) so that its origin
A=0 ispositioned at ¢, which dictates that theright end of 2.(—\) ispositioned at ¢ — ¢t,,.
(Thereis no restriction on the value of ¢,.)

Step 4. For each value of ¢, the convolution result «(¢) can be obtained analytically (if possi-
ble) or by numerical integration of (9.1) over the niteinterval where g(\) and h(t — \)
overlap. In either case, the value of u(t) represents the area under the curve of g(\)-
h(t — X\) over the n iteinterval in which the two overlap.

The continuous convolution result «(t) = g(t) = h(t) isnonzero for —1 < ¢ < 2, which is
shownin Figure 9.2.

Figure 9.2 Theresult of continuous convolution u(t) = g(t) * h(t).
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With the steps of continuous convolution laid out above, we can now introduce the linear
convolution of two sampled signals {go, g1, - - , gn_1} @d {ho, h1,- - - hx_, } inastraightfor-
ward manner. The following steps areillustrated in Figure 9.3 for N = 5:

Step 1. Choose one sequence to be stationary. In Figure 9.3 we choose {go, g1, ,gn_1} 1O
be the stationary sequence.
Step 2. We obtain the moving sequence {hy_., hy_s, -, ho} by reversing the elementsin

the given sequence.

Step 3. Beginning with ¢ =0, we obtain the linear convolution result ug = go - ho by overlap-
ping the right-most element i, of the reversed sequence with the rst element g, of the
stationary sequence.

For each value 0 < ¢ < N —1, we move hq to overlap with g,, then compute the con-
volution result u, by summing the pairwise products of all overlapped elements. Note
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Figure 9.3 The stepsin performing linear discrete convolution {us} = {g¢} * {he}.
Step 1.

Choose {g¢} = {90, 91, 92, g3, g4 } asthe stationary sequence.
A

005 1t
Stq) 2. Re/er%{h()7 hi, ha, hs, h4} to obtain {h4, hs, ha, hl,ho} = {09,077 05,03,01}

A A

1+ ha ha *1
! hs T 5 ‘
© hg : > “he
D ha : : i

T )] LT

0 o5 1t -1 -05 0 t

Step 3.  Computing uo:

g1 g2 g3 g4

90
ha h3 ha h1 hO ‘ ug = goho =0.1
A

Step4. Computing w1, uz, -

Lo, U8

go g1 g2 g3 g4
ha h3 ha h1 ho

u1 = goh1 + g1ho =04

[0 91 9 g 61|

‘h4 h3 hz hl hO ‘
A
u4 = goha + g1hz + g2h2 + gsh1 + gaho = 2.5

go g1 g2 g3 ga

u7 = gsha + ga h3 = 1.6 ‘ ha  hs ho h1 ho ‘
A
go g1 g2 gs g4 ‘
us = g4h4 =0.9 ‘ h4 hg h2 h1 ho ‘




9.1. LINEAR DISCRETE CONVOLUTION 271

that the product u,At, where At denotes the spacing between samples, approximates
the area under the curve of g(\) - h(t — \) over the sameinterval by composite midpoint
rule. Hence, by linear discrete convolution, we compute one value of the corresponding
continuous convolution each time,

Step 4. For eachvalue N -1 < ¢ < 2N —2, we continue to move the reversed sequence one
position to theright, and compute u, by summing the pairwise productsof all overlapped
elements. (As explained in Step 3, each product u,/\t approximates one value of the
continuous convolution.)

The discrete convolution result {us} = {g¢} * {h¢} isasequence of length 2N —1, which is
shown in Figure 9.4. In the same gure we aso compare the sequence {u; At} directly with
the continuous convolution u(t) = g(t)*h(t) when At =0.2, and we show in Figure 9.5 the
improvement in the discrete approximation when At isreduced to 0.1 and 0.05.

Figure 9.4 The result of discrete convolution {uy} = {gx} * {hw}.

A A

1% x.x- 9

0 1 0 1
N =5 (At=0.2) N=5(At=0.2)

Continuous convolution

D R Approximation by

discrete convolution

1 2
2N-1=9 (At=0.2)

We comment further on the nature of linear discrete convol ution below.

e The agebraic equivalence of linear discrete convolution and the multiplication of two
polynomiascan be easily veri ed. If welet

Gi(z) = go + g1 + g22® + g37° + gua* = 1 + 2 + 27 + 2% + 2%,
Hy(x) =ho + hiz + hox? 4 hgz® + haa* = 1+ 2z + 322 + 42 + 52,
then we obtain their product as
Us(z) = (1 + 2422 + 23 + 2%) x (1 + 2z + 322 + 42® + 52?)
=14 3z + 622 + 1023 + 152* + 1425 + 122° + 927 + 528

2 4
= Ug +UIT + U2x” + U3x3 + ugxr” + U5a:5 + u6x6 + U7a:7 + ngs,
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Figure 9.5 Theresults of discrete convolution {ux} = {gx} * {hx}.

Continuous convolution

X Approximated by u, At

(N =10, 2N - 1 = 19)

Continuous convolution
D Approximated by u At
(N=20,2N-1=39)

0 1 At=005 2

whichisapolynomial of degree eight with its coef cients
{uo, u1, us, us, us, us, ug, urug} = {1, 3, 6, 10, 15, 14, 12, 9, 5}.

By following the steps illustrated in Figure 9.3, we obtain the same result by per-
forming linear convolution on the two coef cient sequences {go, 91, 92, 93, g4} and
{ho, h1, ha, hs, ha}, i,

{uo, w1, ... ug} = {1,1,1,1,1} % {1,2,3,4,5} = {1,3,6,10,15,14,12,9,5}.

o Although we illustrate the linear convolution using two sequences of the same length,
the steps for convolving two sequences of different lengths are exactly the same. (In
the latter case, it is common to choose the longer sequence as the stationary sequence,
because in signal processing when a signal is sampled in real-time and processed by
a digital lter, the in nitely long real-time input is convolved with the nite moving
sequence which representsthe Iter. Obviously we cannot reverse ageneral sequence of
infinite length.)

o |f the two sequences are of lengths L, and Lo, the result of linear convolution is a
sequence of length L1+, —1, which issimply theresult of passing the reversed sequence
through the stationery sequence until the two separate.

As expected, we can verify this result easily from the equivalent polynomial multipli-
cation. Since a polynomial of degree N —1 has NV coef cien ts, it is represented by a
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coef cient sequence of length N. Consequently, if we multiply two polynomials of de-
gree L1 —1 and Ly—1, theresulting product is a polynomial of degree L+ L,—2, which
has exactly L1+ Lo—1 coef cients .

e For two sequences of lengths ., and L., the linear convolution involves Ly x Lo multi-
plications. For two sequences of the same length NV, the arithmetic cost is proportional
to N2, which can bereducedto aN log, N after welearnin Section 9.2.2 how to convert
the linear convolution to a periodic convolution, and compute the latter by the DFT (via
the FFT.)

For two sequences of different lengths L, and Lo, wewill learnin Section 9.2.2 that they
must be both zero-padded to the same length N = L1+ L, — 1 before they can be turned
into a periodic convolution and computed via the FFT, which again incurs aN loga N
multiplications.

9.1.2 Sectioning a long sequence for linear convolution

Asnoted at the end of Section 9.1.1, thelinear convolution of two sequences of lengths L., and
L, reguires aN log, N multiplications (via the FFT), where N = L, + L, — 1. Consequently,
when L, is very large, the required computer time and/or storage may still be too costly to
compute al N resultsin a single convolution. In such case, the long stationary sequence can
be sectioned into segments of length S; < L;, and each segment of length S; is convolved
with the moving segment of length L, < .S; at acost of aM log, M with M =51+ Lo — 1.
Assuming that L;/S; = K, there are K linear convolutions to be performed, and the total
cost is given by oK M log, M. To illustrate this process, an example with sequence lengths
L, =10, Ly =5, and segment length S; = 5 is given in Figure 9.6. By summing the results
from two (short) convolutionswe get back the result of the original (long) convolution.

9.2 Periodic Discrete Convolution

The periodic discrete convolution plays a key role in making the FFT (which implements the
DFT) ubiquitousfor diverse applicationsin signal processing and system analysis, because the
conventional or linear convol ution used in these applications can beimplemented by a properly
formulated periodic convolution, and the latter can be implemented by the DFT (viathe FFT)
accordingto thediscrete cyclic convol ution theoremsto be covered in this section. Theperiodic
convolution is also useful in the development of the chirp Fourier transform algorithm (to be
covered in Section 9.3) as well as the fast Fourier transform algorithm for arbitrary prime N
(to be covered in Chapter 14.)

9.2.1 Definition based on two periodic sequences

Tode nethe periodic convolution, we assumethat { P, } and {Q,} aretwo periodic sequences
and they have the same period V. Note that the convolution is to be performed for one period
only. However, theresult isdifferent from thelinear convolution of two truncated nite periods,
because the two sequences overlap al the way due to their periodic nature. We illustrate the
convolution processin Figure 9.7, and the steps involved are explained further bel ow.
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Figure 9.6 Performing linear convolution {uy} = {gx} * {hx} intwo sections.

1 XPXEFX L XX ¥ 1
: © 9 © 9 9
0.5 0.5  1st section 05} 2nd
: : section :
0 : 0 0 :
-1 0 1 2 -1 0 1 2 -1 0 1 2
! 1= x by ! o ! A hy
0.5 H 0.5 : H : 0.5 H
A S 1 11 I A ¥
-1 0 1 2 -1 0 1 2 -1 0 1 2
05 xx uAt 05[ e rix WA 050 o5 i X WAL
| 1:1 ¥ R NN E?
ik T E st and -l
EARE ]‘ T T section section: T T
0 x')f | W 0 x'T - 0 ix'>f N |
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Step 1. Choose one periodic sequenceto be stationary. In Figure 9.7 welet one period of { Py}
be the stationary sequence of length V.

Step 2. We obtain the moving sequence by reversing the elements within each period of the
other sequence {Q¢}.

Step 3. We then align the stationary sequence and the reversed moving sequence so that Qg
overlaps P, as shown in Figure 9.7, and we compute ug, the rst convolution result, as
the sum of N pairwise products of the overlapped elements identi ed for this step in
Figure9.7.

Step 4. To continue, we shift the periodic moving sequence one position to the right, and
we compute the second convolution result as the sum of N pairwise products of the
overlapped elementsidenti ed for this step in Figure 9.7; we do the same to obtain the
remaining NV —2 convolution results. At thistime, the head of our moving sequence has
passed all N elements within one period of the stationary sequence { P}, and we have
completed the periodic convolution de ned on these two sequences.

Observe that the periodic convolution of two sequences of period N is, by denition, a nite
sequence of length N given by the following equation:

N-1
(92) Ui = ZP@-Qk_g, fOI‘k:O,l,-” , N —1,

=0
where Py = Py y and Q¢ = Q¢+ n are satised due to their periodicity, which ensures
that Uy, = U4 n. Hence, continuing the convolution process beyond one period would simply
result in a periodic extension of the rst N results.

9.2.2 Converting linear to periodic convolution

In anticipation of the bene t from using the FFT to compute the discrete convol ution, we show
next how to implement alinear convolution by a periodic convolution. This turns out to be a
simple procedure: suppose we are given two sequences {g,} and {h,} of lengths L, and L,
the conversion from linear to periodic convolution involves the following steps:

Step 1. Zero-pad both sequencesto length L+ Lo — 1.

Step 2. Obtain two periodic sequences by extending the two zero-padded sequences periodi-
cally. Hence they both have period N = L1+ Lo —1.

Step 3. Perform periodic convolution to obtain /V results as explained in Section 9.2.1.

We illustrate these steps in Figure 9.8. Sincethe N = L1+ Lo, —1 resultsin Figure 9.8 are
identical to those obtained from linear convolution of the original two sequencesin Figure 9.3,
this process provides an alternative way to compute the same results. It is this aternative
process which would bring us the bene t of FFT.

9.2.3 Defining the equivalent cyclic convolution

When we re-examine the periodic convolution processillustrated in Figure 9.7, it is clear that
al elements involved come from a single period of {P,;} and {Q,}. Therefore, it should
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Figure 9.7 The steps in performing periodic discrete convolution.

Step1. Chooseonr period of { P} asthe stationary sequence.
A

*1 Py .
" P,

~ Ll

Step2.  Reversethe periodic sequence {Q.}, which isidentical to { P, } for thisexample.

. Qa 1 ﬁ Q4
. Q3 f Qs
X, Q2 )R Q2

* T[T

Step 3. Align Qo of the moving sequence with Py and compute Uy:

B P PP P |
Qe Q3 Q2 Q1 |[Qo Qi Q3 Q> O
Ty

_

Uo = PoQo + PiQa + P>Qs + P3Q2 + PiQ1.

Step4. Compute Uy, Us, Us, and Uy:

‘Po Py P P Py ‘
Qe Q3 Q2 Q1 Qo Qi Qs Q> |
A

_

Ui = PoQ1+ PiQo + P>Qs + P3Q3 + PiQo.

Po P P Ps Py ‘
Qs Q3 Q2 Qr Qo Qi Q3 Q2 Q1
A

Uz = PoQ2 4+ P1Q1 + P2Qo + P3Q4 + P1Qs.

‘ PO Pl P2 P3 P4 ‘
Qs Q3 Q2 Q1 Qo Qs | Q3 Q2
A

_—
Us = PoQs + P1Q2 + PoQ1 + P3Qo + PaQa.
‘ Po P P Ps Py ‘
Qe Q3 Q2 @1 Qo | Qu Qs
5 A

Us = PoQs+ P1Q3 + P2Q2 + P3Q1 + PiQo.

Note: {Uo, U1, U2, Us.Us} form one period of the output sequence.
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Figure 9.8 Converting linear to periodic discrete convolution.
Stepl.  Zero-pad {go, g1, 92, g3, g4} to obtain {go, g1, g2, gs., 94, 0,0, 0, 0},
which forms one period of the stationary periodic sequence:
Ago g1 g2 g3 g4
1=
0000
le—Period N =9 —
Step2 Zero—pad{ho,h17h27h37h4}toobtain{h07hl,h27h3,h470707070},
then reverse the zero-padded sequence to obtain {0, 0, 0, 0, k4, hs, ho, h1, ho},
which forms one period of the moving periodic sequence:
A
ha Tl ha
hg h3
ha ha
hl . hl
hio
000O0 X! 0000 X X
A
le—Period N =9 —s
Step 3. Align ho of the moving sequence with go, and compute uwo = goho +0 + --- + 0:
go g1 92 g3 g4 0 0O 0O O
0 00 O ha hs ha hi lho 0 0 O O hg hshy h
—_— A
uo = goho + 0+ ---+ 0 = goho.
Step4. Computeus, ue, - - -, us:
go 91 92 g3 g4 0 0O 0O O
-0 00 O ha hg ha |ha ho 0 O 0 O ha hg ho hi ---
—_— A
u1 = goh1 + g1ho+0+---4+ 0= gohi + g1ho.
go g1 92 g3 94 0 0 0O O
~~~~~~ 0 00 O ha hg lha ha ho O 0 O O hga hszl he hi
—_— A
u2 = goh2 + g1h1 4+ g2ho + 0+ --- 4+ 0 = goha + g1h1 + g2ho.
go 91 g2 g3 94 0 0 O O
0 0 O O hsa hsg ha hi ho/ 0 0 0 O
—_— A

ug=04+...4+04+ gshs +0+---+0 = gaha.
Note: {uo, u1,u2, us, ua, us, us, uz., us } formsone period of the output sequence.
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not be surprising that we can compute the N periodic convolution results without explicitly
constructing the periodic sequences. The so-called cyclic or circular convolution is such a
scheme, which computesidentical resultsusing only N elements from each periodic sequence.
So, we can again work with two nite sequences of length IV, and the steps are given below.

Step 1. Choose one period of { P,;} asthe stationary sequence. Arrangethe N elements clock-
wise on aring as shown in Figure 9.9.

Step 2. Arrangethe N elements of {Q,} counterclockwisein an inner ring, which forms the
reversed moving sequence. Note that when overlapping the elements on the two rings
initially, the r st element in the sequence {Q,}, i.e., Qo, should overlap P,, the rst
element of the stationary sequence { P, }.

Step 3. Computethe rst convolution result by summingthe N pairwise productsinvolving al
elements on the two rings con gured in Step 2; compute the second convolution result
in the same manner after turning the inner ring (which houses the moving sequence)
clockwise one position, and so on. After we obtain all NV periodic convolution results,
theinner ring has been turned clockwise exactly N—1 times. Since theinner ring returns
to its initial position after it is turned N times, it is explicitly clear that the same NV
results are obtained if one repeats the cycle.

The steps of cyclic convolution are illustrated in Figure 9.9 and are equivalent to the steps of
periodic convolution shown in Figure 9.7 in Section 9.2.1.

9.2.4 The cyclic convolution in matrix form

Itisalso useful to expressthe cyclic convolution of two length- N sequences { P;} and {Q,} as
the product of an N x N circulant matrix A and an N x 1 vector V', which isillustrated below
for N =5:

Qo Qi Q3 Q2 Q1| [P
Q1 Qo Qi1 Q3 Q2 |1
9.3) Z={P}o{Qi}=1Q2 Q1 Qo Qi Q3| |P
Qs Q2 Q1 Qo Q4| |P3
Qs Q3 Q2 Q1 Qo| [Fa

Observethat the second row of matrix A isobtained by cyclic-shiftingits r st row oneposition
to theright, and, in general, we cyclic-right-shift the kth row to obtain the (k+1)st row until we
have the N-by-N circulant matrix. Furthermore, the components of the vector Z = {P;} ©®
{Q¢} = AV can be expressed by the algebraic equation:

N—-1

(94) Zk= PrQu-tmean, 0<k<N-—1,
=0

which denotes the inner product of the kth row of matrix A and the vector V' and serves as

another mathematical den ition for the cyclic convolution. Note that the evaluation of the

index (k—¢) mod N isdoneaccording tothefollowingrule: for any integer m = k — ¢, let
[ml

. — i il
(9.5 R = remainder o N
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Figure 9.9 De n ing the equivalent cyclic convolution.

Recall Step 3 of periodic convolution from Figure 9.7:
Align Qo of the moving sequence with Py and compute Uy:

‘ Py P P P Py ‘
Qo = Q1= Q3Q2 Qs

A" oydicshift

The equivalent cyclic convolution:

Uo = PoQo + P1Q4 + P2Q3 + P3Q2 + P1Q1.

Ui = PoQ1 + P1Qo + P2Q4 + P3Q3 + P1Q2. U2 = PoQ2 + P1Q1 + P2Qo + P3Q4 + P4Q3.

Us = PoQs + P1Q2 + P2Q1 + P3Qo + P1Qs. Uy = PoQq + P1Q3 + P2Q2 + P3Q1 + P4Qo.

one cycle
completed

Note: {Uy, U1, Uz, Us.U4 } forms one cycle of the output sequence.
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then the uniquevaluer = m mod N isgiven by

R if m>0;
(9.6) r=<¢N-—-R ifm<O0andR #0;
0 ifm<O0OandR=0.

Thisis, of course, the denition of the residue r of m modulo N in linear algebra. Since
r takes on integer values from the set {0,1,--- , N —1}, it is straightforward to verify that
Equation (9.4) involves exactly the kth row from the circulant matrix A in Equation (9.3). For
the matrix-vector product de ned by (9.3), wehave N = 5,0 < k,/ < 4,and -4 < m =
k—¢ < 4. Hence, the remainder R = |m|/5 in (9.5) takes on integer values from 0 to 4, and
the corresponding residue » = m mod 5 is given by (9.6); with that we can uniquely identify
Qr = Qmmoa n- Inparticular, form = k—¢ = —1,-2,-3,—4,wehave R = 1, 2, 3,4
andr =N —-R=4,3,2, 1,sowecanuniquely identify Qs = Q-1 mod 5, @3 = @2 mod 5,
Q2 = Q_3mod 5, ad Q1 = Q_4 moda 5, Which are all we need when evaluating Z;, using the
cyclic convolution formulagiven by (9.4).

Remark: The cyclic convolution de ned by (9.4) is equivalent to the periodic convolution
de ned by (9.2) if { P} and {Q,} areinterpreted as one period of a periodic sequence.

9.2.5 Converting linear to cyclic convolution

We haveillustrated in Figure 9.8 and explained in Section 9.2.2 the stepsinvolved in converting
linear to periodic convolution. Hence all we need to do now is to implement the periodic
convolution by cyclic convolution. Assuming that we are given two sequences {g¢} and {h,}
of lengths L, and L, the conversion from linear to cyclic convolution involves the following

steps:
Step 1. Zero-pad both sequencesto length L+ Lo — 1.

Step 2. Arrange the stationary sequence and the other sequence on the outer and inner rings
asexplained in Section 9.2.3.

Step 3. Perform cyclic convolution on the two rings as explained in Section 9.2.3.

Corresponding to the steps of periodic convolutionillustrated in Figure 9.8, the steps of cyclic
convolution are shown in Figure 9.10.

9.2.6 Two cyclic convolution theorems

Recall that we have used extensively the continuous convol ution theorem and product theorem
which generate the following Fourier transform pairs

w(t)xg(t) <= X(f)-G(f);  =(t)-g(t) <= X(f)*G(f),

where X (f) = F{x(t)} and G(f) = F{g(t)}. Notethat the rst pair relates time-domain
convolution to frequency-domain multiplication, and it allows us to express z(t) x g(t) =
F-UX(f)-G(f)}. A similar relationship exists between the periodic convolution of two
sequences and the point-wise product of their respective discrete Fourier transforms, which is
proved in the discrete convolution theorem given below.



9.2. PERIODIC DISCRETE CONVOLUTION 281

Figure 9.10 Converting linear to cyclic convolution.

Recall Step 3 of converting linear to periodic convolution from Figure 9.8:
Align ho of the moving sequence with go and compute uo = goho + 0+ --- + 0:

‘909192 g3 94 0 0 0O O
ho> 00 >0> 0 >hs>hs> ha™ h1

AT odicsift

The equivalent cyclic convolution:

u1 = goh1 + g1ho uz = goh2 + g1h1 + g2ho

u3z = gohs + gih2 + g2h1 us = goha + g1hz + g2h2 us = giha + g2hz + gsha
+g3ho +g3h1 + gaho +gahi

©

D0
I 2gfnpg::d
QO

0—'@

Note: {uo, w1, u2,us, us, us, us, u7, ug } forms one cycle of output sequence.
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Theorem 9.1 (Time-Domain Cyclic Convolution Theorem) Let the cyclic convolution of se-
quences {x,} and {g,} of length (or period) N be denoted by {z,} ® {g.}. If the discrete
Fourier transforms of the two sequences are given by {X,} = DFT[{z,}] and {G,} =
DFT [{gz}] , then

(9.7) {ze} ©{ge} = N-IDFT[{X,-G,}].
Proof: By Equation (9.2) (which is equivalent to (9.4) for periodic sequences), we obtain
{ug}={z¢} © {ge} with its elements given by

N-1
(9.8) Ug = Z Ty Gk—e, fOI’kZO,l,--- SN —1,
£=0

where g,_y = gr—es+n due to the assumed periodicity. Assuming that the DFT coef cien ts
{X,}and {G,} are computed by Formula(2.7), we use the corresponding IDFT formula(2.6)
to express

j2w /N
- )

ZXTwNa gk— F—ZGTUJN y where Wy =€

and we rewrite (9.8) as

k-2

U = Z lz X wem] Z Grw (k /)T]

v

= lz erff,rwN ] lz me[ml
]f/ O1N 1 N— é( .

(9.9 o= 2::

N-1 N .

= G, wk [Z Z wim=")
r=0 =0 i
N—-1 1 .

= Grwhr [Z Z whim=m)
—0 =0 =0 i

N—-1

=Ny {X.G.} .

T

Il
o

Note that in the last step we have used the orthogonality property proved in Chapter 4 on
page 112:
0 ifm#n,

N—1
Z wé(mfr) _ {
=0 N

ifm=r.

[

Corresponding to the other Fourier transform pair X (f) « G(f) = F{xz(t)-g(t)} in the

continuous convol ution theorem, we have the discrete Fourier transform pair given by the next
theorem.
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Theorem 9.2 (Frequency-domain cyclic convolution theorem) Let {X,.} and {G,} denote
two DFT sample sequences of length (or period) N. If {z,} = IDFT[{X,}] and {g,} =
IDFT[{G,}], then

(9.10) {X,} ©{G,} = DFT [{zs-gs}].

Proof: By Equation (9.2) we obtain {U,.} ={ X, } ® {G.} with its elements given by

N—-1
(9.11) Up=> Xp-Giyp, fork=0,1,---,N—1,

r=0
where Gy, = Gi_,+n due to the assumed periodicity. Using the DFT formula (2.7), we
express

1 N-1 1 N-1
Z e —(k—r)e jor /N
X, = N pre Ly ri ) Grr = N — ge wN( ) ) where wy = ¢’ ~/ )

(9.12) =0

Hence, we have proved
{Ur} = {X,} © {G,} = DFT [{x;-g¢}].

[

These two discrete convolution theorems establish that the cyclic convolution of two se-

guences of length IV (in either time or frequency domain) can be computed via a combination

of DFT and IDFT, which incurs arithmetic cost proportional to N log, N when FFT and IFFT

are used to compute the DFT and IDFT. Therefore, all fast convolution algorithms involve
FFT/IFFT, and they make FFT/IFFT ubiquitousin diverse application areas.

9.2.7 Implementing sectioned linear convolution

Recall our discussion on sectioning a long sequence for linear convolution in Section 9.1.2.
As stated there, all we need to do is to convert the linear convolution dened on each section
of length S to a periodic convolution, and we compute the latter via DFT/IDFT as described
in Theorems 9.1 and 9.2. Observe that the DFT of the moving sequence only needs to be
computed once.
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9.3 The Chirp Fourier Transform

We are now in aposition to introduce the chirp Fourier transform and explain why it is needed.
For its ef cien t computation, we show how to turn the transform into the convolution of two
appropriately de ned sequences. However, let us point out that the equivalent discrete convo-
Iution de ned on the original data (without extension and restructuring) is neither linear nor
periodic per se it is, instead, a partial linear convolution, so we must learn another way to
turn it into a cyclic convolution so that we can use the FFT algorithmsfor its computation.

9.3.1 The scenario

To set the stage, let us assume that we are given a sequence {Z, } consisting of N =64 samples
taken from atime-limited signal =(t) over its duration T. Assuming that T = N At, the DFT
of the N-sample sequence {Z,} computes {U,.} according to Equation (8.2), namely,

n+1
(9.13) U, = XI(NAt) ngw —n<r<n+1, N=2n+2.

Recall that the N samples of X(f) arespacedby Af=1/(NAt)=1/T. If we want more
details of X(f) between two particular frequenciesat f,, and f,,+1 = fm + A f, we would
need to obtain more sample values of X;(f) between f,, and f,,+1. Suppose K —1 more
values of X (f) are needed between f,, and f,,,+1; with the desired spacing now reduced to
A f /K, wecan accomplish that by two different approaches:

1. Full range interpolation by zero padding. Recall that we discussed the effects of zero
padding in Section 4.6 in Chapter 4. In particular, we explained that when the N-sample
DFT spectrum is too sparse for us to visualize a continuous spectrum X (f), we may
decrease the spacing A f = 1/(INAt) on the entire frequency grid if we enlarge N by
adding zeros (see Figures 4.8 and 4.9). That is, for K = N = 64, we extend the 64-
sample sequence {Z,} to length L = K x N = 4096 by appending 2016 zeros at each
end, and we perform the DFT on the resulting 4096-sampl e sequence

{#} ={0,0,...,0,F_31...,%_1,%0,d1,...,732,0,0,...,0}

to obtain
) 2048
(9.14) U, = Z Fowp™, —2047 <r <2048, L = K x N = 4096.
6—72047

This approach gives us {U_soa7, -+ ,U_1,Up, Uy, -+ ,Usous} @ total of L = 4096
samples of %Xf(f), while we only need K = 64 samplesin a particular subinterval
and for that we pay the high cost of computing the DFT of length L = 4096. This
approach is evidently too costly unless K isvery small relativeto N.

2. Partial DFT by chirp Fourier transform. Using this approach we will compute K sam-
plesof +X,(f) inside asingle subinterval of length A f =1/(NAt). For convenience
in dealing with an arbitrary subinterval in our analysis, recall the alternate form of the
DFT given by (4.9), which is restated below:

1
(9.15) UT:Nngw;M, 0<r<N-1, N=2n+2, where
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9.3.2

Since

the reordered samplesin {x,},0 < ¢ < N — 1, areden ed by

) for0 </<n+1;
Ty =
To_ny forn+4+2<4<2n+1;

and the DFT samples in {U,}, —n < r < n + 1, can be recovered from the re-
ordered samplesin {U,.} de ned by (9.15) using the relationship (4.14) established in
Section 4.2:

U — [7} foro<r<n+1;
" Uy forn4+2<r<2n+1.

Assuming that the arbitrary subinterval is between f,, = mAf and f,11 =
(m+1)A f, we now compute the K samples by performing a partial DFT on the given
N-sample sequence {z,}. That is, we compute U, according to Equation (9.15) for
r=mK+X,0<\<K — 1, without zero-padding {x,}:

N-—1
1 —(m 4
(9.16) UmKH:ZE zowy MV 0< A< K —1=63, L=K x N=4096.
=0

Note that only K = 64 elements {U,,x, Umk+1, -+ , Unk+63} @ecomputed by this
formula, and that its right-hand side shows only the N = 64 nonzero terms with wy =
e727/L ynchanged.

The equivalent partial linear convolution

the chirp Fourier transform is a partial DFT, it cannot be computed by the FFT. For its

ef cient computation, weshall rstturnthepartial DFT into apartial linear convolution, which

can then be converted to a cyclic convolution, because the latter can be computed via DFT and
IDFT.
We begin by rewriting the partial DFT from (9.16) as
1 N-1
mK?L A
UmKJr)\—Z;)[xng }w , forA=0,1,--- K —1,
1= me] 0.5[(A=8)%—X\2—¢2]
(9.17) =
Wy 2] 0.5(A—0)2
_ YL Z [ww me =056 0 (A-0)
=0
—0.50% N—-1
w
= LL Z ge-ha—e,
£=0
where we de ne
gr = xéw;m€w£0.5€2 and h, = w%5712’ sothat hy_, = w%5(k—f)2'
Observethat {yo, y1, - - , Yx_.} computed by
N-—-1
(918) Yx = Zg@'h)\féa for )\:0717 7K_]-7

£=0
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are the middle K elements (beginning with the Nth) obtained from the linear convolution of
the length- N sequence

{907 gi, -, gN—l}
and the length-(N + K —1) sequence

{an flv T va fN+la T fN+K—2} = {h—N-Ha h—N+27 T hOa hla R} hK—l}'

Note that we have explicitly stored the data {h_y_1, --+, h—1, ho, h1, - -+, hx_,} in the
array f in the speci ed order, so that f, refers to the rst element in the sequence, and fx
refersto the (k 4 1)st element in the sequence as before.

To be speci ¢, for N =5 and K = 4, we have the stationary sequence

{90, g1, 92, 93, 94}7

whichis of length N =5, and the moving sequence

{f07 f17 f27 f37 f47 f57 fﬁa f7} = {h747 h737 h727 hfla h07 h17 h27 h3}7

whichisof length N+K—1 = 8, and their partial linear convolutionisillustratedin Figure9.11.
Hence, the K = 4 elements in sequence {yo, y1, y2, y3} are only partia results of the linear
convolution, and Uy, x4x = yx-wg“ﬁ/L forA=0, 1, 2, 3.

Remark: Observe that h,, = h_,, and h,, isden ed for all integer n, but by y # Ao
Therefore, the formulagiven by (9.18) represents neither afull nor a partial periodic convolu-
tion.

9.3.3 The equivalent partial cyclic convolution

From the partial linear convolution examplewith N =5 and K =4, itisnot dif cult to seethat

{v0, y1, Y2, y3} can be computed by the cyclic convolution of the sequences{go, 91, 92, g3, 94,0, 0, 0}
and {ho, h1, ho, h3, h_4, h_3, h_a, h_1} (See Figure 9.12). Both sequences are of length

N+ K —1 = 8, and the partia cyclic convolution process can be conveniently displayed in its

matrix form:

Yo ho hoy h_o h_3 h_y hz3 hy hi] [go
Y1 h1 ho ho1 h_oo h_z h_y hs ho g1
Y2 ha  hy ho ho1 h_oo h_z h_y hs3 g2
Y3 hg ha hy hg h_y h_o h_z h_4| |g3

(9.19) x| |x  x X X X X X X | |ga
X X X X X X X X X 0
X X X X X X X X X 0
X X X X X X X X X 0

Since a partia cyclic convolution cannot be implemented by FFT/IFFT, we shall compute a
full cyclic convolution of length M = N+ K —1 = 8 via FFT/IFFT at a cost proportiona to
M log, M, andtakethe rst K =4 resultsfrom the computed {yo, y1, - - , Yn—:1 }. Aftery, s
are available, we can compute Uy, 4\ = yx-wg“ﬁ/L forA=0,1,--- , K — 1.

Remarks: To avoid unnecessary complications, we have assumed that the V signal sam-
ples are taken from a time-limited signal x(¢) over its duration T. It is, of course, very likely
that the V samples are truncated from an in nitely long x;(t) = x(t) - Pa¢(t) by €ither a
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Figure 9.11 Interpreting chirp Fourier transform as a partial linear convolution.

Stationary sequence: {go, 91, g2, g3, ga }-

‘ g0 g1

g2

gs

94‘

Moving sequence: { fo,

fh...

7f7} = {h*47 h737 h*?u h*la hOa hla h?a h3}

‘h_4 h_g h_z h—l hO

hy

ho

hs |

aray f: fo h

f2

[

Ja

fs

fe

fz

A
Recall Step 4 of the linear discrete convolution from Figure 9.3: a p artia
convolution computes {uy, us, ug, w7} = {yo, y1, y2-y3} in this step.

‘90

g1 g2 gs 94 ‘
Shifted
reversed ‘hg ho hq ho h_1 h_o h_3 h_y4 ‘
aray 1 f7 fe f5 fa f3 fo f1 J:O
ug = gofa+g1f3 +g2fa+ g3f1 + gafo
= goho + gih—1 + g2h_2 + gzsh_3 + gsh_4 = yo.
[90 91 92 95 64|
‘hg ho hi  ho h_1 h_o h_3| h_y ‘
fr fe f5 fa f3 fo fi Jio

us = gofs +g1fa+g2fs+g3fa+gafa
= goh1 + giho + g2h—1 + gzh_o + gsh_3 = y1.

[0 91 92 95 64|
‘hg ho hy ho h_1 h_s| h_3 h_4 ‘
fr fe I5 Ja I3 ) fi on

ue = gofe + g1f5 + g2fa + 93f3 + gafo
= goha + gih1 + g2ho + gsh—1 + gah—_2 = yo.

gdo g1 g2 gs g4 ‘
‘ hs  ha Wy ho h_1| h_o h_3 h_4 ‘
fr fo f5 fa f3 fa fi

Jo
A

ur = gofr +91fe +92f5s + g3fa + gaf3
= gohz + giha + g2h1 + g3ho + gah—1 = y3.

Note: The chirp Fourier transform results {yo, y1, y2, y3} have now been computed
by the equivalent partial linear discrete convolution of {g;} and { /% }.
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Figure 9.12 Interpreting chirp Fourier transform as a partial cyclic convolution.

Cyclic convolution of stationary sequence
{90, 91,92, 93,94,0,0,0}
and moving sequence
{ho, h1,ha,h3,h_a,h_3,h_o,h_1}:

‘ Jo g1 92 93 94 0 0 0 ‘
‘ ho~=h_1—=h_5> h_5s>h_;> h3= hy —>h; ‘

A
Nﬁc shift

The chirp Fourier transform results {yo, y1, y2, y3} arethe
r st four results of acyclic convolution:

cyclic shift

four times

Yo = goho +g1h_1 +goh_o + gsh_3+gsh_4 +0+0+0.
y1 = goh1 + g1ho + g2h-1+g3h_2+gsh 3 +0+0+0.
y2 = goha + g1h1 + g2ho + gsh—1 + gah_2 + 0+ 0 + 0.

Y3 = gohz + g1ha + g2h1 + gsho +g4h1 +0+0+0.
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rectangular window or one of the data weighing windows w(t) of length T = NAt. Using
the DFT on the windowed N-sample sequence, we obtain U, as the samples of < U;(f) =
X1 (f)*W(f)}, where W(f) = F{w(t)}. Therefore, the use of windows changes only
the function beneath the DFT samples, but it does not change how we obtain more values of
that function, beit U;(f) or X;(f). Therefore, the chirp Fourier transform can be applied in
the same manner regardless how the N samples are obtained or whether they are modi ed by
windows.
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Chapter 10

Applications of the DFT in Digital
Filtering and Filters

In this chapter we study the roles the DFT (and IDFT) plays in signal Itering operations

de ned by the linear convolution of two sequences: the sequence {z,} of length L, represents

the sampled input signal, which can be as long as it needs to be; the sequence {h,} of length

Lo represents the digital Iter, and L. is assumed to be much shorter than L,. Since we

have already covered the various mathematical tools and computational algorithms needed for

digital Itering and lters to be discussed in this chapter, we shall begin by connecting digital
Itering to the various topics we presented in the rst part of this book.

10.1 The Background

From what we have learned in Chapter 9, the linear convolution of the length-L; sequence
{z,} with thelength-L Iter {h,} producesthe output sequence {y,} of length L1 + Lo —1,
which we previously expressed as

(10.1) {ye} = {ze}+{he}

The DFT-based fast algorithm for computing the convolution result {y,} was presented in
Section 9.2.5. For cases when the length of the convolution is too long for a single DFT, we
show how to section along sequencefor linear convolution in Section 9.1.2, and we show how
to implement the sectioned linear convolution via DFT/IDFT in Section 9.2.7. Therefore, if
we aregiventhe Iter intheformof a nite sequence {h,}, we already know how to compute
the output {y,} via DFT/IDFT, and it goes without saying that the DFT/IDFT are computed
by the FFT/IFFT. (The FFT agorithmsare covered in Part |1 of this book.)

After the time-domain output sequence {y,} is computed, we can examine its frequency
content by computing the DFT of the sequence {y, } (possibly windowed) aswe have discussed
thoroughly in Chapter 8 recall, in particular, that the computed DFT coef cientsapproximate
the sample values of the Fourier transform of the Itered sequence {y,}; hence, a Iter designer
can always check whether the Iter hasthedesired effect or it needsfurther tweaking. (Moreon

Iter construction later.) Recall also that according to the Time-Domain Discrete Convolution
Theorem 7.2 proved in Chapter 7, we can relate the Fourier transform of the output to the

291
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Fourier transforms of the input and the  Iter, namely,

(10.2) F{yed} = Fl{wdwfhet} = F{{aad b F{{he} };

hence, we can investigate further how the Fourier transform of the input signal is modi ed
by the Iter by forming the analytical H; (F), the Fourier transform of the digital Iter, using
Formula (7.7) from Chapter 7 onthe nite sequence {h,}.

It turns out that the DFT and IDFT can also be used to construct the digital  Iter {h,} if we
know how we want to modify the frequency content of theinput signal  e.g., the elimination or
attenuation of speci ¢ frequenciesis among many other commonly desired effects. Before we
proceed with the Iter construction, it is useful to bring the mathematical concepts involved
in analog lter ing into the picture; the analog lter s are used to alter the Fourier transform
X (f) of theinput signal x(t) so that the Fourier transform Y'( /) of the output signal y(¢) has
the desired amplitude and phase characteristics, and this is accomplished in the time-domain
by convolving the time-domain signal x(¢) with the Iter function i(¢t). The analog lIter s
are physical devices (e.g., circuits formed by resistors, capacitors, and inductances) which
implement the linear convolution of A (¢) and the continuous-timesignal «(¢). By invoking the
Convolution Theorem 6.1, we obtain the Fourier transform pair:

(103) y(t) = x(t)xh(t) <= Y (f) = X(f)-H(f)-

Sincethe desired Y'(f) is the product of X (f) and H(f), the effects desired on Y'(f) lead to
the proposed H (f), which can then serve as the frequency-domain speci cation of the Iter.
For arbitrarily shaped H(f), the IDFT of appropriately sampled { H,} (possibly windowed)
gives us the digital Iter {h,} (which may be further windowed), which convolves with the
sampled input signal {z,} to produce {y,} th e sequence which approximates the sampled
values of y(t).

10.2 Application-Oriented Terminology

Since digital Itering has been practiced in a broad range of disciplines for a long time, the
same mathematical ideas and terms were called different names when they were used in dif-
ferent applications. In this section we shall introduce some commonly used terminology from
the application viewpoint. At the sametime, we note that the mathematical terms and the rela-
tionship the new terminology represents are those we have established and used in a consistent
manner in the rst nine chapters of this book.

1. h(¢): impulse response of the analog Iter : This term comes from interpreting the
convolutionintegral

5(t) % h(t) = [ T SOVA(E — A d\ = h(t)

asthe Itering of an impulse function §(¢) by h(t) with the output, or response, being
h(t) itself; this term also represents a physical concept, because the analog Iter is a
physical device which implementsthe linear convolution of h(t) and a continuous-time
input signal x(¢), including z(t) = §(t).

Other namesfor h(t) include
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the Iter

the Iter impulse (response) function

the time-response function of the Iter

the Iter (time-domain) impulse response

the system (time-domain) impul se response

2. y(t) =x(t) * h(t): alinear-system convolution : The phrase refers to a system char-
acterized by the continuous-time output y(¢), which results from convolving the system
input x(¢) with the system impulse response /(). The system islinear because

(10.4) z(t) = (aa:l (t)+ Bz (t)) xh(t) = axy(t)«h(t)+LBaz(t)xh(t).

3. H(f): frequency response of an analog Iter (or alinear system) : Recall that, in
mathematical terms, H (f) is simply the Fourier transform of the impulse response h(t).
Other namesfor H(f) include

the frequency-response function of the Iter

the Iter frequency-domain response

the system frequency-domain response

the frequency speci cation of the Iter

the analog frequency function
the transfer factor

the transfer function

¢ the system function
If H(f) iscomplex-valued, we can express
(105) H(f) = |H(f)|e’*D,

where the magnitude spectrum |H (f)| is called the magni tude response (function) of
the Iter, and the phase spectrum ¢(f) is called the phase response (function) of the
Iter .

4. Red-valued H(f): azero-phase-shift lter: From H(f) = |H(f)|e*)) we see that
the phase spectrum ¢(f) = 0 if H(f) isrea-valued. Since the Fourier transform of an
even function is purely real, the impulse response h(t) of the zero-phase-shift Itersis
an even function. (Note that the phase ¢(f) =0 aso resultsin H(f) = |H(f)|; hence,
H(f)isalsoaneven function.)

5. Finite-Impulse Response (FIR) Iters: Thisterm refersto the discrete linear convolu-
tion formulainvolving sample values (or their approximations) of the impulse response
h(t). The sample sequence {h,} must be nite (asimplied by the name of the Iter),
and it is called the impulse response of the digital Iter.

TheFIR ltersaredso called nonrecursive lters.
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6. H;(f): transfer function of the FIR Iter: The Fourier transform of the nite Iter

sequence { h,} is called the transfer function of the digital Iter.

Recall that the Fourier transform of a sequence has two forms and they were examined
in detail in Chapter 7. When H;(f) isreferred to asthe transfer function of the nite
sequence {h}, it isunderstood that H;(f) is expressed in terms of {h,} instead of the
sum of the shifted replicas of H(f).

When dealing with the nite Ly-sample sequence {h,}, it is also convenient to use
H;(F) or H(), wherethedigital frequency F = f/At, and the digital angular frequency
0 = 2nF. Recall that in Chapter 7 both H;(F) and H;(#) were shown to be equivalent
representation of H(f), with —0.5 <F < 0.5, -7 < 0 < m, and — frnax < f < fimax-
The Nyquist frequency fr.q. = 1/(2At) correspondstoF = 0.5 and 6 = .

. ldeal low-pass, high-pass, and band-passFIR Iters: Thesetermsrefer to those digital

Iter swith frequency speci catio n H (F) de ned by the ideal waveforms given below.

Ideal Low-Pass H(F) Ideal High-Pass H (F) Ideal Band-Pass H (F)
A A A
1 1 1

=
=
=

—05 0 05 05 0 05 05 0 05

Ineach case, thenameof the Iter re ectswherethe frequency-response H (F) isnonzero,
because
(f € passing band)

1;
0 if H(F)=0. (f e stop band)

5 {X(IE‘) if H(F) =

. ldeal band-stop and notch FIR Iters: By reversing the passing band and stop band of

an ideal band-pass Iter, we obtain aband-stop lter:

Ideal Band-Stop H (F) Ideal Notch H (F)
A A
1 1

05 0 05 05 0 05

A notch Iter is a band-stop Iter with very narrow stop band, which is useful in re-
moving an interfering signal of certain frequency e.g.,anotch Iter can be designed to
eliminate the 60 Hz sinusoidal interference from an ECG signal. (The presence of 60 Hz
(or 50 Hz) is caused by the electrical power line.)

10.3 Revisit Gibbs Phenomenon from the Filtering Viewpoint

In Chapter 3, Section 3.10.4, we studied the Gibbs phenomenon exhibited by the truncated
N-term Fourier series of a periodic function with jump discontinuities (see Figures 3.1, 3.2,
3.6, 3.7, and 3.11.) In Section 3.10.8 we showed that the truncation of a Fourier series can be
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understood as the result of applying an N-point rectangular frequency-domain window (see
Figure 3.17) to the Fourier coef cients of

(10.6) gty = D Crel*™/T,

k=—oc0

By interpreting the NV-point spectral window asthe N Fourier series coef cients of a periodic
time-domain function w?(t) (expressed as the Dirichlet kernel in Section 3.10.5), the Gibbs
phenomenon was shown to be the result of the periodic convolution of ¢?(¢) and w?(t) in the
time domain.

To view the Gibbs effect from the Itering viewpoint, we shall interpret the N-point se-
quence{l, 1---, 1} asthe N equally spaced sample valuestaken from thefrequency response
of anideal low-passanalog lter:

0 otherwise

where f. isthe desired cutoff frequency, and we must have2f. = N/T toreect thelength of
the N-point rectangular spectral window.

In Chapter 7, Section 7.5, we show that the Fourier transform of the periodic g?(¢) can be
formally de ned as animpulsetrain weighted by the Fourier series coef cients, namely,

(108) 6)=Flew)= 3 s (r-4).

k=—o00

Hence, assuming that N = 2n+1, the Fourier transform Y'(f) of the Iter output y(¢) can be
expressed as

Y(f)=G(NHH(f) = i Cr {H (%) ’ (f - %)]

k=—o0

- Saa(r k)

k=—n

(10.9)

Since the impulse response h(t) = F~1{H(f)}, and for the low-pass H (f) proposed above
we have obtained the analytical h(t) in Example 5.4 (Figure 5.6),

_ sin(2n f.t)
B 7t

h(t) = 2f. sinc(2f.t),

we can therefore express the output of the Iter as
yP(t) = gP(t) = h(t).
(As we pointed out before, the function sinc(xz) = sin(7z)/(7z) is not periodic.) Hence the

Gibbs effect exhibited by the periodic output y?(¢) is caused by the Itering of the periodic
input ¢gP(t) by the impulse response h(t) of an ideal low-pass lter.
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10.4 Experimenting with Digital Filtering and Filter Design

In this section we shall demonstrate the use of DFT and IDFT in digital Itering and Iter
design by constructing alow-passFIR Iter. Let usassumethat thesignal datato be Itered has
frequency componentseither [ower that 30 Hz or higher than 50 Hz, and that afront-end analog
anti-aliasing Iter bandlimitsthe signal to 80 Hz. Supposethat we need alow-passdigital Iter
to eliminate the frequency components above 30 Hz. From the information we have about the
signal to be ltered, anideal low-pass Ite r may bede ned with a cutoff frequency f.=40 Hz:

if — < < :
(10.10) (=] ToA0=/<40
0 otherwise.

Since we assumethat the signal to be Itered isband-limited to fnax = 80 Hz, we must choose
thesamplingrate R = 1/At > 2 fmax to satisfy the Nyquist condition. Let us set At = 0.005,
which allows fmax Up to R/2 = 100 Hz; hence, we only need to sample H(f) to cover the
range from —100 Hz to 100 Hz as shown below.

Ideal Low-Pass H(f)

NAS = 200 Hz

ToobtaintheFIR Iter represented by the nite V-sampleimpulseresponse {h,}, we need
to choose the length N. Since the Iter length N is a parameter of the design, which can be
easily changed if the digital Iter {h,} turnsout to be too long for the Itering operation to be
performedef ciently, we may beginwithasuf ciently large N to meet the design speci catio n
H(f). If we decide later to shorten the Iter sequence {h,}, it can be truncated using an
appropriately chosen data-weighting window (as discussed in Chapter 8) provided that the

Iter sfrequency response H;(f) still approximates H (f) to our satisfaction.

To demonstrate this process using the proposed low-pass Iter, we shall try N = 256.
With At = 0.005 sec, we have NAt = 256 x 0.005 = 1.28 sec, and H(f) will be sampled
a Af =R/N = 200/256 Hz for the IDFT computation. We can now experiment with the
digital Iteringand Iter design as outlined in the following steps:

Step 1. Den ethe 256 samplesof H(f) by the sequence

{H 127, -+, H-51, H_50, --- , H_1, Ho, Hy, - -+, Hso, Hs1, -+, Hios}
={0,0,...,0,3,1,1,...,1,..., 1,1, 3,0,0 ..., 0}.
——
76 zeros 101 ones 77 zeros

Recall that because N = 256 is an even number, the sequence { H,.} beginsat —100+
A f Hz and ends at 100 Hz. Note that, following what we have discussed in detail in
Section 4.6.2 in Chapter 4, we have split the one at f = 51At = 39.84 Hz and use
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one-half to replace the zero at f = —39.84 Hz to maintain symmetry in the zero-padded
sampled H (f), and this resultsin setting H.5, = 3 (as shown in the de ning sequence
and also in Figure 10.1).

Figure 10.1 Sampling H( f) to obtain impulse response of aFIR Iter.

Samples of filter specification H(f)

1.2 T T T T T
{Hr}: 256 samples of H(f), r=-127, ..., 128.
(Each H(f) value has been divided by NAt = 256x0.005 = 1.28 sec.)
0.8F R
06f : § 4
0.4F x x R
02t i
0 ; : ! . ;
-100 -50 0 50 100
Finite impulse response (FIR) of the proposed low—pass digital filter
T T T T T
80 R
FIR {hk} = IDFT of {Hr},
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Step 2. For the chosen length N = 256, compute the N-sample Iter sequence {h,} by the

IDFT:
N/2
(10.11) he= Y He>™N for —N/2+1<(<N/2,
r=—N/2+1

where H, = % H,, becauseidedlly DFT({h,}) = %{-; H,} when H, denotesthe
samples of the Fourier transform H(f) = F{h(t)} evaluated & f = ;. (The exact
relationships were studied in Chapter 7, Section 7.6.) For N = 256 and At = 0.005
seconds, we have N At = 1.28 seconds here. The 256-sample sequence { H,.} and the
computed 256-sample { h,} are shown together in Figure 10.1.

Step 3. Generate atest signal z(t):

(10.12) =(t) = 3 — 4 cos(2nt) + 3 cos(127t) — 1.5 cos(104nt) + 1.2 cos(1507t).

Step 4. Samplethetest signal at intervalsof At = 0.005 secondsfor the duration of 3 seconds
to obtain the M -sample sequence {z, }, where M = 600. The 600-samplesequence {x,}
and its magnitude spectrum (computed by the DFT) are shown in Figure 10.2.
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Figure 10.2 Sampled noisy signal x(¢) and its magnitude spectrum.
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Step 5. Compute the linear convolution of the M -sample sequence {x} and the N-sample
Iter sequence {h,}.

Recall from Chapter 9 that we need to convolve {zq, z1, ..., 599} With

{va.fla' "7f255} - {h—1277" i h’—lah‘Oa h‘la ceey h128}-

As discussed in Section 9.2.5 in Chapter 9, the linear convolution of {z,} and {f;}
should be converted to a cyclic convolution of two zero-padded sequences with length
(of both) equal to M + N —1, because the latter can then be computed by two DFTs and
one IDFT (viaFFTs and IFFT). The result shown in Figure 10.3 is obtained by calling
thefunction conv (f, x) availablefrom MATLAB, becauseit hasimplemented the fast
algorithm for the linear convolution of two sequences of arbitrary lengths.

Figure 10.3 Discrete linear convolution of {x,} and FIR Iter {h,}.

T T T T T
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20+ 01 255 i
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-20 L L Il Il Il 1
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Discrete linear convolution result (scaled by At = 0.005)
T T T T T T

T

| M+N-1 = 855
| filtered samples

Recall from Chapter 9 that the discrete linear convolution of {z,} and {h,} (multiplied
by At) approximatesthe continuouslinear convolution of the nite-duration noisy signal
z(t) and the analog Iter A(t), so the end effects in the graph shown in Figure 10.3
are due to the nite length of z(¢). However, we can also use the same example to
demonstrate how to  Iter aknowingly periodic (and hencein nite) sequence.

For this particular example, the signal x(¢) is periodic and we have sampled it for three
full periods, so theentire M -sample sequence {z, } can beinterpreted asone period of an
in n itely long periodic sequence. Because the linear convolution of anin nite periodic
function with a nite h(t) can be de ned by equivalent periodic convolution, the same
is true for the discrete linear convolution when one sequence is periodic (and hence
inn ite). Therefore, in this and other similar cases, we can eliminate the end effects by
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performing periodic convolution of the noisy sequence {x,} and the zero-padded {h,}.
Both sequences have now M = 600 samples, and following the Time-Domain Cyclic
Convolution Theorem 9.1, we use two DFT and one IDFT to compute {z,} ® {fe},
where { f¢} represents the zero-padded {/,} as shown in Figure 10.4. The convolution
results shown in Figure 10.4 have been multiplied by At = 0.005 so they represent
samplesof Itered signal y(t).

Figure 10.4 Discrete periodic convolution of {x,} and FIR Iter {h,}.
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Step 6. Compute the DFT of the M-sample output {y,} = At ({z¢} © {f¢}) to evaluate the
effect of the Iter. That is, we compute
1 M—-1 )
=17 > yee?TM fore=0,1,..., M — 1.
=0

(10.13) Y,

The Itered signal samples {y,} and the magnitude of the computed DFT coef cients of
the Itered sample sequence are shown in Figure 10.5.

Step 7. If the digital Iter {h,} needs to be truncated, one may consider using the data-
weighting windows presented in Chapter 8. For each truncated (and possibly modi ed)
sequence { k. }, compute and plot its DFT results, and compare that with the design spec-

i cation H(f). Whenwe aresatised with thetruncated {h,}, we may repeat Steps 3—6
to determine the effect of the Iter on thetest signal. (Steps 3—6 can also be repeated for
different test signals.)

Note that the entire process (as described by steps 1—7)an be repeated if we need to ac-
commodate any of thefollowing changesinthe Iter design: (i) the bandwidth of the expected
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Figure 10.5 Computed DFT coef cientsof the Itered sample sequence.
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signal data is changed; (ii) the length N of the Iter is changed; (iii) the desired frequency
response H(f) of the Iter is changed, including the use of different H(f) for high-pass,
band-pass, or notch Iter.

Our general discussion of the experimental procedure above demonstrates how the DFT
and IDFT (hencethe FFT and IFFT) can beused in digital Iteringand Iter construction, and
provides background for readersto pursue specialized Iter applications.
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Chapter 11

Index Mapping and Mixed-Radix
FFTs

Aswe indicate in Part | of this book, it is well known that the fast Fourier transform (FFT)
algorithm can be used to speed up the computation of the DFT if its length N is a power of
two. The family of FFT algorithms speci cally designed to handle composite N = 2™ are
called theradix-2 FFTs. Although the radix-2 FFT is the most widely known and most widely
available, it is, in fact, a specia case of the arbitrary factor (mixed-radix) algorithm proposed
by Cooley and Tukey in [16]. Since the radix-2 FFT tsthe divide-and-conquer paradigm, it
is usualy presented from that perspective, and the general mixed-radix FFTs are easily |eft
out because the divide-and-conquer paradigm does not apply when N is the product of mixed
factors.

In this chapter we explore ways to organize the mixed-radix DFT computation facilitated
by index mapping via multidimensional arrays. This approach would allow us to study alarge
number of mixed-radix FFT algorithmsin a systematic manner, including the radix-2 special
case, and it also paves the way for the more specialized prime factor FFT agorithms covered
in Chapter 13.

11.1 Algebraic DFT versus FFT-Computed DFT

Given N equally spaced discrete-times samples {xg, z1,...,zy_,}, the algebraic DFT for-
mula used throughout Part | of this book was given by

N-1
1 .
(11.1) X, = N E Ty wgé, wy =e 77N forr=0,1,...,N —1,
£=0

which wederivein Chapter 4 by passinga nite Fourier series as an interpol ating trigonometric
polynomial through the N given samples; the associated IDFT formula allows us to recover
the time-domain sequence:

N—-1
(11.2) we= Y Xpwy™, fore=0,1,...,N—1.
r=0

305
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While the FFTs are simply fast algorithms devel oped to compute the DFT, we need to be
aware of the inconsistency concerning the placement of the scaling factor 1/N inthe DFT
formula, because such inconsistency also exists in the mathematical software which imple-
ments the FFT algorithms. It turns out that, in the FFT literature, it is common not to include
division by IV in the computed DFT, because the development of fast algorithms can be quite
involved, and it is cumbersome to carry the scaling factor 1/N all the way through while its
omission has no effect on the resulting algorithms.

Following the conventionin the FFT literature, all FFT algorithmsderived in Part |1 of this
book compute the DFT without the scaling factor 1/N; i.e., for algorithmic development the
computed DFT isde ned by

(11.3) X, = Nzlxg wff, wy =e 72/N - forr=0,1,...,N — 1.
=0
Since the IDFT must return the time-domain sequence {x, }, the computed IDFT isde ned by
1 N-—-1
(11.4) ngNZOer;M, for=0,1,...,N — 1.

Observethat the Inverse FFT (IFFT) algorithms for computing the IDFT can be obtained from
the FFT agorithmsby rede ningw, = e*727/N after including division by N. Therefore, the
IFFT algorithm isimmediately available for every FFT algorithm devel oped.

11.2 The Role of Index Mapping

Index mapping plays a fundamental role in all mixed-radix algorithms ef cient algorithms
aredeveloped by pairing up different index mapping schemes: oneis deployed ontheinput data
seguence, and the other oneis deployed on the DFT output. We consider  rst the general case
when the factors of IV are arbitrary integers. To establish the notation and make explicit the
index manipulation required, we begin with a composite N with three factors. The following
notations will be used consistently throughout this chapter:

e Given three integers Ny, N1, and Nz, we shall use A[Ny, N1, N to declare a 3-D
array of dimensions Ny-by-N;-by-Ns; each element of A will be uniquely identi ed
as A[ng,n1, ne], where each dimensional index n;, can take on values between 0 and
Np—1.

e For N = Ny x Ny x N, the 1-D input array « of length NV is to be identi ed with
(or mapped to) the 3-D array A[Ny, N1, Na]. Assuming (without loss of generality)
that x, s are stored in (or mapped to) A using column-major scheme, we shall use
A[no,nl,ng] to denote Ty for ¢ = noN1Ng + n1Ng + ng, where 0 < ng < Ny—1,
0<m < Nl—l,andO <ng < Noy—1.

e With the dimensions of A[Ny, N1, N2] xed , we now require the 1-D output array X
(of length N) to be identi ed with (or mapped to) a 3-D array B[N, N1, Ny]. Note
that because we reverse the dimensions of the output array, we now use Blng, 711, fig] t0
denote X, for r = 719 N1 N2 + 111 N2 + 12 according the column-major scheme, where
0<ny <Ny3—1,0<1n; <N;—1,and 0 < ng < Ng—1. Observe that the numerical
range covered by dimensional index 7y, is consistent with that covered by 7.
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To develop the three-factor mixed-radix FFT, we shall deploy the index mapping schemes for
x¢ and X,. to decouple the length-N DFT into multiple short DFT or DFT-like transforms of
lengths Ny, Ny and N,. The index mapping schemeis rst deployed on the input data to be
transformed by the DFT formulade ned by (11.3) (without division by NV):

(11.5) Xr:Za:ngE, wy =e 77N forr=0,1,...,N —1;

that is, we use A[ng, n1,n2] to denote x, for £ = na N1 Ny + ny Ny + no, and we obtain the
mathematically equivalent DFT formulainvolving array A and itsindices:

forr .=0to N —1do
No—1 Ni—1 No—1 r(naN1No+ni1No+n
Xy 1= S SN eSS Alng, ma, o] wia N Mo o),
end for

Next the output index mapping r = 7o N1 No + 711 N2 + 71 IS deployed so we can obtain a
mathematically equivalent formulainvolving also array B and itsindices:

for

ng := 0to Ng — 1do
forn; :=0to N; — 1do
for 7o _OtoNg—ldo
7 :=NgN1 Ny + 11 Ny + ng

Blivg,fu1 i) := S n' g Som o (an—o Alng,na,ng] wi ™M NO)) wilm Mol r no

XT = B[’flz, ’fll, ’flo]
end for
end for
end for

The decoupling process begins with the innermost partial sum the expression in brackets
and the entire processis covered in the following three subsections.

11.2.1 The decoupling process—Stage |

In preparation for the decoupling process to occur, we make explicit the computation of every
innermost partial sum  the bracketed expression in the summation formula via double for-
loops indexed by ny and ny, and each computed partial-sum is saved in a 2-D temporary
working array V[ Ny, N;] as shown below:
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rn;
fgﬁ _OtoNg—ldo
7 := NgN1 Ny + 11 Noy + ng
forng :=0to Ny — 1 do
for n1::0t_0N1—1®

Ving,m] := S22y Alng, na, noJwi ")
end for

end for

Blita, i, o] 1= Son0Zg SomiZg Vino, ma] wil™ M wino
XT = B[’flg, ’fll, ’fLQ]

end for
end for
end for

On the surface, the value of each partial sum V[ng, n1] appears to depend on all three (output
array) indicesng, 11, 12 dueto the occurrence of r = 7o N1 Na+n1 Na+no in the exponent of
wi"2NNo) 1f queh dependency cannot be reduced, we must compute the entire V' array for
all different values of g, 71, and 1y aswe do here inside the triple for-loopsindexed by 7,
71, and 75, and no decoupling can occur. Fortunately, this does not have to be the case  we
show next how to compute V' [ng, n1] independent of both 7, and 721 by deploying the output
index mapping scheme on the exponent itself, and we obtain the following result after simple
expansion:

r(nalN1Ng) = (g N1 N2 + 711 No + 712) (na N1.Np)
= (RoN1N2 + 71 N2)(n2aN1No) + fia(naN1No)
= nong N1 NoN1Ng + fiyna No N1 Ng + fig(na N1 Np)
= N(fgna Ny + ning) + nia(na N1 Ny) (. N = NogN1Ns)
= N)+ fiona N1 Ny, where A = figno N1 + fiqna.

Because N = NoN1No, wd = 1, and wy*™® = wy,, we can further smplify the term
wg(n2N1No) — wg/\waLgNlNO _ wzing’

which is now independent of 72y and 72, and so is the content of V[INy, V1] that means we
only need to update array V' as np variesfrom 0 to Ny — 1. This aso means that we compute
V only N, times (instead of N = NyN; N, times). Since we can save all N, copies of
V[No, N1] ina3-D array A;[No, N1, N3], we can compute A, [ng, n1, fiz] in an independent
triple for-loop indexed by ng, n1, and n, as shown below. (Observe that the occurrence of
V[no, n1] in the summation formula has now been replaced by A [ng, 11, 7i2].)
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fO_rTLQ = Ot_ONQ—].®
forn; :=0to N; — 1do
Mﬁg = OtQNQ —1@
Al [no,nl,’flg] = 27]:[22:_01 A[no,nl,ng]wﬁﬁm
end for
end for
end for
Mho = Ot_ONQ—].®
forn; :=0to N; — 1do
Mﬁg = OtQNQ —1@
T i= ﬁQNlNQ +ﬁ1N2 +’fl2

L - - R N
Blita, i1, o] == Y n" (ng_ol Ai[no, na, fio) wit™ 0)>w§”0

XT = B[’flz, TAL17 ﬁo]
end for
end for
end for

Note that a short DFT of length N> isde n ed by the for-loop indexed by 7i5:

for 7o :==0to N, — 1 do
A]_[TLO,TL17’]A”L2] = ZQ;Q;(} A[no,nth] wgg"a
end for

Since each short DFT (of length N5) is computed by the inner loop of the triple for-loop in-
dexed by ng, n1, and 712, we need to compute, in total, Ny N7 (or N/N2) such short transforms
during the rst stage of the decoupled computation.

11.2.2 The decoupling process—Stage 11

To prepare for the next stage of decoupling, we shall do the same with the currently innermost
partial sum the expression in brackets in the remainder of the summation formula. This
time we may use a 1-D temporary working array V' [Ny to save the Ny partial sums explicitly
computed by a newly added for-loop indexed by ny:
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fO_rnO IZOt_ONo—].@
forn; :=0to N; — 1do
for ny :=01to N, — 1 do
Al[no,nl,le] = 27],2]22:_01 A[Tlo,’fll,’fLQ] w
end for
end for
end for
fO_rﬁo IZOt_ONo—].@
forn; :=0to N; — 1do
for ny :=01to N, — 1 do
T i= ﬁ0N1N2+ﬁ1N2+ﬁ2
fO_r’rLQ IZOt_ONQ—].®
V[no] = ZNlil Al [TLQ, ny, ’flg] wz(nlNO)

'fLQTLQ
N2

n1=0
end for
Blna, i, o) := ij:;ol Vno] wi™
XT = B[’flg, ’fll, ’fLQ]
end for
end for

end for

To decouple the computation of array V[Ny], we again analyze the dependence of the term
wL(mN °) on the output indices 7, by expanding the exponent itself using the index mapping
r = 19 N1 No+1n1 No+ns with the following result:

’I"(TllN()) = (’floNlNQ + TAL1N2 + ’flg)(nlNQ)
= noni1NoN1 Ny + (ﬁlNg + ﬁg)(nlNQ)
= N(’flonl) + nyn1 NoNo + ’flg(nlNo).

Because N = NoN1Na, w¥ = 1, and wy°™? = wy,, we can further smplify the term

7(n1 N N(non 2 a2 (n1 N
w (n1No) :UJN( o 1)w21n1N0N2wN2( 1No) _

LNy ﬁQ(nlNO)
N w

le N ’

which dependson 71, and no, but it isindependent of 7. Therefore, we can again compute the
N; x Ny copies of the 1-D array V[Ny] independently, provided we save all of themin a3-D
array A2[Ny, N1, Ny for usein the summation formula. We incorporate the changes bel ow.
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for ng := 0to Ny — 1do
forn, :=0to Ny — 1do
for i, :=0to Ny — 1 do
Ai[ng,na, ] = Y020 Alng, na, o] wiznz
end for
end for
end for
forng :=0to Ny — 1do
for ny :=0to No — 1 do
forn; :=0to N; —1do
Az [nog, Ny, No| = Zf:]f:_ol Aq[no,n1, no) WZQ(nlNO)wzinl
end for
end for
end for
for ng :=0to Ny — 1do
forn; :=0to N; —1do
for ig :=0to Ny — 1 do
r:=fgN1No + 11 No + 7o

B[ﬁg, N, ﬁo] = 27]’:/::—01 Ag [TL(), N, ﬁg] w0
XT = B[flg, ﬁl, ﬁo]
end for
end for

end for

Note that a short DFT-like transform of length V; is de n ed by the for-loop indexed by 71:
forn; :=0to N; — 1do

As[no, iy, o] = SN ) {Al[no,nl,fm] wgz(nlNo)} whm

n1:0
end for

Since each short DFT (of length V;) is computed by the inner loop of the triple for-loop in-
dexed by n, 712, and 711, we need to compute, in total, Ny N2 (or N/N7) such short transforms
during the second stage of the decoupled computation.

11.2.3 The decoupling process—Stage 11

To complete the three-factor mixed-radix FFT, wetreat the last part of the summation formula
in aformal manner with index expansion

™Mo = (ﬁQNlNQ + 11Ny + ’flg)no = ngngN1Na + (ﬁlNQ + ’flg)ng

followed by dependence analysis of the term

o _ wﬁonoNlNgw](VﬁlN2+ﬁ2)”0 _ wﬁonow(ﬁ1N2+ﬁ2)ﬂo
N

Wy No N )

which depends on all three output array indices; hence, we must compute the nal sum in-
side a triple for-loop indexed by ng, 71, and ns. The complete three-factor mixed-radix
FFT algorithm is listed below. Observe that we have saved the N values of na sum into
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As[no, N1, 2] to  be consistent with the usage of A; and A,. Because Ajs[ng, 71, o] CON-
tains the na sum previously assigned to Blig, 711, 79}, We can directly assign the former
value to X, array B is no longer needed. Observe that the same index mapping » =
figN1 Na + 711 N2 + fio identi es the output element X, with As[ng, 21, 7], meaning that
X, isstored in (or mapped to) the 3-D array A3[Ny, N1, N2| using row-major scheme. Since
Aj3[No, N1, No| isthetranspose of B[N, N1, Ny|, thisisafully consistent result, and it shows
once morethat it is the index mapping scheme that counts!

fO_rTLQ = Ot_ONQ—].®
forn; :=0to N; — 1do
Mﬁg :=0to Ny — 1d0
Aq[no,n1, 2] = En;_ol Alng, n1, nal w"2"2
end for
end for
end for
fO_rTLQ = Ot_ONQ—].®
ﬂ’flg = Ot_ON2 - 1@
for n, = 0to Ny — 1d0
As [no, N1, flg] = Efjl_o Al[no,nl,nQ] wnz(nlNO)w?&"l
end for
end for
end for
fO_r’fll = Ot_ONl —1@
for ny :=0to Ny — 1do
for g := 0to Ny — 1do
Ao, in, fio) == SN 70 Aafng, g, ing] w20 omo
r:=fgN1No + 11 No + 7o
Xr = A3[ﬁ0,ﬁ1,ﬁ2]
end for
end for
end for

The short DFT-like transform computed in this stage is of length Ny and it is de ned by the
for-loop indexed by 74:

M’flo =0toNg—1 do
As [ﬁﬂvﬁlvﬁQ] — Zno_o {A2 [n(),nl, nz] w(n1Nz+n2) o}wﬁono

No
end for

Since each short transform (of length Ny) is computed by inner loop of the triple for-loop in-
dexed by 71, 721, and 712, we need to compute, in total, N1 N, (or N/Ng) such short transforms
inthis n al stage of the decoupled computation.

We have devel oped the three-factor algorithm step by step, and it is clear that the pairing of
the column- and row-index mapping schemes are the driving force behind the scene. Of course,
there are many other input and output index mapping schemes, which can pair up to achieve
similar cost reduction, and the corresponding mixed-radix algorithms can now be devel oped
without any dif culty following the steps we have systematically laid out in this section.
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11.3 The Recursive Equation Approach

Theterm recursive equation refers to the single mathematical equation which de nes how
Agl...,ng-1,Rq,...,y—1] Can  be obtained from previousy  computed
Ag_1[...,ng, Rgt1, - -, Ry—1] in @av-factor mixed-radix FFT algorithm. In this section we
shall derive the recursive equation for an arbitrary v-factor FFT, so its meaning and its useful-
ness as a mathematical tool in algorithm representation and extension (to arbitrary number of
factors) will become clear as we progress through this section. With the index mapping back-
ground covered and a three-factor FFT algorithm fully developed in the last section, we can
now present a compact (and fully explainable) version of the mixed-radix algorithm for com-
posite N = Ny x N1 x No, which forms the basis of the so-called recursive equation approach
inthe FFT literature:

Step 0. Map z; to A[ng, n1,ng) for £ = na N1 Ny + n1No + no.

Step 1. Compute A1 [’rl(), ni, ’flg] = ZN2_1 A[no, ni, ’rlg] UJ%EHQ.

na =0

Step 2. Compute Aqy [’rl(), N1, ’flg] = 7],:[11:_01 {Al [Tl(), ni, ’flg] w22(n1 No) } wﬁinl .
Step 3. Compute As [’flo, 1, ’flz] = 7]:[;:_01 {AQ [Tl(), N1, ’flz] wj(\[ﬁlN2+ﬁ2)n0 } wfég"“.

Step 4. Map Ag[flo, N1, flg] to X, for r = ngN1 Ny + 711 Ng + fis.

Itisunderstood that the statement comput e A, [ng, n1, 2] i NStep 1 means compute Ay [ng, n1, o)
for all valuesof ng, ny,n2. (Recal that it was done by atriple for-loop indexed by nq, ny and

n9 in the full algorithm presented in the last section.) Such understanding is assumed for all

steps performing similar computation.

11.3.1 Counting short DFT or DFT-like transforms

In Step 1, each short DFT computes A;[ng, ni, 72 for 0 < i < Ny — 1, and there are
N/N; = NyN; of them. In Step 2, each short DFT-like transform computes Az [ng, 71, fi2]
for0 < n; < N; — 1, and thereare N/N; = Ny N, of them. In Step 3, each short DFT-like
transform computes As[fg, 711, 712] for 0 < ng < Ny — 1, and there are N/Ny = N1 N» of
them.

11.3.2 The recursive equation for arbitrary composite N

In this section we show how a single recursive equation, combined with the index mapping
schemes, may be used to represent the mixed-radix v-factor FFT for arbitrary v. Such arecur-
sive equation needsto be extracted from the v equationswhich de nethe short transformsfor
individual stages of the decoupled computation. Of course one can repeat the analysisand sim-
pli catio n we have performed in developing the three-factor FFT to obtain any v-factor FFT,
or we can simply do it one more time for asuf ciently large number of factors and determine
the pattern to follow for any given v (without repeating the analysisevery time). We ndv=5
(i.e., N=Nyx Ny xNox NsxNy) wouldbesuf ciently largefor this purpose, and we use the
resulting ve-factor FFT to explain an easy-to-follow road map for arbitrary v:
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Step 0. Map z; to A[ng, n1, na, ng, ny] viathe column-major scheme:

é = TL4N3N2N1NQ + ngNQNlNQ + ngNlNO + TllNQ + no.

Step 1. Computethe rst set of N/N, short transformsde ned by

Ni—1
N fanm
A1[no, n1,n2,n3, N4] = E Alng, n1, 2, n3, ng] Wit

nga=0

Step 2. Compute the second set of N/N3 short transformsde ned by

N3—1

A2[n0,n1,n2,fl3,fl4]zg Ai[ng,n1,n2,ng, Na| w
n3=0

'fL4(TL3N2N1N0) ﬁ3n3
N Wyl

Observe that the exponent of the so-caled twiddle factor w, (inside the
braces) is the product of 74 and (nsNaN1Ny)  the former comes from the last
term of the output index map for r as so labeled in Equation (11.7) which de nes the
output index splitting in the paragraph following Step 6, and the latter represents the
second term of the input index map for ¢ as clearly labeled in Equation (11.6) which
de nes theinput index splitting in the paragraph following Step 6.

Step 3. Compute the third set of N/N, short transformsde ned by

Na—1

NN P (M3Na+7na)n2aN1No |, Agn

As[ng, ni, g, N3, Nig] = E Az[no, n1,ng, N3, fug] wy wya
T’LQZO

Observethat the exponent of thetwiddlefactor w, isnow theproduct of (fsNy +
f4) and naN1Ny  the former involves the last two terms of the output index map
for r as labeled in Equation (11.7), and the latter represents the third term of the input
index map for ¢ aslabeled in Equation (11.6).

Step 4. Compute the fourth set of V/N; short transformsde ned by

Ni—1
AN A A NP (n2N3Na+n3Na+na)niNo|  an
Ag[ng, Ny, Mo, Nz, Ny] = E {Ag[no,nl,ng,ng,m]wN Wy
7L1:O

Observe again that the exponent of the twiddle factor w, is the product of two
termsth e rst term now involves the last three terms of the output index map for r as
labeled in Equation (11.7), and the second represents the fourth term of the input index
map for ¢ aslabeled in Equation (11.6).

Step 5. Computethe fth set of short /N transformsde ned by

As[no, 11, Nz, N3, 7]
No—1
_ Z {A4[n0 iy, fin ﬁg ﬁ4] wl(vﬁlN2N3N4+ﬁ2N3N4+ﬁ3N4+ﬁ4)n0}wﬁgno
I I I I N, .
n0:0 ’
For the nal step, the exponent of thetwiddle factor w, i sagain the product of two
termsas onewould now expect: the rst term involvesthe four terms (from the second
to the last) of the output index map for r as labeled in Equation (11.7), and the second
representsthe very last term of the input index map for ¢ as labeled in Equation (11.6).
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Step 6. Map As[fg, 711, N2, i3, N4) to X, viathe row-major scheme:

r= ﬁ0N1N2N3N4 + ﬁ1N2N3N4 + ﬁ2N3N4 + ﬁ3N4 + ’fl4.

Accordingly, the exponent of the twiddle factor in every step of the ve-factor mixed-radix
FFT can be fully speci ed by splitting the two index maps as shown below:

Step (2) Step (3) Step (4)  (5)

—_———— — =
(116) { = TL4N3N2N1NQ + ngNQNlNQ +7l2N1N0 + n1N0 + ng .

Step (5)
Step (4)

(11.7) r = NgIN1NoN3Ny + 11 NoN3Ny + noNg Ny + ng Ny + Nig .

(2
| ——

Step (3)

Since the index mapping equations in the forms of (11.6) and (11.7) are readily available for
composite N with an arbitrary number of factors, and these two equations alone prescribe
the exponent of the twiddle factor in every stage of the decoupled computation, we can fully
express al of the short transforms which collectively represent the mixed-radix FFT we are
seeking. The algorithm can now be abbreviated to one single recursive equation for the K"

step, namely,
(11.8)
Ng—1 .
AK[. .. ,nq_l,ﬁq, e ,’fly_l] = Z {AK—l[- .. ,nq,ﬁq_,_l, e ,’fly_l] wi,KAK}ngnq,
ng=0

where K =v—q=1,2,...,vforqg=v—-1,v—-2,...,0; Ak and Ak arethetwo groupsof terms
identi ed by Step (K) from thetwo index-map splitting equationsfor the v-factor composite
N = Ngx Ny x---x N,_; as explained above. It is understood that Ag[ng,...,n,—1] =
Alng,...,ny—1] and A1 = A1 = 0 when the recursive equation is rst applied to generate
Al [Tl(), . ,flu_l] in Step (1)

Remark: The v-factor FFT developed in this section isreferred to as the Decimation-In-Time
(DIT) FFT, which re ects how theindices ¢ of the time-domain input elements z, are split
according to Equation (11.6).

11.3.3 Specialization to the radix-2 DIT FFT for N = 2"

Since the v-factor mixed-radix FFT was derived without restricting the values of the factors,
it is expected that it would have included radix-2 FFT as a specia case for N = 2. This
is indeed the case, which can be shown clearly for v = 5. The key is to explicitly express
equations (11.6) and (11.7) as

(2) (3 (4) (5)
TS AN A
(11.9) 0=is2% + 032 40227 +7012 + Qg .
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(5)

4
/_/—

(11.10) r=102" 4+ 122 + 22 2+ Ty .
~—~

2
————
3)

Note that we have changed the labels of the dimensional indices to match the binary address—
based notation. To relate the binary addressin the 1-D array to the multidimensional array used
assuming that the 1-D array a, which contains naturally ordered input {z,}, is stored in the
v-D array A by column-major scheme; for the output we express r = 1911727374, and X, =
blr] = blroriTam374] = B[4, T3, T2, 71, T0), @SSUMiNg that the 1-D array b, which contains
naturally ordered output { X, }, is stored in the v-D array B (of dimensions reversed from A)
by column-major scheme.

Toreved theradix-2 FFT, observethat when NV =2¥, each short transform of length N, =2
represents a Cooley—Tikey butter y computation. With w,, =wy’* = —1, we obtainthe ve
steps of aradix-2 DIT FFT for N =2° =32:

Step 1. Compute N/2 short transforms (or butter ies) de ned by
Ailio, i1, 12,13, Ta) = Alio, 1, 12,13,0] + (—1)™ Alio, 41, i2, i3, 1],
or (using binary addresses with 1-D arrays)
a D [ryizigivio] = alOizizirio] + (—1)™a[lizigirio).
Step 2. Compute N/2 short transforms (or butter ies) de ned by
Aslig, i1, 42,73, Ta) = A1lio,i1,12,0, 4] + (—1)73%2\,37414[2'0, i1,12,1,74],
or (using binary addresses with 1-D arrays)
aP[ryr3iginio] = aM [140izirio] + (1) w8 aM [y Ligiyig].

Observethat the twiddle factor associated with the rstterm is:wf\;”'323 =1 because iz =0
in its exponent, and w™4%2” = 3™ in the second term because i; =1 in its exponent.

Step 3. Compute N/2 short transforms (or butter ies) de ned by

T2 w?j (73 2+‘l’4)A2 [

Aslig, i1, T2, T3, Ta] = Asalio, 11,0, 73, 74] + (—1) i0,1,1, 73,74,

or (using binary addresses with 1-D arrays)

T wi(T32+T4) CL(2) [

CL(S) [7‘47‘37’2i1i0] = CL(2) [7‘47‘30i1i0] + (—1) T4T31i1i0].

Observe that the twiddle factor associated with the rst term adwaysw?, = 1 because its
exponent contains iz =0, and the values of w?, w® | w12 are assigned to the second term

depending on the actual value of the exponent i522%(732 + 74), whichissimplied to
4(7‘32 + 7'4) b ecause i, =1.
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Step 4. Compute N/2 short transforms (or butter ies) de ned by

1 W12v(72 2% +732474) As [

Aylio, 11,72, T3, Ta] = Aslio, 0, T2, 73, 74] + (—1) i, 1,72, T3, Ta),

or (using binary addresses with 1-D arrays)

1 wi("’222+7'3 2+T4)a(3) [

a® [rymymamiio] = a® [ramsm0io] + (—1) TaT3T2 Lig).

Thetwiddle factorsinvolvedin thisstep are w?, w2 wi ... Wik

Step 5. Compute N/2 short transforms (or butter ies) de ned by

To

e 23+T 22+‘r‘ 24T
wN‘i 2 3 4A4[

A5[T07 T1, T27T37T4] - A4[07 T1,72, T37T4]+(_1) 177—177—277—37 T4]7

or (using binary addresses with 1-D arrays)

a® rymyramimo] = a® [ramyrym 0] + (—1)Pwp 2 2 Gy 1),

The N/2 twiddle factorsinvolved in thislast step are w9, wl, w?, ... wid.

We have shown that Steps 1 through 5 of the ve-factor mixed radix FFT now prescribethein-
placeradix-2 DIT FFT. For N =32 = 25, the ve stages of decoupled computation correspond
to the ve stages of butter y computation. Since B[r4, 73, T2, T1, To] = As[70, T1, T2, T3, T4,
X, = blromimo7374] = a®[r4m372m170], @0d X, is available from a(®) in bit-reversed order.
For speci ¢ details on binary address-based radix-2 DIT FFTs, interested readers are referred
to[13].

11.4 Other Forms by Alternate Index Splitting

In this section we demonstrate how our systematic approach can be applied at once to obtain
the Decimation-In-Frequency (DIF) form of the mixed-radix FFT, which will also lead us to
the radix-2 DIF FFT when N = 2. We begin with the same example for N = Ny x N1 x Ny
from Section 11.2. Thistime we rst deploy the index mapping scheme on the output { X}
computed by the DFT formula

forr:=0to N —1do

With X, = B[fa, fiy, 9] for r = fig N1 N2 + 71 Na + 72, we obtain the mathematically
equivalent DFT formula:

r no ZZOQN2—1®

end for
end for
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Observe that we have split the exponent of w?* by splitting the given mapping formula
forindex r, i.e,

€ = (RoN1 N3 + iy Na + fa){
(11.11) r (Ano 1 A2 T1iV2 ' Tl2)
= Nl + (n1N2)€ + (nONlNQ)é.

By repeating the decoupling processes performed in Sections 11.2.1, 11.2.2, and 11.2.3, we
obtain alternate sets of recursive equations:

Step 0. Map z, to A[’no, ni, ’ng] for £ = no N1 Ny + n1Ng + np.

Step 1. Compute A1 [’rl(), ni, ’flg] = 7]:/22:_01 {A[Tlo, ni, TLQ] w22(n1N0+n0)} wgg’”.

~ A~ _ lel A ’fll(’I’LQNz) ﬁl”l
Step 2. Compute AQ [’rl(), ni, ’rlg] = an:O {Al [Tl(), ni, ’rlg] Wy } Wy -
Step 3. Compute As|ig, 1, fto] = Yo'y As[ng, i1, fro] wiom.

Step 4. Map A3[fl0, N1, ’flg] to X, for r = ngN1 Ny + 71 Ng + fis.

11.4.1 The recursive equation for arbitrary composite N

We now apply the systematic approach in Section 11.3.2 to obtain the alternately split expo-
nent of the twiddlefactor in every step of a ve-factor mixed-radix FFT:

Step (1)
Step (2)

(11.12) f =ngN3NoN1Ng + n3NoN1Ng +naN1Ng +n1Ng+ ng .

4)
—_——

Step (3)

Step (4) Sep(3)  Sep(2) (1)

(1113) r = n0N1N2N3N4 + n1N2N3N4 + n2N3N4 + TL3N4 + ng .

Since the index mapping equations in the forms of (11.12) and (11.13) are readily available
for composite V with an arbitrary number of factors, and these two equations alone prescribe
the exponent of the twiddle factor in every stage of the decoupled computation, we can fully
express all of the short transforms which collectively represent the mixed-radix FFT we are
seeking. The algorithm can now be abbreviated to one single recursive equation for the K"

step, namely,
(11.14)
Ny—1 A )
AK[. .. ,nq_l,ﬁq, e ,’fly_l] = Z {AK—l[- .. ,nq,ﬁq_,_l, e ,’fly_l] wli\,KAK}ngnq,
nqe=0

where K =v—q=1,2,...,vforg=v—1,v—2,...,0; A\x and A\ are thetwo groups of
termsidenti ed by Step K from thetwo index mapping equationsfor the v-factor composite
N = Nyx Ny x---xN,_1 asexplained above.

Remark: The v-factor FFT developed in this section is referred to as the Decimation-In-
Frequency (DIF) FFT, whichre ects how theindices r of the frequency-domain output ele-
ments X, are splitted according to Equation (11.13).
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11.4.2 Specialization to the radix-2 DIF FFT for N = 2"

To adapt the v-factor mixed-radix FFT for N =2V, the procedureis analogousto that followed
in Section 11.3.3. The key isto explicitly express equations (11.12) and (11.13) as

(€9)

)
—~
(11.15) (=142 +i32% + 0922 + 12+ g ;
~~
(4)
N——
(3)

(4) (3) (2) (1)
v I ale I NN
(11.16) r=102 4+ 122+ 2%+ w2+

As already explained in Section 11.3.3, we use binary address—basd notation to express

{ = i4i3i9i11g, and Ty = a[é] = a[2423222120] = A[io, 11,19,13, i4], assumlng that the
1-D array a, which contains naturally ordered input {x,}, is stored in the v-D array A by
column-major scheme; for the output we expressr = 771727374, and X, = b[r] = b[1oT1T2T37s] =
B|r4, T3, 72,71, T0], @Suming that the 1-D array b, which contains naturally ordered output
{X,},isstored inthe v-D array B (of dimensionsreversed from A) by column-major scheme.

To revea the radix-2 DIF FFT, observe that when N = 2%, each short transform of length

N/2

N, = 2 represents a Gentleman—=ande butter y computation. With wy, = wy’” = —1, we
obtainthe vestepsfor a( ve-factor) radix-2 FFT as shown below.

Step 1. Compute N/2 short transforms (or butter ies) de ned by
Aulio, i1, iz, i3, 74] = {A[io,il,ig,ig,O]—|—(—1)T4A[i0,i1,i2,i3, 1]}w;f*“?’?s“ﬂg“l?“o),
or (using binary addresses with 1-D arrays)
aV [ryigiziyio] = {a[OigigiliQ] + (—1)T4a[1i3i2i1i0]}w;“(iﬁs“zf”ﬂ”o).

The rst step deploys N/2=16 twiddlefactors: w9, wl, w2, ... wib.

Step 2. Compute N/2 short transforms (or butter ies) de ned by
Aslio, i1, iz, 73, 74) = {A1 [0, 1, 42, 0, 7a]+(—1)™ Afig, i1, 42, 1,74]}@32“222*“2““),
or (using binary addresses with 1-D arrays)
a® [ryr3igiyio] = {a(l)[mOigiliO] + (—1)73(1(1)[7412'22'1@'0]}wi“ﬂz*“““)”.

The second step deploys N /22 =8 twiddle factors: w?,w?,w, ... wit

Step 3. Compute N/2 short transforms (or butter ies) de ned by

2. .
Aslig, i1, T2, T3, T4) = {AQ[i0,1170,T3,T4] + (—1)™ Asig, i1, 1,7'3,74]}w222 (12+i0),
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or (using binary addresses with 1-D arrays)
CL(S) [7‘47’37’2i1i0] = {a(2) [7‘47‘30i1i0] + (—1)72a(2) [7_47_312-11-0]}wi(h?ﬁLio)Tz.

Thethird step deploys N/22 = 4 twiddle factors: w9, w?,wd, and w!?

N>

Step 4. Compute N/2 short transforms (or butter ies) de ned by

Aylio, T1, 2,73, T4] = {A3[i0,0772773774] + (=1)™ Aslio, 1,72,73,74]}w2123i07
or (using binary addresses with 1-D arrays)
a(4) [7‘47‘3’7’27’1i0] = {G(B) [T4T3720i0] + (—1)Tla(3) [7473721i0]}w§f0”.
The N/2* = 2 twiddle factorsinvolved in this step are !, and w§ .
Step 5. Compute N/2 short transforms (or butter ies) de ned by
As[10, 71,72, 73, Ta] = A4[0, 71, T2, 73, Ta] 4+ (—1) Ay[1, 71, o, T3, T4,
or (using binary addresses with 1-D arrays)

a® [TaT3TaTiTO) = a® [T4m3m2710] + (—l)T"a(4) [Tam3T2m11].

We have shown that Steps 1 through 5 of the ve-factor mixed-radix FFT now prescribethein-
placeradix-2 DIF FFT. For N =32 = 2%, the ve stages of decoupled computation correspond
to the ve stages of butter y computation. Since B[y, T3, T2, 71, To] = As[70, T1, T2, T3, T4,
X, = bromime7374] = a® [r4m3m071 70], @Nd X, is available from a(®) in bit-reversed order.
For speci ¢ details on binary address—basd radix-2 DIF FFT, interested readers are referred
to [13].



Chapter 12

Kronecker Product Factorization
and FFTs

In this chapter we make explicit the connection between the v-factor mixed-radix FFT algo-
rithms and the Kronecker product factorization of the DFT matrix. This process resultsin a
sparse matrix formulation of the mixed-radix FFT algorithm. Although multidimensional ar-
raysdo not appear inthe nal equation, they remain to beinstrumental in the development, and
the index mapping schemes continue to play an essential role this is not surprising because
the decoupling processes are enabled by the direct manipulation of the indices. Initially the
following two de nitionsare needed in our treatment of the two-factor mixed-radix FFT; other
properties and rules for Kronecker products will be introduced as we progress. Readers are
assumed to be familiar with the content of Chapter 11.

Definition 12.1 Let A be ap-by-g matrix

ai1 air2 -+ Alg

az1 a2 -+ AdA24
(12.1)

ap,1 Gp2 **° Qpgq

Then the vec operator stacks the columns of matrix A on top of one another to form a vector

321



322 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

u.
a1
ap,1
ai 2
a1,1 ai2 -+ QAlyg
. . . Ap,2
(12.2) u=vec | : : =P
ap,1 Gp2 **° Qpgq
a1,q
L%p,q ]

The Kronecker product, also known as a direct product, or atensor product, is de ned for
two matrices of arbitrary dimensions.

Definition 12.2 Let A be a p-by-¢g matrix and B be an m-by-n matrix. Then the Kronecker
product of A and B isdened asthe p-m-by-q-n matrix

al,lB CLLQB e al,qB

CLQJB CLQ’QB e ag’qB
(12.3) ApB=| " . .

apaB  ap2B -+ apB

12.1 Reformulating the Two-Factor Mixed-Radix FFT

Recall that the de n ition of alength-V DFT (excluding division by V)
N-1 N-1 .

(124) X, = Z Towtt = Z Wy, wy= e 72 /N . forr=0,1,...,N — 1,
£=0 £=0

expresses a matrix-vector product X = Quz, whee x = [z9,21,...,25 )7,
X = [Xo,X1,...,Xy_,)T, and ©, denotes the N-by-N DFT matrix dened by
Qy[r, ) =wif for 0 <r, ¢ < N — 1. In this section we shall derive the Kronecker product
factorization of the DFT matrix 2, for N = Ny x N directly from the two-factor mixed-radix
FFT. When a concrete exampleis needed to clarify the construction of various sparse matrices,
we shall use N = 12 with Ny =3 and N; = 4. To obtain the two-factor FFT in multidimen-
sional formulation, weusev =2 and N = Nyx N, inthe recursive equations set up for arbitrary
v-factor composite NV in Section 11.3 of Chapter 11.

Step 0. Map z; to A[ng, n1] for £ = ny Ny + ng.

Step 1. Compute N/N; = Ny short DFT transforms of length Ny :
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fO_r’rLQ = Ot_ONQ_].®
forn, :=0to N; — 1do
Asfno, i) = X012 Alno, ma] win™
end for
end for

Step 2. Compute N/Ny= N; short DFT-like transforms of length Ny:

As[ng, 1] = Zﬁi?:_ol{fh [no, 71] wﬁl”O}wﬁg”O

Step 3. Map Ag[’flo, ’fll] to X, forr = AgNy + 7.

Our task isto rework the two-dimensional formulation of the two-factor mixed-radix FFT into
a sequence of matrix-vector products, which beginswith the multiplication of theinput vector
x by an N-by-N sparse matrix Fy,. Using N = No x N; = 3 x 4, we show below how to
construct the sparse matrix F,, for Step 1.

Now it becomes useful to display the mapping in Step 0 in matrix form: the Ny-by-NV;
matrix A (for Ng = 3 and N; = 4) and its contents are given below. Note that we have
used either ay,, ., Or A[ng,n1] to address the individual elements of matrix A, and we show
ny,n, = ¢ according to the column-major scheme ¢ = ny No+ng = no+3n1:

ap,0 ao,1 Gp,2 ao,3 Lo I3 Te L9
(12-5) A= aio ail air2 @13| = |1 T4 T7 T10
a0 0az1 G22 a3 T2 Ts Ty T11

In Step 1, each of the three short DFTs transforms a row of N; = 4 elements from matrix
A; hence, each transform can be expressed as a matrix-vector product using the 4-by-4 DFT
matrix €24 as shown below.

yo_ 1 1 1 17 _LCQ
Y3 1 wy w? Wl xs
(12.6) = 5 1 & ,
Y6 1 wi wi wy Tg
Yo 1 wi Wi wil Lo
(1] n 1 1 17 [a1]
(12.7) Ya | _ 1 wy wi wi T4
' Y7 1 w? wp G| |z ]|’
Ly10 11 wi w§ wil L2l
[yo ] n 1 1 17 [a2]
(12.8) Ys | _ 1 wy wi wi Ts5
' Us 1 w? wi | | s
lyind 11 wi W wil Lzl
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The same results can be obtained if we directly multiply the vector « by a 12-by-12 sparse
matrix F» which containsthe elements of the 4-by-4 DFT matrix €2, at appropriate locations:

Yo 100 1 0 0 1 0 0 1 0 O Zo
Y1 6100 1 0 0 1 0 0 1 O x1
Y2 coo0o1 o0 0 1 0 o 1 0 0 1 Zo
i 1 00 wg 0 0 w? 0 0 wi 0 0 Z3
Ya 010 0 wg 0 0 wy 0 0 wi O Z4
(12.9) Ys | _ 0001 0 0 ws O4 0 w3 06 0 wi T5
Y6 100 wy 0 0 wy 0 0 wy 0 O T6
Y7 010 0 w2 0 0 w;y 0 0 w§ O x7
Ys 001 0 0 w; 0 0 w;y 0 0 T8
Yo 1 00 w§ 0 0 w§ 0 0 wy 0 O Tg
Y10 010 0 w§ 0 0 w§ 0 0 w] O T10
| Y11 | L0 01 0 0 wy 0 0 w§ 0 0 ]| |z11]

The properly constructed sparse matrix Fo can now be expressed as the Kronecker product of
the 4-by-4 DFT matrix and a 3-by-3 identity matrix:

' 1L 1L 1-I
1-I3 w4-13 wi-Ig wi-Ig
1'I3 wZ-Ig wjf-Ig wff-Ig

].-I3 wi-Ig wg-Ig wff-Ig

(12.10) Fio=Qu01I; =

Accordingly, the computation performed in Step 1 of the two-factor mixed-radix FFT can be
compactly represented by a single matrix equation:

(12.11) y = (2, @1y,) .

Observe that because © = vec A[Ny, V], and y = vec A;[Ny, V7] after each row of
matrix A is multiplied by the DFT matrix €2, (whichis symmetric), the Kronecker product
can also be understood in termsof A and A;:

T
(1212) y=(Qy,®I,,)Vec A = vec { (le -AT) } = vec{A-QNl} =VecA;.

To rework Step 2, observe that the computed length- NV vector y is contained in the Ny-by-
N7 matrix A; at theend of Step 1, which is shown below for N =3 x 4:

ap,0 @p,1 ao,2 o3 Yo Y3 Ys Yo
(12.13) A= a0 a1 a2 3| = |y Y4 Yr Yo
a0 @21 a2 23 Y2 Ys Ys Yu

In Step 2, each element a.,, », in A; must be multiplied by atwiddle factor w?1mo at rst. Our
task isto construct an N-by-N sparse matrix D, so that the same results can be obtained by
the matrix-vector product z = D,-y. Sincethe elementsin vector y are scaled by the diagonal
elements of adiagonal matrix, we know that we must have

zo = Dy[l,0]-ye = wgof” ye if £ =n1Ny+ ng, (Yo = ang.y)

and we can generate the diagonal matrix D,, by advancing ¢ from 0to N —1 according to the
column-major index mapping scheme:
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fork:=0to N —1do initialize Dy to be an
fori:=0to N —1do N-by-N zero matrix
Dyli k] :=0 column by column
end for
end for
{:=
forn, :=0to N; — 1do assign twiddle factors
for ng :=0to Ng — 1do to diagonal elements
Dy [[, f] = wzofh VYo = Gng g :Al[no, ’fll],
L=0+1 and ¢ = 71 Ny + ng
end for
end for

For our examplewith N =12, Ny =3, and N; =4, the matrix-vector product z = D5 -y
isden ed by

20 1000 0 0 OO 0 0 0 O Yo
% 0100 0 00 0 0 OO0 0 n
2 0010 0 000 0 OO0 0 Yo
23 0001 0 00 0 OO0 0 0 Us
24 0000w 0 0 0 0 0 0 0 Ui
25 0000 0 w20 0 0 0 0 0 Us

12.14 = N

(12.14) % 0000 O 0O 1 0 0 0 0 0 Yo
P 0000 0 0 0w 0 0 0 0 yr
2 0000 0 0 0 0 wt o0 0 0 Us
29 0000 0 0 0 0 0 1 0 0 Yo
210 0000 0 0 0 0 0 0w 0 ||yo
z1)] 0000 0 0 0 0 0 0 0 | [y]

Since the vector z can overwrite y, we assume that the modi ed vector z is similarly mapped
to the 3-by-4 matrix A;; i.e., we have

@o,0 Go,1 Go2 @03 20 %3 26 %9
(12.15) A= a1 a1 @2 a3 = |21 24 2r Zio|,
G20 G21 G232 G23 Z2 Z5 28 211

and each short DFT-like computation in Step 2 transforms a column of Ny =3 elements from
the matrix A; (which now contains the N elements of vector z.) Each short transform can
again be expressed as a matrix-vector product using a 3-by-3 DFT matrix €23 as shown below.

Co 1 1 1 Z0 Cg 1 1 1 zZ6
al =11 ws w§ z1, cr|l = |1 ws w§ 27|,
1216 Lc2 ] 11 w§ w§_ L 22 ] K& 1 wg w§ z8
(12.16) fes]  [1 1 17 [as] [ co 1 1 17 [z
Cq| = 1 w3 w§ zZ4 | , Ci1o| — 1 w3 w§ Z10
Lc5 ] 11 w§ w§_ |25 ] LC11 1 w§ w§ 211
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The same results can be obtained if we directly multiply the vector z by a block-diagonal
matrix G2 formed by repeating the 3-by-3 DFT matrix €23 on its diagonal:

a0,0 | co 11 1 0 0O O O O O O O O 20
a1,0 C1 1 w3 w§ 0 0 0 0 0 0 0 0 0 Z1
az0 | c2 1 w§ w§ o 0 0 o0 O o o0 o0 o0 29
ao,1 | c3 o o o1 1 1 0 0 0 0 0 O 23
a1 | ca 0 O 0 1 w3 wg 0 O 0O 0 0 0 24
(12.17) az1 | s | _ 0 0 0 1 w w§ O 0O O O O O Z5
ao,2 | Ce o o o o0 o0 o0 1 1 1 0 0 O 26
1,2 Cr 0 0 0 0 0 0 1 w3 w§ 0 0 0 zZ7
az2 | cs 00 00 0 0 1 w wiy O 0 O zg
ao,3 | ¢9 o o o0 0o OO0 0 0 1 1 1 29
ai,3 | C10 0 0 0 0 0 0 0 0 0 1 w3 w% 210
a2,3 |C11] L 0 0 0 0 0 0 0 0 0 1 w% w§ 1 [*11

The left-hand-side vector ¢ in the equation above contains the elements of matrix As[Ng, V1]
(stacked column by column) as prescribed by Step 2 of the two-factor mixed-radix FFT al-
gorithm. The properly constructed sparse matrix G can how be expressed as the Kronecker
product of a 4-by-4 identity matrix and a 3-by-3 DFT matrix:

1-Q; 0-Q3 093 0-Q Q3
092 1-Q5 0-Q3 0-Q3 Q3
12.18 — L0 = -
(1218) G2 = L@ (% 093 0-Q3 1-Q35 0-9 Q3

0-Q3 093 0-Q3 1-Qj Q3
Accordingly, the computation performed in Step 2 of the two-factor mixed-radix FFT can be
compactly represented by a single matrix equation:

(12.19) c=(Iy,®Qy,) 2z = Iy, ®Qy,)-Dy-y.

Observe that because z = vec A [Ny, V1], and ¢ = vec Az[Ny, N,] after the columns of
A; have been multiplied by the DFT matrix €2, the Kronecker product can aso be under-
stood intermsof A; and As:

(12.20) c= (Iy,®0y,)vec Ay = vec {2, A1} = Vvec A,.

Combining Equations (12.11) and (12.19), the computation performed by Steps 1 and 2
together can still be expressed by a single matrix equation:
vetor y
—
(12.21) c=(Iy,®Qy,) Dy-(Qn, ®1y,) .

vector z

The last step, Step 3, of the two-factor mixed-radix FFT involves mapping As[fg, 1] tO
X, forr = noNy + nq. Torework Step 3, it is again useful to display the required mapping in
matrix form:

Xo X1 X2 X3

X4 X5 Xg X7
Xs X9 X190 Xn1

ap,0 ao,1 Go,2 Qo3
aio ai1 Gi2 a3
a0 a1 a2 G23

(12.22) Ay =
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Using the known relationship between a;,, », and ¢, shown on the left-hand side of Equa-
tion (12.17), together with the known relationship between a;,, 4, and X, asidenti ed by (12.22),
we can now determine the rel ationship between vector ¢ and the naturally ordered output vector
X. For our examplewith N =12, Ny =3, and N; =4, the matrix equation

(12.23) c=Py X,

expressesvector ¢ asthe product of asparse 12-by-12 permutation matrix Py, and the naturally
ordered output vector X;

0,0 _CQ- _XO_ —1 00 0 0 0 0 O0O0O0O0 O__XO_
1,0 C1 X4 00 0 01 0 0O0O0O0O00O0 X1
a2.0 Co Xg 00 0 0 0 O0O0O0OT1TTO0TUO0TU0O0 X2
ao1 | c3 X, 01 00O0O0OO0OOOTGOTU OO X3
a1 | ca X5 000001 O0O0O0GO0OTUO0OTGO Xy
@21 Cs o Xg o 00 0 0 0 O0O0O0OO0OT1UO00O0 X5
(12'24)a0,2c6_X2_001000000000 X
a2 | c7 Xs 0 00OO0OO0OO0OT1O0O0TO0OTUO0OTGO X7
az 2 Cs X10 000 0O0O0OO0OO0OO0ODO0OT1TO0 Xg
ao,3 | co X3 0001 0O0O0OO0OO0OTGO0OTU OO Xy
a1,3 |C10 X7 00 00 0 O0OO0OT1TO0O0TO00O0 X10
@2,3 |C11] _X11_ L 00 0 0 0 O0OO0OO0OO0OO0OO0T1 i _X11_
—— N—— A —
vector ¢ vector ¢ Permutation Matrix P vector X

Observethat ¢ = vec A,, and X = vec AL hence, the same permutation matrix can also be
used to relate vec A, and vec A2

(12.25) vec Ay = Py -vec AL
To generate the N-by- N permutation matrix P,,, observethat in order to satisfy
(1226) Cy = Qpg 0= Ag[ﬁo,fll] = Xr, where/ = ’fllN() + TALQ, r= TALQNl + ny,

we must permute X, the (r+1)** element in the naturally ordered vector X to the (/+1)**
position in vector ¢, which dictates that Py[¢, | =1 for £ =7y No+1g, r =noNy + 1. The
permutation matrix P, can thus be generated by the pseudo-code:

fork:=0to N —1do initialize P, to be an
fori:=0to N —1do N-by-N zero matrix
Pyli,k]:=0 column by column
end for
end for
£:=0

m’fll = 0@N1—1®
for fig :=0to Ny — 1do

r = ngNy + Ny construct P, to permute

Pelt,r] =1 X, to the position of ¢,

{:=0+1 ol =n1Ny+ ng
end for

end for
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Because ¢ = P,-X, we can replace c on the left-hand side of Equation (12.21) by Py - X,
and we can now express the entire two-factor mixed-radix FFT by one matrix equation which
relatesinput vector « directly to output vector X:

vector y

—_—

(22.27) Py - X = (Iy,®Qy,) Dy - (Qn, ®Iy,) .
Vector ¢ vector z

Note that the naturally ordered output vector X can be recovered by multiplying both sides by
the inverse of the permutation matrix P, ' = Pl i.e,

vector y
—
(12.28) X = Pl.(Iy,®Qy,) Dy (O, @1y, .

vector z

Vector ¢

Recall that z = vec A; [Ny, V1], and ¢ = vec A3 [Ny, N;] after each column of matrix A, is
multiplied by the DFT matrix €2, . Using the result from Equation (12.25) on ¢ = vec A, we
obtain

(12.29) X =Pl.c=PlvecA, = PL. (PN-vec Ag) =vec AL
the same holdsfor z = vec A;:
(12.30) Pl.z=Pl.vecA, = P! (PN -vec AlT) —vec AT,

Therefore, theresult X = vec Al can be obtained by transforming P -z = vec A7 directly,
which requires that we transpose A, in advance and multiply the rows of AT (instead of the
columnsof A;) by the DFT matrix Q,, i.e.,

(12.31) X = Pl.c=vec Al = (Qy,®1Iy,)vec AT = (Qy, @1y, ) Plz,
which leadstothe nal expression:

(12.32) X = (Q,®1Iy,) Pl Dy (2, ®1,) .

Factors of the DFT Matrix 2

Comparing the right-hand side of this equation with that of the de ning equation X = €, -
x, we have produced the Kronecker product factorization of the N-by-N DFT matrix Q2
namely,

(12-33) Qy = (QNO ®IN1)'P1:\Z;'DN'(QN1 ®IN0) .

Note that €2 is shown to be the product of four very sparse N-by-N matricestw o of them
are de ned by the Kronecker products, one is a permutation matrix, and one is a diagonal
matrix.

12.2 From Two-Factor to Multi-Factor Mixed-Radix FFT

For multi-factor composite IV, we may always begin with two factors assuming that
No N1
—_—
(1234) N:Fox---xFV_lx Fu ZNQXNl.
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With Ny = N/F, and N; = F,, we apply the results from the last section to factor the
N-by-N DFT matrix €, , and we express

(12.35) X = (Qy,®I,)-PI-Dy-(Q,,®I,,) -z, where Ny = N/F,.

QN

To further decompose the Ny-by-Ny DFT matrix €, we again apply the two-factor re-
sults, because we may express the composite Ny to be the product of two factors:

]VL,71 N1
—_—
(1236) NQ = FQ X X FV_Q X Fy_l = My_l X Fy_l.

With Ng = M, 1 x F,_1, we may express
(12.37) Qu, = (Q, ,®I, ) Pl Dy (Q, L, ).

To show how the Kronecker product (25, ® I,) can beexpanded and simpli ed factor
by factor in a systematic manner, we shall use N = Fy x Fy x Fy x F3 x Fy, and we de ne
My = N/Fy, M3y = My/F3 = N/(F3F}), My = Ms/Fy = N/(FyF3Fy), M, = My /F| =
N/(F1F2F3F4), and M():Ml/FQ:l. We b@ln with N = My x Fy:

(12.38) Qy = (R, ®1,,) -PL-Dy-(Qp,01,,),
N—_———
expanded below

and we continue to factor 2,,, (because M, = M3 x F3), so that we can expand and simplify
the product

(12.39) QM4 ®Ip, = {(QMzs ®IF3) 'PJI»;4 D, - (QFzs ®IM3)} ® I,

using some Kronecker product properties which we are now motivated to learn about in the
next section. After thedetour we shall returnto Equation (12.38) and derivethe matrix equation
for multi-factor mixed-radix FFT.

12.2.1 Selected properties and rules for Kronecker products

Recall that a Kronecker product is de ned for matrices of arbitrary dimensions, but standard
product is de ned only for conformable matrices. Therefore, when standard product A - B
occursin any formulathat follows, it is assumed that the number of columnsin A isequal to
the number of rowsin B so that the expressionisvalid o f course, A itself may be the result
of Kronecker products and/or standard products, and so is B.

The list of Kronecker product properties given below is not exhaustive, and the selection
is based on our needs to decompose the DFT matrix analytically. While many of these results
can be stated as stand alone theoremsto be proved directly by showing that the (i, 7)th element
of the matrix in theleft-hand side is equal to the (4, j)th element of the matrix in the right-hand
side, such a formal proof could be laborious and may not shed light on the meaning of the
equation or how it could be used. For our purpose it is more important to understand what
the equations (representing the properties) mean and how they can be used in the context of
factoring the DFT matrix, and we shall use well-understood examples from the last section to
provide such context in our discussion. Readers interested in the proofs of these properties
may consult [26].
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1. Anidentity matrix of order N = Ny x Ny can be expressed as
(12.40) Iy =1L, @Iy, = Iy, ® I,.
The same holds for zero matrices.
2. If aisascaar, then
(12.41) A®(a-B)=a(A® B).
3. TheKronecker product is distributive with respect to addition, that is,
(1242) (A+B)®C=ARC+B®C; A(B+C)=A®B+AxC.

4. TheKronecker product is associative, that is,
(12.43) AR (BC)=(A®B)®C.

5. Whiletherule (A-B)” = B”- AT holds for standard matrix products, a different rule is
required by the Kronecker product:

(12.44) (Ao B)T = AT @ BT.
6. Thefollowingrule appliesto mixed products:
(12.45) (A® B)-(C®D)=(A-C)® (B-D).

Observe that one standard product occurs on the left-hand side, and two standard prod-
ucts occur on the right-hand side. As stated at the beginning of this section, we shall
assume that the matrices involved make each standard product valid.

The cases involving identity matrixes warrant special attention:

(12.46) (AeI)-I®D)=A®D=(I®D)-(AxI).

(12.47) (A-C)oIT=(AC)oI-I)=(AxI)-(CaI).
The result can be easily extended to the product of more than two matrices:
(1248) (A-C-D)®I=((AC)oI)(DaI)=(AxI)(CeI) (D®I).
7. Whiletherule (A-B)~! = B~".A~" holdsfor the standard product of nonsingular matrices
A and B, adifferent rule isrequired by the Kronecker product:
(12.49) (A9 B '=A"'9@ B
8. If each column of A ismultiplied by matrix Z, then
(12.50) vec{Z-A} = (I ® Z)-vec A.

Recall that (I ® Z) represents ablock diagonal matrix, and that we have demonstrated
thisresult for I, and Z = Q3 when deriving formula (12.20) in Section 12.1. If each
row of A ismultiplied by matrix Y, then

(12.51) vec {A-YT} = (Y @ I)-vec A.

Recall that we have demonstrated this result for I3 and Y = Q4 (which is symmetric)
when deriving formula (12.12) in Section 12.1.
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9. If eachrow of A ismultiplied by matrix Y", and each column of A is multiplied by matrix
Z, then the result is the standard product Z- A-Y 7', which can also be expressed using
Kronecker products and the vector-valued operator vec:

vec{Z-AY' =(I®Z) (Y ®1I)-vec A
(12.52) { } ( ) )
=(Y ® Z)-vec A. (by (12.46), property 6)

10. Thereexist permutation matrices P and Q such that

(12.53) A B=P-(B® A)-Q.

12.2.2 Complete factorization of the DFT matrix

After taking adetour in the Kronecker product algebrain the last subsection, we now return to
completethe factorization of the DFT matrix Q5 of order N = Fyx Fy x Fox F3x Fy. We have
obtained the rst factor PL.-D-(Q,, ® I,,,) by Equation (12.38). After relabeling PL as

"+ and Dy as D;* toreect thedimension N aswell as the two factors being Nog = N/ F}
and N; = Fy, we have

(12.54) QN = (QM4 ®IF4) : :;4 'D§4'(QF4 ®IN/F4) :

The rstfactor R,

Next, using M, = M3 x F3, we proceed to simplify the expansion of (£2,,, ®I,) given by
Equation (12.39):

QM4 ® 1

{ (4, ®15,) ®IF4} {( e - DE4)®IF4}.{(QF?’@IM?,)@I&} -+ (12.48)
= (R, @I, 1) ((QF D) @ I,) - (e, @ Ly ,) - (12.43), (12.40)
:((21\43®IF3-F4)'(((?N}5 D;;i)@-[ ) (QF3®IN/F3)

The second factor Ro

QA{3 ®IF3 QM4 M4 (QF3 ®IM3)} & IF4 (1239)

(12.55)

By repeating the same expansion and reduction process on (2, ® I, ) usng
Ms=Msx F5, we obtain

QI\/I?’ & IF3 Fy

{ Qo @15, @I, p} {(Qﬁ Difg)®Ip3.F4}-{(ﬂp2®IMg)®IF3.F4}

(QMQ®IF2 F3- F4) (( 1523 DII»Z)®IF3F4) (QF2®IMQ~F3~F4)
( Mo ®IF2-F3-F4)' ((Q}f}i DIC;S)®IF3-F4)' (QF2 ®IN/F2)-

Thethird factor R3

M2®IF2 Q]Mz sz;3 (QF2®IM2)}®IF3-F4

(12.56)




332 CHAPTER 12. KRONECKER PRODUCT FACTORIZATION AND FFTS

Following the pattern established by the last two factors, we can express

(1257) QM2 ®IF2-F3-F4 = (QMl ®IF1-F2-F3-F4)' (( ;;'DE;)®IF2-F3-F4)' (QFl ®IN/F1) .

The fourth factor R4

Recall that M, =M,/ F, =N/(F1F>F5F,) = Fy; hence, the fth factor isgiven by

(12.58) Qu, OIn oy myry = iy, @Iy, -
N————
The fthfactor R5

In summary, we have shown that for N = Fy x F x F5 x F3 x Fy, the DFT matrix can be
expressed as the product of ve N-by-N sparse matrices:

(12.59) Qy =R5-Ry R3 Ry Ry,

where each sparse-matrix factor isde ned by mixed products:

4
R, = Q§4'D§4'(QF4®IN/F4)7 N = H Fk7
k=0
3
Ry = <( JiiDJZi) ® IF4> ’ (QF3®IN/F3)7 My = H Fy,
k=0
(12.60) o 2
R; = <( M?DMQ;»,) ® IF3'F4>' (QF2®IN/F2)7 My = H F,
k=0

1
R, = <( 1512 'DJZIQ)®IF2‘F3'F4) ’ (QF1®IN/F1)7 My = H F,
k=0

Rs5 = QFO ®IN/F0-

Recall that the permutation matrix Q%' and the diagonal matrix D" are both fully speci ed
given the values for the dimension N and the (single) factor N1, because the two-factor N =

(N/N1) x N;. For easy reference, we restate the pseudo-code de nitions for Q%' and D;*.
The following code segment generates Q ', which is the transpose of the previously de ned

Py:
fork:=0to N —1do initialize Q3" to bean
fori:=0to N —1do N-by-N zero matrix
QN'[i,k] :==0 column by column
end for
end for
Ny = N/Nl ','two—factorN:(N/Nl)le

{:=n1Ngy + 1o

Qx'[r. 0] =1 B =1and QY = BY
ri=r4+1 o ="noNy 4+ M
end for
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We also repeat here the pseudo-code that generates the diagonal matrix D

fork:=0to N —1do initialize Dy* to bean
fori:=0to N —1do N-by-N zero matrix
Dy'i k] :==0 column by column
end for
end for
No := N/N; " two-factor N = (N/N1) x Ny
{:=0
forn; :=0to N; —1do assign twiddle factors
forng :=0to Nog —1do to diagonal elements
Dﬁl [[, f] = wggﬁl Yl = Qngig =A1[n0, fll],
l:=0+1 and ¢ = 71 Ng + ng
end for
end for

With the DFT matrix €2, completely factored, the ve-factor mixed-radix FFT can be cast
as Ve sparse-matrix-vector products, that is,
DFT

(12.61) X =0yz=Rs <R4- (Rg-(RQ-(Rl-sc)))) .

mixed-radix FFT
The ve steps of the mixed-radix FFT can now be represented compactly by ve matrix equa-
tions:

Step 1
y1 = Ri-xz=Q¢ Dy (U, @1y/r,) ,
Step 2
Yo = Royy = ((Q D) ® L) (e, ® Ly ) 01
Step 3
(12.62)
Y3 = R3-y2 = ((Q:ZDJZ) ®IF3-F4)' (QF2®IN/F2)'y2’
Step 4
Yy = R4'y3 = (( JEE'DJZ;)®IF2-F3-F4)' (QF1®IN/F1)'y3’
Step 5

—

X = R5'y4 = (QF0®IN/F0)'y4-
Observe that the algorithm described by these ve steps actually represents a self-sorting vari-
ant of the mixed-radix algorithm described previously by recursive equationsin Section 11.3.2,
because the former produces naturally ordered X, whereas the latter produces scrambled out-
put c = P- X at the end of Step 5 and all of the re-ordering work to recover X = P%- ¢ is
done in Step 6 regardliess of the number of factors. We discuss how to obtain the particular

factorization which leadsto P- X in Section 12.4.

12.3 Other Forms by Alternate Index Splitting

Recall that the alternate index splitting strategy presented in Section 11.4 in Chapter 11 leads
to the DIF FFT. In this section we shall work out the corresponding Kronecker product fac-
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torization of the DFT matrix. We again begin with the two-factor FFT in multidimensional
formulation based on the recursive equation established for arbitrary v-factor composite N in
Section 11.4 of Chapter 11.

Step 0. Map z; to A[ng, n1] for £ = ny Ny + ng.
Step 1. Compute N/N;= N, short DFT-like transforms of length NV :

for ng :=0to Ny —1do
for ny = Ot_ONl—ldO
Al[n(bﬁl]
end for
end for

S Al mi] o i

Step 2. Compute N/Ny= N; short DFT transforms of length Ny:

forf,; :=0to N; —1do
fi’fl() .—OtQNQ—ldO
Aglig, ] = Yn'Zy Ailno, i) wiome
end for
end for

Step 3. Map Ag[flo, ’fll] to X, forr = AgNy + 7.

Comparing this algorithm with the two-factor algorithm given in the last section, we see that
the twiddle factors contained in the diagonal matrix D, are now applied to vec A =x in Step
1 rather than vec A; in Step 2. Since this is the only difference, we can adapt the matrix
equation from last section without repeating the reformulating process. That is, corresponding
to equation (12.32), we have

(12.63) X = (Qn,®1Iy,) PL-(Qy, ®@1Iy,) Dy - x.

To obtain the complete factorization of the DFT matrix 2, of order N = ]‘[2:0 F, we
have, corresponding to Equation (12.54),

(12.64) Q= (QM4®IF4)-Q§4-(QF4®IN/F4)-D§4 .

The rstfactor R

Theexpansionand reductionof (Q,,, ®1I,) f ollow the same stepsasour derivation of Equa-
tion (12.55), and we obtain the second matrix factor:

QM4 & IF4
= {(QMS®IF3)-Q§3-(QF3®IMg) D;l} QIx, .- (12.64)

= (QMs®IF3‘F4)' (Q51®IF4)'(QF3®IN/F3) (D154®IF4) :

The second factor Ro

(12.65)

The remaining factors can now be easily adapted from the results given by Equations (12.56),
(12.57), and (12.58), and the complete factorization of the DFT matrix €2 is given by

(12.66) Q. =Rs Ry R; Ry Ry,
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where each sparse-matrix factor isde ned by mixed products:
= Q* (U, ®Iy)r,) DS, N = H Fy,

Ry = (Q®1,,) (@ Lyw,) (D2 @L,), My=[] Fu,

(12.67) . .
R; = (QNI§,®IF3'F4)' (QF2®IN/F2)' (DIVI?),@IF% Fy) > M; = H F,

R, = (Q1§12®IF2,F3.F4)' (ﬂFl ®IN/F1)' (D1§12®IF2~F3~F4) , My = H Fkv

R; = QFO ®IN/FO'

12.4 Factorization Results by Alternate Expansion

We commented at the end of Section 12.2.2 that there is more than one way to factor the DFT
matrix even when the indices are mapped and split the same way. In this section we derive
the factorization results which lead to the unordered mixed-radix FFT algorithms given by
recursive equationsin Sections 11.3.2 and 11.4.1 in Chapter 11.

12.4.1 Unordered mixed-radix DIT FFT

We rst show how to obtain a different factorization result directly from Equation (12.28) in
Section 12.1, which is repeated here:

(12.68) X = Pl (Iy,®Qy,) Dy (Qy, @Iy, .
To obtain the complete factorization of the DFT matrix €2 of order N = Hi:o Fy, webegin

with N = My x F;, and we express Equation (12.68) using Ny = M4 and N; = F, aswe have
done many times before. The result is

(12.69) Qy = Q% - (I;,N,,) - Df*- (R, ®1,,,), N = MyxF,.
~—~ N———
P, factor Ry

The expansion and reduction of (I, ®Q,,,), using M= Mj3 x F3, follow the same steps as

our derivation of Equation (12.55), and the result is
IF4 & QM4

= IF4®{ M4'(IF3 ®ﬂMg) D154 (ﬂFg ®I1v13)} (12.69)
(12'70) {IF4® < M4 (IF3®QM3)> } ’ {IF4® (sz;i ) (QF3®IMS)) } (12'48)
= (F4®QM4) <F F3®QM; {IF4® (D;ji (QF3®IMS))} - (12.43), (12.40)
—_——

factor P factor Ry
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After expanding and reducing I,.., ®$2,, aswell astheresulting I, . r, ®Q,,, we
obtain the complete factorization of the DFT matrix € :

(1271) Qy = (P1-Py-P3-Py){R5-Ry-R3-Ry-Ry) = PT-(Rs-Ry-R3-Ry-Ry),
| S —
matrix PT

where PT isthe permutation matrix de ned by the product of
4
P =Q, N=]]F.
k=0

3
Py=1,2Q%, M=]]F,
(12.72) =
Py =1I:5,0®Q;3, M= HFkv
k=0

1
Py=Tiinr,@Qy, M=]]F;
k=0

and each sparse-matrix factor Ry, isde ned by mixed products:
Rl = D:} : (QF4 & IM4)7
R; = IF4 ® <D1€;i ’ (QF?, ® IM3)>’
(12.73) Ry=1I:, ., ® (D;Z (R, ® IMz))’

R4 = IF44F3~F2 & (D]G; . (QFl & IMl))a
Rs =TI, ryryr, ® .
Observe that with the DFT matrix now factored as 2 = P -R5-R,4-R3-Rs- Ry, wecan
rewritethe DFT as

(12.74) X:ﬁ?VF-Lw:PT-{R5-<R4-(R3-(R2-(R1-m))))}.

Since PT denotes a permutation matrix, we have P7 = P~!, and we obtain the mixed-radix
FFT which computes P-X :

(12.75) P.X =Rs- (R4- (Rg-(RQ-(Rl-a;)))> .

unordered mixed-radix DIT FFT

The vestepsrepresented by y,, = Ry-y,_,.fork =1,...,5, withy, = x, now corresponds
to the steps of the mixed-radix algorithm which produces the scrambled output P-X and
was previoudly described by the recursive equationsin Sections 11.3.2 in Chapter 11.
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12.4.2 Unordered mixed-radix DIF FFT

Recall that the alternate index splitting strategy presented in Section 11.4 in Chapter 11 leads
to the DIF FFT. Following our explanation in Section 12.3, we obtain the matrix eguation
representing the two-factor DIF FFT directly from Equation (12.68), that is,

(12.76) X = Pl (Iy,®Qy,) (Qy,®1Iy,) Dy .

Note that because the change from D, - (Qu, ®Iy,) in Equation (12.68) to

(Qn, ® Iy,) - Dy in Equation (12.76) is con ned within the factor R, it has no effect
on the expansion process. Therefore, for N = Fy x Fy x F'5 X F5 x F4, we can obtain the fac-
torization results matching the unordered DIF FFT directly from Equation (12.73) by making
the same change within each factor:

Rl - (QF4 ® IM4) 'D1547

Ro— 1. ® ((% 1) -D;;3>,
(12.77) Rs = IF4,F3 & <(QF2 ® IMQ) : D:Z)’

Ry = IF4-F3-F2 & ((QFl b2 IMl) : D]ZIQ)’
R5 = IF44F3~F2~F1 ® QF0~

Since the expansion process is not affected by the changes we made, the permutation matrix
PT isden ed by Equation (12.72) as before, and we have obtained the desired factorization
DFT

(12.78) X:QN-:B:PT-R5-<R4-(R3-(R2-(R1-m)))),

unordered mixed-radix DIF FFT

which leads to the unordered mixed-radix DIF FFT that computes P-X by

(12.79) P.X =Rs- (R4- (Rg-(RQ-(Rl-m)))> .

unordered mixed-radix DIF FFT

12.5 Unordered FFT for Scrambled Input

In the last section we derived two unordered mixed-radix FFT agorithms which transform
naturally ordered input « to scrambled output ¢ = P - X, and separate re-ordering steps
are required to unscramble ¢ to recover X = P7T . ¢. The re-ordering steps are speci ed by
the Kronecker product factorization of the permutation matrix PT, that is, X = P;- (PQ-
(Pg(P4C)))

Because of the symmetry of the DFT matrix, i.e., 2 = Q7 adifferent FFT algorithm can
be produced from the K ronecker product factorization of Q7 to  get that, we simply transpose
thefactors of Q. That is, corresponding to

(1280) 2 = (Py-P2-P3-Py){Rs-Ry-Ry-Ry-Ry) = PT-(Rs-Ry-Rs-Ry-R)),
| S —

matrix PT
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we now have

(12.81) Q) = (R{-R; R} R}| ‘R!) (P]-P; P} -P{)-= (R{-R}-R}-R|-R.)-P

matrix P

Using the factors of 7, we can rewrite the DFT as

DFT
(1282  X-0,2-9 c-Rl (Rg- (RgT-(Rf-(R?(P'@)))) :

unordered mixed-radix FFT

Observe that the resulting mixed-radix FFT algorithm transforms scrambled input P - x to
naturally ordered output X .

For the DIT FFT, we obtain the factors Rf from Ry, in Equation (12.73). In deriving each

T given below, we apply the standard product rule (A- B)T = B”. AT, the Kronecker

product rule (A ® B)T = AT @ B, and we make use of the fact that the DFT matrix €2,

diagonal matrix D, and identity matrix I are all symmetric matrices regardless of their order.

T
RT = (D§4 . (QF4 ® IM4)> = (QF4 & IM4) 'D§4a

R

<

T
=I!® (Df;?; (2 ® IM3)> =1, ® ((QFS ® ILy,) - DA‘Z’;)
12.83 T
1283) pr_p7 @ (Dfﬁg (0, © L)) ) - ((% 91,,) - D;g)

T
Ry =1I,,® (D;Z; (2, ® IMl)) =Iryrym, ® ((Qpl @ Ly,) - D;};)
Rg = IF4‘F3~F2~F1 ® QFO'

For the DIF FFT, we obtain the factors R;‘f directly fromthefactors R, in Equation (12.77)
by similar steps:

R{ = D§4 : (QF4 & IJVI4)7

Rg = IF4 ® <DJIZ ’ (QFs ® IM3))7

(12.84) Rl =1, . ® ( - (e, ® IMQ))
R =1 1, ® (D;}Q (2, ® IMl)>,

Rg = IF4~F3~F2'F1 ® QFO'
For both DIT and DIF agorithms, the permutation matrix P= P+ - P1. PT. PT, where each
factor P} can be obtained from the factor P, in Equation (12.72):

N N s
P2 - (IF4 ® QM4) = IF4 16;2 o My = M3 x Fy3,
P3 - (I Fy @ M3) =Ip p, ® Q&{;, M3 = My X Fy,
(IF4 gy @ ng) =1Ir, ryr, ® Q1v12 Mo = My x Fy = Fyx Fry.

PT = (@) =@M, -~ N=MyxF,,

(12.85)
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12.6 Utilities of the Kronecker Product Factorization

In the preceding sections we have derived six different factorization results of the DFT matrix,
which lead to the compact expressions of six different mixed-radix FFTs, and they correspond
to the six canonical forms of the radix-2 FFTs derived in Chapters 7, 8, and 9in [13]. How do
we make use of these compact, but somewhat abstract, expressionsin our study, development,
and implementation of the various mixed-radix FFTs? We address this question below.

First of dl, it allows us to characterize each algorithm by the matrix equation which rep-
resents a typical step. For the six algorithms we have derived for N = H’;zé Fy, atypica
step is represented by y; = R3-y,, whichissuf cient for many purposeswhen all ve steps
have been laid out to provide context and allow immediate generalization to arbitrary number
of factorsif needed.

1. Self-sorting mixed-radix DITyy FFT: Thenaturally orderedinput = and naturally ordered
output X areindicated by the subscript NN.

(12-86) Ys = (( 12 D]Gi) & IF3,F4) : (QF2®IN/F2)'y2'
2. Self-sorting mixed-radix DIF\y FFT:
(12.87) Y3 = ( 12 ®IF34F4)' (QF2 ®IN/F2)'(D1€123 ®IF3vF4) *Ys.

3. Unordered mixed-radix DITygr FFT: Thenaturally ordered input 2 and scrambled output
P-X areindicated by the subscript NR.

(12.88) Ys =Ip,p, ® (Dj;?3 (Qp, ® IM2)) Y.
4, Unordered mixed-radix DIFNg FFT:

(12.89) Yy = Ir,r, @ ((Qp, ® Ly,) - D2 ) -y
5. Unordered mixed-radix DITry FFT: The scrambled input P - x and naturally ordered
output X areindicated by the subscript RN.

(12.90) Ys=1Ip,.p, ® ((QF2 ® IL,) -D;jz) Yo
6. Unordered mixed-radix DIFgN FFT:

(12.91) Y3 =L, v, @ (D2 - (R, © Ls,)) - Yo

When each algorithm is characterized by a single matrix equation, we have a mathematical
basisto study and compare different algorithmsin a systematic manner.

For the four unordered FFT, the re-ordering step can be studied separately by analyzing the
Kronecker product factorization of the permutation matrix P or P. For example, a careful
study of how to re-distribute the permutations imposed by the factors of P? throughout all
steps resultsin the in-place self-sorting mixed-radix FFT proposed by Tempertonin [49].

Second, each matrix equation tells us, in precise (but abstract) mathematical terms, exactly
what needs to be computed in a typical step, which helps us focus our thoughts and efforts
when developing (or trying to understand or evaluate) the computer program implementing
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each algorithm. Note that the focus would be on deciphering the matrix equation and perform-
ing equivalent operations directly on the 1-D array y,, because no sparse matrix used in the
mathematical equation would actually be formed in an ef cien t implementation.

Third, the extension from the two-factor case to the multi-factor case was made easy using
the rules of matrix algebrafor Kronecker products.

Fourth, recall that the DITry FFT and DIFgy FFT were generated directly from rearranging
the factors which previously form the matrix equation for the DITyr and DIFng FFT. There-
fore, it is not surprising that many other FFT variants can be derived using the matrix algebra
of Kronecker products. For example, researchers have tailored the mixed-radix FFT to com-
posite transform length V formed by certain factors  e.g., power of aspeci c factor, product
of speci ¢ factors, product combining mixed factors and power of speci c factors, product
of pairwise-primefactors, ..., etc. by direct manipulation of the matrix egquation and/or by
incorporating specially designed index mapping schemesinto the matrix equation.



Chapter 13

The Family of Prime Factor FFT
Algorithms

The prime factor algorithms (PFAS) are specialized mixed-radix algorithms which are based
on factoring the transform length into pairwise prime factors. For example, if we factor
N =12 = 3 x 4, then the two factors Ny = 3 and N; = 4 are relatively prime because their
greatest common divisor gcd(3,4) = 1; if we factor N =60 =3 x4 x 5, then the three factors
No =3, N1 =4, and N, =5 are said to be pairwise prime, because we have gcd(3,4) = 1,
gced(4,5)=1, andgecd(3,5) =1. Note that in the multi-factor case, meeting the pairwise prime
condition guarantees that any two products of arbitrary factors are also relatively prime for
example, gcd(3x4,5)=1, gcd(3,4x5) =1, and gcd(3x5,4) =1. Althoughthe rst primefac-
tor algorithm was published by Good [24] prior to the introduction of the decimation-in-time
mixed-radix FFT by Cooley and Tukey [16], we shall derivein Section 13.2 the two-factor PFA
by adding bells and whistles to the simpler and more easily understood mixed-radix FFT, us-
ing a so the various algorithmic and/or mathematical tools we have established and thoroughly
explained in deriving the family of mixed-radix FFTsin Chapters11 and 12.

Although a DFT of composite length NV can be computed by a mixed-radix FFT whether
the factors of IV are pairwise prime or not, it was recognized by Cooley et. al. in [15] that
the prime factor algorithm can be extremely useful when used in combination with the mixed-
radix algorithm. They further clari ed in [15] that the prime factor algorithm described by
Good [24] had been mistakenly said to be equivalent to Cooley and Tukey s arbitrary-factor
(mixed-radix) FFT algorithm, and they stressed the importance of distinguishing between these
two algorithms since each has its particular advantages which can be exploited in appropriate
circumstances. Thisisindeed the case, and the family of primefactor algorithmshas continued
to grow with further development by Kolbaand Parks[31], Winograd [55], Burrus and Eschen-
bacher [9], Nussbaumer [35], Rothweiler [41], Otto [36], and Temperton [45, 46, 47, 48, 50].
After we discuss the design and implementation of the prime factor algorithm, it will be clear
that the PFA has the following advantages:

e Whenthefactorsare pairwise prime, the PFA incursfewer arithmetic operationsthan the
mixed-radix FFT, because the twiddle factors are eliminated and the associated scaling
operations are not required in the PFA.

e |t can be useful to combinethe PFA with aradix-2 FFT. For example, if N = Ny x Ny =

341
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512 x 77, then the two factors Ny = 512 and N; = 77 are relatively prime, we can
use prime factor algorithm to set up DFTs of lengths Ny and N;. Then each DFT of
length Ny = 512 = 2° can be computed by a radix-2 FFT, and each DFT of length
N1 =77 =7 x 11 can be computed by a prime factor algorithm.

e |t can also be useful to combine the PFA with an arbitrary factor (mixed-radix) FFT. For
example, if N = 4 x 9 x 25 x 49, we can factor N = Ny x Ny with Ny = Ny =
2 x 3 x 5 x 7, and use the mixed-radix FFT to set up DFTs of lengths Ny and N;. The
PFA can then be used to compute each DFT of length Ny = N1 = 2 x 3 x 5 x 7, because
thefactors Fy = 2, Fy = 3, F» = 5, and F3 = 7 are pairwise prime.

e Theindexing schemes used by the PFA can be made simpler than that required for the
mixed-radix FFT.

e The PFA is easy to program because of the elimination of twiddle factors and the sim-
plicity of the indexing scheme.

e A sdlf-sorting in-place PFA is available and it is equally easy to program.

Asto the theory behind the PFA, in Section 13.5 we shall formally introduce afew relevant
concepts from elementary number theory concerning the properties of integers, and we pro-
ceed to prove the Chinese Remainder Theorem (CRT), because CRT and CRT-related index
maps are responsible for the number-theoretic splitting of the DFT matrix, which gives rise
to the PFA. Although the matrix equation representing the two-factor PFA can be expanded
(using the rules of matrix algebra for Kronecker products) to represent the multi-factor PFA
as previously done for the mixed-radix FFT, it remains important to acquire the background
in number theory to understand the theoretical aspects of the multi-factor index map, because
an ef cien t implementation of the multi-factor PFA depends on a number of theoretical results
which aresigni cant in their own right.

In the remainder of thischapter we shall consider some practical issuesrelated to the perfor-
mance of the primefactor algorithms, includingtheef cient implementation of the multi-factor
PFA and the computation of short DFTs or short rotated DFTsin the PFA.

13.1 Connecting the Relevant Ideas

Weshall rst review and connect the relevant ideas from the preceding two chaptersin the con-
text of deriving and extending a two-factor mixed-radix FFT expressed by Equation (12.27):

(13.1) Py-X =vecA; = (Iy,®2y,) - Dy-(Qy, ®1Iy,)-VecA, where N = Ny x N;.
inputx
Recall that we went through the following stages before we arrived at Equation (13.1):
Stage | We assumed that the input sequence x was stored in matrix A[Ny, V1] by standard
column-major index mapping scheme, and the output sequence X was stored in ma-

trix B[Ny, Ny] (which is the transpose of the intermediate matrix As[Ng, N1]) also by
column-major index mapping scheme.

Stage Il We combine the two predetermined index mapping schemes with the chosen index
splitting scheme to decouple the DFT computation into multiple short DFT or DFT-like
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transforms along the columns and rows of the input matrix A[Ny, N;] and the interme-
diate matrix A [N(), Nl] .

Stage 11 We then derivethe Kronecker product factorization of the DFT matrix €2, by trans-
lating the operations performed on columnsand rows of matrices A and A, to equivalent
matrix operations on the two vectors vec A and vec A1, which were extended from the
two matrices column by column.

Stage IV Based on the predetermined index mapping schemes for input  and output X, we
were able to identify = = vec A and X = vec B = vec AZ. The latter leads us to
de neapermutation matrix P, suchthat P, -X = vec As,.

Stage V We obtain the factorization of the DFT matrix 2 by writing (13.1) as
(13.2) X = Pl (Iy,®Qy,) Dy (Qy, @Iy,) @ = Q-2

Kronecker product factorization of €2

Once we have factored 2, we may use the rules of matrix algebrafor Kronecker productsto
incorporate the similarly factored €2, into (13.2) if Ny remains composite, and this process
can be repeated until we obtain the formulafor the desired mixed-radix FFT.

We show next that the prime factor algorithms may be derived viastagesin parallel to those
we have just reviewed in this section.

13.2 Deriving the Two-Factor PFA

In this section our objectiveis to derive the two-factor prime factor FFT given by

(13.3) Py X = (Iy,®0,) (Qn, @1y, ) Qy -,
N—— - _
vecB VvecA

where N = Ny x N7 and gcd(Ny, N1) = 1; Py and Q,, are specialy designed permutation
matrices to be discussed in detail below. Comparing Equation (13.3) with Equation (13.1),
we see that all scaling operations involving twiddle factors on the diagonal of D, have been
eliminated thisisthe key feature of the prime factor FFT.

Withthe ve-stageroad map set up in thelast section, we now derive (13.3) stage by stage.
Whenever a concrete exampleis needed, we shall use Ny = 3 and N; = 4 as before for easy
comparison thisis possible because the two factors are relatively prime.

13.2.1 Stage I: Nonstandard index mapping schemes

As described by Burrus and Eschenbacher in [9], the Ruritanian map is used to store input
sequence x in matrix A[Ny, N;], and the Chinese Remainder Theorem (CRT) map is used to
store output sequence X in matrix B[Ng, N1].

The Ruritanian index mapping scheme de nes

(134) Ty = A[no, nl] if ¢ = <N17LQ + N0n1>N dZEf residue of (Nlno + Nonl) modulo N.

It is useful to display the mapping in matrix form for N = Ny x Ny = 3 x 4. According
to (13.4), A[ng, n1] (denoted aso by a,, »,) storesz, for

{= <N1n0 + N0n1>N = <4Tl() + 3n1>N;
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we thus have

(13.5) A=

ap,0 ao,1 Go,2 Qo3 To T3 Te  T9
aio ai1 air2 @13| = |T4 T7 T10 T1| -
a0 0az1 G22 a3 rg Ti1 T2 Ts

Note that vecA # x. (Thisiswhere Q,,, the permutation matrix associated with vecA, comes
in.)
The CRT index mapping scheme de nes
(13.6)
X, = Blng, ] if r = (pNifg + ¢Nofa) % residue of (pN1fg + qNon1) modulo N,

where0 < p < Ng and 0 < g < N; areintegers satisfying
(137) pN1 =sNog+1, qNog=tN;+1, forintegerSO<s<N1, 0 <t< Np.

Thisiscalled the CRT map because the existence of integers p, s, ¢, and ¢t are guaranteed by the
Chinese remainder theorem (to be discussed in Section 13.5.3) when Ny and N, arerelatively
prime. It is also useful to display the mapping in matrix form for N = Ny x N1 = 3 x 4. For
this simple example, we can determinetheintegersp = 1, s = 1, ¢ = 3, and ¢t = 2 by trial and
error, and we know B, 711 (denoted also by by, 7, ) stores X, for

r= <pN1ﬁ0 + qNQ’fL1>N = <4TAL0 + 9fl1>

N

We thus have
bo,o bo1 bo2 bogs Xo X9 X6 X3
(13.8) B=|bio biqi big big|=|Xa X1 X0 Xr
bao ba1 b2a bags Xs X5 Xo Xpg

As pointed out by Tempertonin[45], theinverse CRT map determinesn and 7, from = mod
Ny and r mod N; (whichareaso derivedin Section 13.5.3),i.e.,

(13.9) X, = Blg, i) if g = (r) y , and iy = (r) .

Notethat vecB # X, either. (Thisiswhere P, the permutation matrix associated with vecB,
comesin.)

With the existence of p and ¢ satisfying (13.7) guaranteed by the Chinese remainder theo-
rem, the inverse Ruritanian map for z, = A[no, n1] isgiven by

(13.10) ng = <p€>NO, ny = <q€>Nl,

where0 < p < Ng and 0 < g < N; areintegers satisfying (13.7) above, which can also be
expressed as

(13.12) (PN1)y, =1, {gNo)y, =1.

The Ruritanian index map is formally presented in Section 13.5.5.
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13.2.2 Stage Il: Decoupling the DFT computation

M
Sincew? = 1, itisafact that w¥ = w1<v >N. Accordingly, we may use ¢ = Nying + Noni
instead of £ = (Nyng + Noni ), when ¢ appears in the exponent of w,. After we substitute
xp = Alng,n1] and £ = Nyng + Nynq inthe DFT formula, the X, s may be computed by the
for-loop:

=

forr:=0to N —1do

N No—1 ~Ni—-1 r-(Ning+Non1)
XT T Zn():() anzﬂ A[nOanl] Wy 1o ort .
end for

To split the exponent of w,, we substitute r = pN17g + ¢Ngn1, instead of using r =
<leﬁ0 + qNo’fL1>N, and we obtain

r - (Ning + Noni) = (pNi7wg + g¢Nony) - (Ning + Nony)
(13.12) = pNifono + pN1Nofoni + ¢N1 Noiing + gNghing
= pN2hgno + pNigny + gNiyng + gNZin,.

Using wy = 1, together with pN; = sNy + 1 and ¢Ny = tN; + 1 from Equation (13.7), we
simplify

7-(Nyng+Non1) __  pNingno PNagn gNAn gNgaing
W = Wy e Ol.wN 1m0 Ly
__, PNfagng Ny\pRon N\gN1no qNgning
=Wy ’ (wN) ’ (wN) "WN
(pN1)N1AgnQ (gNg)Ngn1ny N

= Wy c Wi Cwy =1

(13.13) (Cwy=1)
_ (sNg+1)Niagng (tN1+1)Ngayny
= wy “Wy
_ Ningng , , ,Ngning «+.,NogNy _ , N __
= Wy Wy (- wy =wh=1)
__ ,hono _, Aing .., \Nog _ Ni __
_wNO Why - ( Wy~ = Wnyy Wy _wNO)

Substituting X, = B[, 7] and the now simpli ed Wi (Vimot+Nony) =wpomo. ™ inthe
for-loop indexed by r, we are ready to decouplethe DFT which is now described by the double
for-loop indexed by 7 and 71 :

B[ﬁ07ﬁ1] = Z*{Z?;Ol <Zq]’>f11_01 A[”Oa nl] wginl> wggno
end for
end for

Applying the decoupling technique we have learned in Chapter 11, we can compute the brack-
eted short DFT in anindependent double for-loop indexed by ny and 711, and we have suc-
cessfully decoupled the DFT into Ny short DFTs of length N, plus N; short DFTs of length
Np:
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fO_rTLQ = Ot_ONQ—].®
forfn, :=0to N; —1do
Ai[no,ny] == 22711;01 Alng, n4] wﬁi"l
end for
end for
m’fll = OtQNl —1@
m’flo = Ot_ONQ—:[@

B[’flo,fll] = Zf:](?:_ﬂl Al[no,fll] wf@g”‘)

Since agenuine two-dimensional DFT is de ned on input matrix x[No, N1] (which rep-
resents, among other possibilities, actual datafrom a2-D image of dimensions Ny-by-N;) and
output matrix X [Ng, V1] by the formula

No—1N;—1

(13.14) X(ro,m] = Z Z xVOv[l]wzrvlfleTV%zo’
Lo=0 ¢,=0

for0 < rg < Np—1land0 < r; < Ny — 1, we have now successfully mapped the given
length-N one-dimensional DFT X = Q,x by permutations (of both input and output) into
a true two-dimensional DFT with respect to the input matrix A[Ny, V1] and output matrix
B[Ny, Ny].

13.2.3 Organizing the PFA computation—Part 1

Recall that for our example with Ny = 3 and N; = 4, the N = Ny x Ny = 12 input and
output elements are stored in matrices A and B according to the Ruritanian and CRT maps
respectively:

o xr3 T pits) Xo Xg X6 Xg
(1315) A= T4 XT7 10 X1 ; B = X4 X1 XlO X7
Ts Tyl T2 Ts Xs X5 Xo X

While it is convenient to describe the two-factor PFA agorithm as performing the short
DFT on each column and each row of matrix A, in actual implementation we do not need to
physically store the input datain a 2-D matrix, provided that we can access the right group of
elements directly from the input array {x,} in an equally convenient manner. We shall now
use the same exampl e to describe the direct access methods proposed by Temperton [45].

At r st, to help focus our attention on the indices, we replace the input and output maps by
two integer maps, namely,

0 3 6 9 09 6 3
4 7 10 1}; B=|4 1 10 7]|.
8 8 5

11 2

(13.16) A=

Our objective is to generate the indices contained in the matrices row by row or column by
column without storing the entire matrices. For each mapping scheme, we show how to achieve
this objective below.
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1. For the Ruritanian map contained in matrix A, we only need to use the Ruritanian for-
mulato obtain the rstrow {0, 3, 6, 9}. After taking a close look of the indicesin the
second row of matrix A, it appearsthat {4, 7, 10, 1} can be generated by computing

(13.17) (0+N1) ., (3+N1) ., (6+N1)_, (9+N1)

where N1 =4 and N = Ny x N1 =12. Thisisindeed the case. Similarly, the third row of
indices can be generated from the second row and so on.

N’ N’ N’ N’

If one deals with columns, the indices in the second column can be generated from the
r st by computing

(13.18) (04 No),, (4+No),, (8+Noj,,

WhereN0:3 and N=NyxN;=12.

The same results are obtained if we use the Ruritanian mapping formulato compute the
indices one by one. Suppose

/= A[no,nl] = <TLON1 + n1N0>

then
A[TLQ + 1,n1] = <(TLO +1)N: + TL1N0>N = <€—|— N1>N§

A[ng,n1 + 1] = <TLQN1 + (n1 + 1)N0>N = <€—|— N0>N.

For arbitrary v > 2, the v-dimensional Ruritanian map is formally introduced in Sec-
tion 13.5.5.

2. For the CRT map contained in matrix B, we only need to use the CRT formula to
generatethe rst row, and the second row is obtained by

(8 cyclicshiftingthe r strowto get {3, 0, 9, 6};
(b) increasing the cyclic shifted indices by one, i.e., obtain
{341,0+1,9+1,64+1}=1{4,1,10,7}
as the second row.

Similarly, by adding oneto {7, 4, 1, 10} (which is the result from cyclic shifting the
second row {4, 1, 10, 7}), we obtain the third row in B. The generation of indices
column by column follows the same pattern.

The same results are obtained if we use the inverse CRT map (see Section 13.5.4) to
relate 7y and 727 (row and column indices of Blng, 71]) to r, the index of the output
element X, mapped to B, 711]. SUppose
r= B[ﬁo,ﬁl], then ng = <7’>N0, ny = <T‘>N1,
which impliesthat
(no +1)n, = (r+1)n,, and (g + 1)n, = (r+1)x,.

By Chinese remainder theorem (to be covered in Section 13.5.3), the mapping from r to
no and iy isunigque, and we have

T+ 1= B[<ﬁ0 + 1>N07 <ﬁ1 + 1>N1]'

For arbitrary v > 2, the v-dimensional CRT map isformally introduced in Section 13.5.4.
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13.3 Matrix Formulation of the Two-Factor PFA

13.3.1 Stage I11: The Kronecker product factorization

With the twiddl e factors (or phase factors) totally absent, the now decoupled length-N DFT can
be computed by performing IV, short DFT of length N; aong the rows of matrix A[Ng, V]
(containing Q, - x), followed by N; short DFT of length N, along the columns of the inter-
mediate matrix A;[Ny, N1]. These operationsare trandlated to equivalent operationson vec A
and vec A as before, and we immediately obtain the desired matrix equation:

VecAq
(13.19) vecB = (Iy, ®Qy,) (Qn, ®1Iy,)-VECA .
Pn-X QnX

Note that this matrix equation expresses the denition of a true two-dimensional DFT on
matrices A[No, N1] and B[Ny, N, ] as explained at the end of Stage |l.

13.3.2 Stage IV: Defining permutation matrices

To demonstrate the relationship between vec A and the input sequence x and that between
vec B and the output sequence X via permutation matrices, we resort to our example for
N = Ny x N1 = 3 x4. Based on the Ruritanian map explicitly given for this example by
Equation (13.5), we show that vec A is the product of a sparse 12-by-12 permutation matrix
Q,, and vector x.

a0,0 | To 10 0 000O0O0OO0OO0OGOTO Zo
aio | T4 00001 O0O0O0O0TO0TO0O0 1
as,0 | vs 000 0O0O0OO0OO0OT1TTO0OTO0OO0 T2
ao1 | T3 0001 0O0OO0OO0OO0OTO0OTO0O@O x3
aiq | x7 00 00O0O0OO0OT1TO0TO0TGO0O T4
a2,1 |T11 o 00 0 0 0 0 O0O0O0OO0OO0 1 I5
(13.20 a2 76| |0 0 0 0 0 0 1 00 0 0 0]
a1,2 |Z10 0O 0 0 00 O0O0O0OO0OO0DT1T0O0 XT7
az2 | T2 001 00O0OO0OO0OTO0OTO0OT 0O g
ao,3 | w9 00 00O0O0OO0OO0OO0OT1TTO0@®O0 T
1,3 T 01 0 0 0 O0O0O0OO0OO0OO00O0 10
@23 | Ts | L 0O 0 0 0 01 0O0O0O0O00O0 1 [T11]
—— A —

vecA Permutation Matrix Q, , vector X
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Based on the CRT map explicitly given for this example by Equation (13.8), we show that
vec B isthe product of a sparse 12-by-12 permutation matrix P;» and vector X.

bo.o [ Xo 1 00 00O0O0O0OTO OO O0T[Xo
bio | X4 000O0T10O0O0TO0O0O0O0]|]|X;
bao | Xs 000O0O0OTO0OTO0O00]||X2
boa | Xo 000O0O0OOOO0T1O0O0]||X;s
bii | X1 01000000000 0]|X4
boy | Xs| |0 00001 00O0O0O0O0||Xs
(13:21) boa | Xe| |0 0O 0O 0001 O0O0O0 0 O [|Xs
bia | X0 000O0O0OTO0OO0O0T1 0]|Xy
boo | Xo 001 00O0O0UO0O0O0O0 0]|Xs
bos | X3 0001 00O0UO0UO0O0O0 0]|X
bis | X7 000O0O0O0DOT1O000 0]|Xp
bes [ X121/ [0 0O 0O 00 O0O0O0O0O 0 1 |[Xi1
~—— K —
vec B Permutation Matrix P2 vector X

For arbitrarily given N = Ny x N; subject to the condition gcd(Ny, N1) = 1, the N-by-
N permutation matrix Q,, (associated with vec A) is constructed by the pseudo-code which
implementsthe Ruritanianindex map £ = (Nin9+ Noni ) so that, throughthe multiplication
of Q,, =, can be permuted to the position of ay,, », in vec A.

fori:=0to N —1do initialize Qy tobean
fork:=0to N —1do N-by-N zero matrix
Qnlk, 7 :=0 column by column
end for
end for
k:=0

forn; :=0to N; —1do
ﬂno = Ot_ONQ—:[@

€ := (Nino+ Non1) construct Q,, to
Qvlk, € =1 permute z¢ t0 @y, n,
k=k+1 location for next ay,, », invec A
end for
end for

Accordingly, a short and precise mathematical den ition for Qu [k, ¢),0 < k,£ < N —1,is
given by

1 ifk=n1Nyg+nopand/? = <N17”LQ + N0n1>
0 otherwise.

N

(13.22) %qu{

Similarly, the permutation matrix P, (associated with vec B) isconstructed by the pseudo-
code which implements the CRT index map r = (pNi7g + qN0ﬁ1>N so that, through the
multiplication of Py, X, can be permuted to the position of by, 5, invecB.
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fori:=0to N —1do initialize P, to be an
fork:=0to N —1do N-by-N zero matrix
Pylk, i =0 column by column
end for
end for
k:=0

m’fll = 0@N1—1®
for g :=01to Ny — 1 do

r:= (pNifg + qNof1) construct Py, to
Pylk,r] =1 permute X, t0 by, 7,
ki=k+1 location for next by, », in vec B
end for
end for

Theden itionfor Py [k, r], 0 < k, ¢ < N — 1, can thus be compactly expressed as

1 ifk=n1No+noandr = <pN1’fl0 + qNQ’fL1>
0 otherwise.

(13.23) Pk, r] = { N’
13.3.3 Stage V: Completing the matrix factorization

Since P, isapermutation matrix, itsinverseis simply itstranspose, i.e., P! = PL, and we
may rewrite Equation (13.3) as

(13.24) X = Pl (I, ®Qy,)- (2, ®1y,)-Q - .

Kronecker product factorization of €2 n

The Kronecker product factorization of the DFT matrix €2, can thus be expressed as
(13.25) Qy =Pl (I, @0,) (O, @1y,) Qy = PL-(Qx, @0y, )- Q-

Note that if we multiply both sides of Equation (13.25) by the inverses of the permutation
matrices, the sameresult can be expressed asthe Kronecker product factorization of apermuted
DFT matrix:

(13.26) Py-Qy-QF = Q,, 0Qy,.

This result is referred to as the number-theoretic  splitting of the DFT matrix in the FFT
literature, because the number theoretic properties of the indices (or addresses) of the data are
exploited by the index maps, which are expressed through the permutation matrices Q,, and
P,.

13.4 Matrix Formulation of the Multi-Factor PFA

In parallel to our derivation of the ve-factor mixed-radix FFT in Section 12.2.2, we now derive
the PFA for N = Fyx Fy x Fox F3x Fy, where F, s arepairwise prime. Wede ne M,=N/Fy,
Ms=My/F3=N/(F3Fy), My= Ms3/Fy=N/(FyF5Fy), My =M,/F,=N/(F1F>2F3Fy),
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and My=M;/Fy=1. We beginwith N = M, x F,. Because M, and F, arerelatively prime,
we factor Q2 according to (13.25), i.e.,

(13.27) Qy =Pl (Q,20,)-Q,,

where Q) is obtained from (13.22) with the two factors Ny and N; replaced by M, and Fy,
and we use p4 and g4, instead of p and ¢, to label the constants associated with the CRT map
basedon N = My x Fjy:

. 1 ifk=nMy+npand?= <F47L0+M4711>N;
(13.28) Qulh, 1] = { 0 otherwise.
(13.29) P [k 7”] _ 1 ifk=nMy+noandr = <p4F4fLQ + Q4M4ﬁ1>N;
' M 0 otherwise.

Since My = M3 x F3, where M3 and F3 are relatively prime, the My-by-M, DFT matrix
Q,,, can be similarly factored:

(13.30) Qu, = P, (0, ©Q,) Q-
Using the right-hand side of (13.30) and the rules of matrix algebra for Kronecker products,
we may now expand theterm Q,, ®Q,,, i n (13.27):
U, © D, = U, © [PL(2,000,)- Q|
= (IF4 ’ QF4) ® |:P154' (QF?, ®QM3) : QM4:|

I, ®Pr

_ ( M4).{QF4 ® [(QF3®QMS)-QM4]}
- (ropt) {@n 1) e [@nen.) @)

= (I, ® P ) (R0, © 0, 090.,) - (1,2Q,,).
When the expanded result isincorporated into (13.27), we obtain

(13.32) Q, =Pl (I e ® PZ§4) (Qr, © Qi @usy) (I, ©Q,, ) - Q-
to be expanded further

Since M3 = M, x Fy, where M, and F; are relatively prime, the DFT matrix €2,,, can be
factored in exactly the same manner as 2, , and we proceed to expandtheterm Q,, ® Q,, ®
Q,,,. Observethat 2, ® O, = Gy, iSamatrix of dimension F; x F3 = N/Ms3; hence,
the expansion result of the Kronecker product Gy, ® Q,,, isreadily available from (13.31)
if we substitute 2, and Q,,, by G x/u.,, £2,,, @d de n e the factors and permutation matrices
accordingly:

(13.31)

QF4 ® QF3 ® QMg
= (QF4 & QF3) ® Q}Wg
= Gnyng & QM3
- ( T, ® p{@) (Gryary @ Dy ® Qagy) - (Topsy, ©Q,,,)  (from (13.31))
- (IN/MS ® P]:‘;B) (U, @ ey @ Dy @ Q) (L, © Qo).

to be expanded further

(13.33)
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Since My = Fy x Fy, where Fyy and F; arerelatively prime, we apply (13.31) again to complete
the expansion:

Qp, @Qp, @ Dy, @ Qyy
= (QF4 ® QF3 ® QF2) ® QM2
13.34
B3~ (g, 0 PL) [(% &0 ©0) 0 R @D, | (Lo, © Q)
- (IN/MQ ® PJ?I;) ) (QF4 ® QF3 ® QF2 ® QFI ® QFO) ’ (IN/M2 ® QMQ)'

For N = Fy x F| x Fy x F3 x Fy, where F}, s are pairwise prime, the complete factorization
of the DFT matrix can thus be expressed as

(13.35) Qe =U"" (0, ® U, @, @R, ® Q) -V,

whereUT and V are N-by-N permutation matricesde ned by the products of sparse permu-
tation matrices used during each step of the expansion process:

T
(1336) UT = (IN/M2 & PMQ) : (IN/M3 & P]Mg) : (IN/M4 & PM4) : PN
=P (Iype, @ Py, - (Tonsy ® Py,) - (Lo, @ Py )5
(13-37) V= (IN/Mz ® QMQ) : (IN/M?, ® QM?,) : (IN/M4 ® QM4) ) QN'

The matrix equation representing the ve-factor PFA can be obtained directly from (13.35),
with permutation matricesU and V' de ned by (13.36) and (13.37):
DFT

—~ = T
(13.39) X=0y2=U" (2, @, ©Q, @0, 2Q,,)-V-z.

13.4.1 Organizing the PFA computation—Part 2
The PFA based on (13.38) can be written as

(13.39) X = (%, @, @y, @ Qp, @ Q) &,

where X = UX and & = V denote the permuted output and input vectors. In this section
we shall discuss how to organize the computation of X according to (13.39), assuming & is
already available. (The generation of scrambled & from naturally ordered input «, as well as
the recovery of naturally ordered X from scrambled output X, will be examined after we
study the mathematical theory behind the specially designed index mapping schemes in the
next section.)

Observe that the computation of

(13.40) X=(A9oB)&d=I®B)-(AxI)&
Ry Ry

can be easily handled by extracting matrix factors R, and R, from the Kronecker product
AR B:
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Step 1. Computez, = Ry &, where Ry = A® I;
Step 2. Compute X = R &, where R, = I @ B.

Accordingly, we can organize the computation of (13.39) by splitting the Kronecker prod-
uct

(13.41) X =(% 0%, 00,00, @0 )&=(ARB)&

in various ways. For example, we may proceed as follows: let A., = €, let B,, =
Qp, @ Qp, ® Ny, @ Ny, and we express

(13.42) Q, ® By, = (I, ® Bu,) - (O, ® L,)

I®B AQI

to extract sparse-matrix factor Ry = Q, ® I,,,.
To extract the second matrix factor Rj, this process can be repeated by splitting

(13.43) I, @ By, = I, @ Qp, @ L, @ L, @ Ny = Ayjng, @ By
A B

Again, because A®@ B = (I ® B)-(A® I), weobtain
(13-44) Ry = AN/Mg & IMg = IF4 ® QF3 & IM;,'
It followsthat R3 can be extracted from splitting

(1345) IN/M3 & BIWS = IN/M3 & QF2 b2 QFl b2 QFO

A B

in the same manner, and we obtain
(1346) R3 = AN/M2 ® IM2 - IN/M3 ® QF2 & IM2 .

The remaining two factors R4 and R; can be extracted from splitting I u, ® B, = I, @
Qp @ Qpy = Anyp, ® O, resultingin

(13.47) R, = AN/Fo b2 IFO = IN/IWQ ® QFl ® IFo ) R; = IN/Fo ® QFO'
With all ve sparse matrix factors available, we can now express
(13.48) X = (2, @ R, @, @ Ve, ® Q) & = (R5-Ry-R3-Ry-Ry) i,

and the computation of X can be organized as

(13.49) X = {R5- (R4-(R3-(R2-(R1-ﬁ;)))> }

13.5 Number Theory and Index Mapping by Permutations

In the last two sections we made use of specially designed index mappingsto derive the prime-
factor algorithms in matrix form. In this section we study the theory behind these index
mappings, and we will see how all v-factor PFAs (v > 2) can be obtained directly from v-
dimensional index mappings with proven mathematical properties.
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13.5.1 Some fundamental properties of integers

The division of aby b: Let a and b be two integers with b positive. We can nd integers ¢
and r to satisfy the equation

(13.50) a=bxqg+r, 0<r<hb,

where b is called the modulus, ¢ is called the quotient, and r is called the remainder.
When r = 0, b and ¢ are factors or divisors of a, and b is said to divide a, commonly
denoted by b|a. When a has no other divisorsthan 1 and a, a is prime. In al other
cases, a iscomposite.

The greatest common divisor: Thelargest number whichisadivisor of botha and ciscalled
the greatest common divisor of a and ¢, and we denote it by gcd(a, ¢).

Relative primality: If gcd(a, c) = 1, then a and ¢ have no other common divisor than 1; they
are caled relatively (or mutualy) prime.

Congruent modulo b: If a = bx g+randc = bx s+, thena and ¢ are said to be congruent
modulo b, denoted by

(13.51) c=amodb or a = ¢ mod b.

For example, using b = 7 as the modulus, we have 19 = 40 mod 7 because 40 =
7x5+5and 19 = 7 x 2+ 5. Notethat for each xed modulusb, a = b x ¢+ r istreated
as an equivalencerelation, and we could obtain the same remainder » for in nitely many
choicesof ¢ a |l these choices of a are congruent with respect to modulusb.

For every ¢ = a mod b, we immediately havea — ¢ = b x (¢ — s) + 0. Hence, the
positive b divides (a — ¢), and we have

(13.52) b|(a—c)iff ¢ =amodbd.

That is, two integers with the same residue modulo b must differ by a multiple of 4. In
the example above we have 19 = 40 mod 7, whichimplies 7 | (40 — 19), and vice versa
Observethatif a = b x g+ r,thend | (a — r), and we have r = a mod b as expected.

For the example 19 = 40 mod 7, wethushave 5 = 40 mod 7 and 5 = 19 mod 7.

Residue modulo b: If a = b x ¢ + r, the arithmetic operation to produce only the residue of
a modulo b is denoted by

(13.53) <a>b =r.

For example, (40). = 5, (19). = 5,and (5)
directly expressed as (40). = (19)_ = (5)

= 5. The equality of the residues can be

-3

7

Rules of residue (or modular) arithmetic: Since the residue of « modulo b is restricted to
therange0 < r < b — 1 determined by the modulus, the following rules may be used to
simplify (a), when a is givenin a computationally dif cult form.

(13.54) (a1 £ az), = ({a1)p = (a2)s),
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(13.55) (a1 x az), = ({a1)y  (az)s),

It was pointed out by McClellan and Rader [33] that in actually performing computa-
tions, one can always replace a congruence ¢ = a mod b, which describes a relation
among whole classes of numbers with the same residue, by the equality of the residues
(¢), = (a),. Now therules of computation may be applied to both sides as needed.

Euclid’s algorithm: This algorithm uses division method to n d gcd(A, C), where A and C
are two positive integers. We shall describe the algorithm, demonstrate how it works,
and prove that the result produced by Euclid s algorithm is indeed the greatest common
divisor. To determine gcd(A, C), Euclid s agorithm computes the following sequence
of remaindersiteratively:

Compute Ry = <A>c

Ry = <C>R0
Ry = (Ro)p,
(13.56) :
until Ry, = (Ry—2), =0

If Ryp=0thengcd(A,C)=C
else gcd(A,C) =R,

As shown in the following examples, Euclid salgorithm is easy to apply.

Example 13.1 Let A = 165 and C = 99; we simply compute the remainders as re-

quired by the algorithm:
Ry = (165),, = 66
Ry =(99). . =33
(13.57) 1= (9)s0
Ry = (66),, = 0

gcd(165,99) = R; = 33.

To nd out whether A and C are relatively prime, we may use Euclid s algorithm to
determinewhether gcd(A4, C) = 1.

Example 13.2 Let A = 195, B = 124, Euclid salgorithm ndsgcd(195,124) = 1 as

expected.
Ry = (195),,, =71
Ry = (124)_ =53
Ry =(T1),, =18
(1359) Ry = (53),, =17
Ry =(18),, =
Rs =(17), =0
ged(195,124) = Ry = 1
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Note that Euclid s agorithm assumesthat A and C' are positive integers without 10ss of
generality, because ged(+4, +C) = ged(|£A[, |[+C|) = ged(4, C), one only needs
to nd the greatest common divisor of two positive integers.

We show next that gcd( A, C) isindeed computed by Euclid salgorithm. If Ry = 0, then
the algorithm terminates, and C is the greatest common divisor as expected. Otherwise,
we note the following:

1. The remainders generated by Euclid s algorithm are decreasing in value because
0<Ry<C,0<R; <Rg,~-,0< R < R_1implies0 < R < Rj_1 <
.-+ < Ry < Ro; hence, R, = 0 is expected after nite number of steps.

2. Theresidues Ry, s computed by Euclid salgorithm satisfy the following equations:

A=C xqy+ Ry
C=Roxq + Ry
Ro =Ry X g2+ Ry
(13.59) Ry =Ry x g3+ s

R,u—3 = R,u—Z X qu—1+ R,u—l
Ru72 = Rp,fl X qpu + 0. ( RH = 0)

Since R, = 0 inthelast equation, we establishthat R,,_; dividesR,,_»;i.e, R, _1
isafactor of R,,_». Observethat R,,_3 isalinear combinationof R, _, and R, _1,
where R,,_» contains R,,_; asafactor; wethusestablishthat R, isalso afactor
of R,_3. Sincethisargument appliesto each preceding equation in the system, we
conclude that R,,_; is afactor of C' (from the second equation) and A (from the
r st equation.)

3. Now that R, is a common divisor of A and C, we show next that no other
common divisor of A and C' is greater than R,_;. Letting positive integer D
denote an arbitrary common divisor of A and C, we substitute A = D x M and
C = D x Finto the division equation A = C x g9 + Ry, and we rewrite the
system (13.59) as

Ry=A—-Cxqgq=DxM-—-DxF xq
Ri=C—Ryxqu=DxF—Ryxq
Ry =Ro— R1 X q2

(13.60) Rz = Ri — Ry X g3

R,u—l = R,u—B - R,u—2 X qu—1
0=R, 2 R, 1 %q. (R, =0)

From the rst equation in the system (13.60) we see that D divides Ry; hence,
D < Ry. From the next equation we establish that D divides R; because D isa
factor in the right-hand side; hence, D < R;. By continuing this argument with
each subsequent equation, we establishthat D | R,,_1 and D < R,,_;. Thisproves
that R,,_, isthe greatest common divisor of A and C.
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As pointed out by Nussbhaumer in [35], an important consequence of Euclid s algorithm
isthat gcd(A, C') can be expressed as a linear combination of A and C. That is, there
exist integers p and ¢ such that

(13.61) pA +qC = ged(4, O).

This result can be easily established from system (13.60): The rst equation expresses
Ry as alinear combination of A and C; the second equation shows that R; is alinear
combination of A and C' using R, from the preceding equation. Given Ry and R, the
fact that Ry, isalinear combination of Ry41 and Ry, dictatesthat R,,_; = gcd(A4, C)
isalinear combination of A and C.

Bezout’s relation When A and C arerelatively prime, the relation given by (13.61) is known
asBezout srelation: There exist integers p and ¢ such that

(13.62) pA+q¢C =1 ifged(4,C) = 1.

Diophantine equation Thelinear equation with integer coef cients A, C, and K given by
(13.63) Az +Cy—K =0 or Az +Cy=K

is called the Diophantine equation. From (13.61) we know that Diophantine equation
has integer solutions p and ¢ if K = D = gcd(A4, C). Observe that with the right-hand
side K = D, ifweexpressA=D x MandC = D x F, solving (13.63) is equivalent
to solving

(13.64) Mx + Fy =1, wheregcd(M, F) = 1.

We remark that thereareanin nite number of integer solutionsto the Diophantine equa-
tion given by (13.63). To seethis, assumethat integers p and ¢ form a particular solution;
by subtracting Ap + Cq = K from Ax + Cy = K we obtain

(13.65) Al@=p)+Cly—q) =0 o Az —p)=Clg—y).
We may now factor out D = gecd(A, C) from A and C in (13.65) to abtain
(13.66) M(z —p)=F(q¢-1y), wheregcd(M, F) =1,

and it follows that

(13.67) Fl(x—p) = z=p+mxF, wherem isany integer.
Substituting x = p + m x F into (13.66), we obtain

(13.68) Mxm=q—y = y=q—mXx M.

Consequently, an in nite number of linearly related solutions may be generated from a
particular solution according to (13.67) and (13.68), one for each choice of integer m.

Example 13.3 Suppose that a particular solution to the Diophantine equation 165z +
99y = 33 isknowntobex = p = —1landy = ¢ = 2. Using D = gcd(165,99) = 33
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found by Euclid s algorithm, we determine M = 165/D = 5and F' = 99/D = 3.
Hence a general solution can be described as

(13.69) x=—-14+3m, y=2-—>5m, wherem isany integer.

For each nonzero m, a different solution is generated: e.g., for m = —2, we obtain
xr=—-7andy = 12;form = 7, weobtanxz = 20 and y = —33.

In general, a Diophantine equation of the form Ax + Cy = K hasinteger solutions if
andonlyif D = gcd(A, C) divides K. To seethis, observe that the existence of integers
z and y to satisfy Az + Cy = D(Mz + Fy) = K impliesthat D divides K; hence, the
latter is easily established as a necessary condition. To establish the same asasuf cient
condition, we observethat if D divides K, then we may express K = D x d, whered is
an integer, and we can rewrite Az + Cy = K asMxz + Fy = d, wheregcd(M, F) = 1.
The solution z and y now exist because we have already established that integer solution
forz = x/d and § = y/d exists for the equivalent problem of solving

(13.70) Mi+Fj=1, ged(M,F)=1.

FromZz and g werecover x =d x Zandy = d X §.

Solving Diophantine equation by Euclid’s algorithm Aniterativeprocessfor nding the so-

lutionsto
(13.71) Az + Cy =gcd(A4,C)

can be derived from, and explicitly built into, Euclid s algorithm described by sys-
tem (13.60). We begin with expressing R, as alinear combination of A and C:
Ro=A—-Cxq
(13.72) = Aag + Ccq
= a=1, co=—qo-

Using Ry = Aag + Ccp in the second equation, we obtain

Ri=C—-Ryxq
= —Aapgq1 +C(1 — ¢
(1373 oq1 + C(1 = coq1)
= Aa; + Ccq

= a1 = —aoq1, ¢1=1—coq1.
Using Ry = Aay + Ccy for k = 0 and k& = 1 in the third equation, we obtain
Ry =Ry — Ri X ¢
(13.74) Z jic;o;g;qz) + C(co — c192)

= Qa2 =ap — ai1q2, C2 = Co — C1q2.

Because the rest of Euclid s algorithm computes the same equation R, = Rjp_o —
Rr_1 X qr for k = 2,3,..., the pattern for computing a; and c; from ax_1, cx_1
and ¢, has been revealed as
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(13.75) ap = Ap—2 — Qg—1 X Qk, Ck = Ch—2 — Ch—1 X i, Kk >2.

These two equations can now be built into Euclid s algorithm as shown below.

Ry=A-Cxqo

ap =1, co =—qo
Ry =C—-Ryxq
ap=—-apXq, a=1—coxq
Ry =Ro— R1 X q2
(13.76) az = ap —ai X gz, €2 =Co—C1 X g2

Rz = Ry — Ry X g3

Rufl = Ru73 - Ru72 X qu—1
Au—1 =03 —Au—-2 X qu-1, Cyu—1=Cy—3 —Cu—2 X qu-1
0=Ry2—Ry1%qu (-R,=0)

Hence, this revised Euclid s algorithm computes R,,_1 = gcd(A, C) and solves, at the
sametime, Az + C'y = R, with solutionsz = a,—; andy = c,—1, wherep > 1
assuming that Ry # 0. (If Ry = 0, then C = gcd(A4, C), theequation Az + Cy = C
with A = C x go can be solved by inspection. This case can be easily taken care of in
the computer program when implementing Euclid s algorithm.)
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Example 13.4 Therevised Euclid algorithm determinesgcd(195, 124) = 1 and solves 195z +
124y = 1 as shown below.

Ry=A-Cxqg=195-124x1="71

ap=1, co=—qo=—1

RlzC—Rgxq1:124—71><1:53
alz—aoquz—].Xl:—].

01:1—CQXQ1:1—(—1)X1:2

RQZRQ—R1XQQ:71—53X1=18
agzao—alxqul—(—l)x1:2

02200—61XQQ:—1—2X1:—3

RgZRl—RQXQ3:53—18X2=17
CL3:CL1—a2Xq3:—1—2X2:—5

c3=c1—caxqg3=2—(-3)x2=38

R4=R2—R3XQ4:18—17X1=1
ag=as—azxq=2—(-5)x1="7
C4=CQ—C3XQ4:—3—8X1:—11

R5=R3—R4XQ5:17—1X17=O

The solutions found are z = a4 = 7and y = ¢4 = —11. It can be easily veri ed that
195x7+124x(—11) = 1365—1364 = 1. Usingzy = 7andyo, = —11 asaparticular solution,
we can generate an in nite number of linearly related solutions according to Equations (13.67)
and (13.68), and they are

r=7T+124m, y=—11—195m,

where m is any integer.

Theorem 13.1 If Az + Cy = D = gcd(A4, C), then z and y are relatively prime.
Proof: Recall that solving the given equation is equivalent to solving

(13.77) Mx+ Fy=1, gcd(M,F)=1,

where M = A/D, F = C/D. Supposegcd(z,y) = d > 0. If we substitute z = d x & and
y =d x g into (13.77), we obtain

(13.78) dx (MZ+ Fj) =1,

which dictatesthat d is afactor of 1; hence, d = 1, and gcd(z,y) = d = 1. [ |
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Theorem 13.2 The Diophantine equation written in the following form
(13.79) Mz=Fz+1, ged(M,F)=1, M >0, F>0,
has general solutionsin the form

(13.80) r=x9o+mxF, z=z+mxM,

where xy and z, denote a particular solution, and m is any integer. The given equation has a
uniquesolutionx = pand z = sif therangeisrestrictedto0 < p < F—land0 < s < M —1.

Proof: Observethat we can rewrite the given equationintheform Mz + Fy = 1 if weden e
y = —z. Hence al of the previous results apply, and we can solve for 2 and y using Euclid s
algorithm as before. The properties of the solutions 2 and z are then the properties of = and
—y. Notethat for M > 0 and F' > 0, the nonzero integer solutions x and y of the equation
Mz + Fy = 1 must have oppositesigns: i.e,, eitherz > 0andy < 0orx < 0andy > 0. We
can thus conclude that = and z = —y must be both positive or both negative.

Following (13.67), the general solution z = x9 + m x F; following (13.68), the genera
solutiony = yo —m x M leadstoz = —y = —(yo —m X M) = zp + m x M.

To obtain solutionsintherange0 < p < FF—1and0 < s < M — 1, observe that we can
awayschoosem > 0sothat g = 2o+ m x ' > 0and 2y = zg + m x M > 0, and we
de ne

(13.81) p={(To)r, s={(Z0)um,

sothat0 < p=F)—aF < F—1land0 < s=2y— M < M — 1 formunique solutionsin
the speci ed ranges. |

Example 13.5 Recall that xy = 7 and yg = —11 satisfying 1952 + 124y = 1 were found
by Euclid s algorithm; hence, positive o = 7 and positive zo = —yo = 11 satisfy 1952 =
124y 4+ 1. Notethat p = 7 and s = 11 form unique solution in therange 0 < p < 124 and
0 <s<195.

Since the general solutionisgivenby x = 7+ 124m and z = 11 4+ 195m, for m = —1 we
have negative z; = —117 and negative z; = —184. Sincez; < 0andy; = —z; > 0 solve
195z + 124y = 1, the equation 124y = 195t + 1 fory > 0 and¢ = —z > 0 can be solved
by y = y1 = 184 andt = —z; = 117. Note that the unique solution of 195p = 124s + 1 is
different from that of 124¢ = 195¢ + 1, athough 0 < p,t < 124 and 0 < ¢, s < 195. The
latter form and its solutions are formalized in the next theorem.

Theorem 13.3 The Diophantine equation written in the following form
(13.82) Fy=Muw+1, gcd(M,F)=1, M >0, F >0,
has general solutionsin the form

(13.83) y=yo+mxM, w=wy+mXxEF

where yo and wy denote a particular solution, and m is any integer. The given equation has a
uniquesolutiony = g andw = t if therangeisrestrictedto0 < g < M —1and0 < t < F—1.

Proof: (Similar to the proof of Theorem 13.2.)
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Definition 13.4 Theuniquesolution0 < p < F' — 1 satisfying

(13.84) (pM)r =1 or pM =sF+1, where gcd(M,F)=1,
isde ned asthereciprocal of M modulo F:

(13.85) p= (ML

Similarly, the unique solution 0 < ¢ < M — 1 satisfying

(13.86) (gF)yy =1 or gF =tM +1, where gcd(M,F)=1,
isde n ed asthereciprocal of ' modulo M:

(13.87) q=(F)-

M

Theorem 13.5 If gcd(M, F) =1, p = (M), and ¢ = (F);,}, then

M

(13.88) ged(p, F) =1, ged(q, M) = 1;
(13.89) pM +qF =N+1, where N =MXxF.

Proof: Let gcd(p, F) = D. If we substitute p = oD and F' = 8D into pM = sF + 1, we
obtain

(13.90) D-(aM — sp) =1,

which dictatesthat D = 1; hence, we have proved that gcd(p, F') = 1. The same can be done
to provegcd(q, M) = 1, and we see no need to repeat it.

We assume next that r = (pM + qF) x; hence, pM + gF = aN + r, where0 <r < N.
Because p = (M);1,and ¢ = (F);,', we may express

(13.91) pM =sF+1, qF =tM+1,

and it followsthat

pM +qF =sF+1+qF =aN +r,

(13.92)
pM +qF = pM +tM 4+ 1= aN +r,

from which we obtain

(13.93) (s+q) F=aN+(r—1)=F|(r—-1)
(p+t)yM=aN+(r—1)= M|(r—1)
Because M and F' do not have common factor, (M x F') | (r —1). Since N = M x F', we must
have N | (r — 1), whichisonly possiblewhenr — 1 = 0 because 0 < r < N. Hence we have
provedthat r = 1 and pM + ¢F = aN + 1.
To show that « = 1, notethat 0 < pM < N and0 < ¢F < N because 0 < p < F' and
0 < g < M; hence, pM + qF = aN +1 < 2N, andwe must havea = 1. |
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13.5.2 A simple case of index mapping by permutation

The simple index map given in the next theorem providesthe rst link between the DFT and
number theory.

Theorem 13.6 [33] For £ =0,1,2,--- , N — 1, themapping f (¢) = (pl) _ isone-to-oneif p
and N arerelatively prime.

Proof: To show that f is one-to-one, we need to show f(k) # f(j) if k # jfor0 < k,j <
N — 1. Thisisto be proved by contradiction: we assume that there exist k¥ # j such that
f(k) = f(y). Thisassumption resultsin

(ok), = (pi)y, k#J, 0<k,j<N-1
The equality of the residues dictates that the modulus N divides (pk — pj); i.e., we must have

which contradicts the given conditionsgcd(p, N) = 1 and 0 < |k — j| < N, because they
forbid IV to becomeadivisor of either term. Hence our assumptionisincorrect, and this proves
that all N valuesof f(¢) for0 < ¢ < N — 1 aredistinct as desired. [ |

Example 13.6 For relatively primeintegersp = 3 and N = 4, wemay use f({) = <3€>4 to
map thesequence {0, 1, 2,3} to { (0), f(1), f(2), f(3)} = {0, 3,2, 1}, whichisapermutation
of the original sequence. When the original sequence represents the indices of data samples
contained in vector x = {xg, 1, z2, x5}, the index mapping results in the permuted y =

{550, z3, $2,CC1}-

Ingeneral, for every p relatively primeto IV, we can expressthe permutation y, = x5y
by matrix-vector product y = Q, x, where Q,, isthe permutation matrix de n ed by

1 itk=f0) = (p),;
(13.94) Qult, k] = { 0 otherwise
To connect the DFT of the permuted y to the DFT of the original «, we denote
X=Qyx, andY = Q. -y, wherey =Q,,-x.

For f(r) = (pr) ., weexpress

N—-1 N
(13.95) Vi) = Z Ye wﬁ(r)'f _ Z e w}{[(r)»é.

£=0
Recall that w) = 1; hence, the exponent of w, is evaluated modulo NV, that is,

(13.96) WM — S

Because M and <M>N are interchangeable in the exponent of w,, we may use pr for f(r)
and p¢ for f(¢), and we obtain

(13.97) w}{[(r)'é — wg-r»é _ wz.p.g _ wgf(g).
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This result connects the number theory to the DFT, and we can now rewrite (13.95) as

N-1 N-1 N-1
(1398) Yf(r) = Z xf(f) w}{[(r)»é — Z xf(f) wjrvf(é) _ Z T w;}-m _ Xr-
£=0 £=0 m=0

Therefore, for two sequences related by y, = (), the DFTs are related by Y,y = X..
Recall that for input data we expressy = Q,, x; for the output we may relate X and Y by

(13.99) X=Q,Y o Y=QI'Xx.

13.5.3 The Chinese remainder theorem

To provide application context before this theorem is stated, we shall consider the problem of
solving simultaneous linear congruences with respect to different moduli. The problem takes
the following form: Solve for unknown integer .S to satisfy the v congruences

<S>FO =To,

<S>F1 =r,

(13.100) (S)p, =12,
<S>F,,_1 =Tv-1-

In other words, the solution S w e are seeking must be evaluated to each speci ed residue
modulo each given modulus.

Example 13.7 For Fy=3, F1 =4, o =2, andr, =3, thecongruences (S), = 2and (S), = 3
may be solved by trial and error. It is obviousthat S = 23 isthe solution.

The Chinese remainder theorem provides a unique solution which simultaneously satis-
es the v congruences given by (13.100), provided that the moduli are pairwise prime. This
theorem is formally stated and proved below.

Theorem 13.7 (Chinese remainder theorem) Let Fy, F1, ..., F,_; be postiveintegers that
are pairwise prime; i.e,

(13.101) gcd(Fy, F,) =1 when? # k.

Lt N = Fogx Fix --- x F,_q, andlet’l"g,’l"l,...,’/‘y_l beintegerS,O <r, < F,—1for
0 <k <v-—1.Thenthereisexactly oneinteger 0 < S < N — 1 that satis esthe congruences
<S>Fk:rkf0r0§kgy—l.

Proof: As we have pointed out at the beginning of this chapter, the pairwise prime condi-
tion (13.101) impliesthat F}, and L, = N/ F}, arerelatively prime, i.e.,

(13.102) ged(Lg, Fr) =1, k=0,1,...,v—1.
Under the condition gcd(Ly, Fy,) = 1, wecannow nd py, to satisfy the congruence

(13.103) (prLi)y,, =1
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by solving the Diophantine equation
(13.104) prLi = spFr, + 1, whereged(Lg, Fi) =1

for 0 < pr < Fx, 0 < s < Lg. (The Diophantine equation and its solutions were discussed
in detail in the last section.)

Observethat L, = N/F, containseach F}, k # ¢, as afactor; hence, F}, divides L, and
<L4>Fk = 0. Using the prescribed remainders r,, together with the now available p, and Ly,
for0</<v-—1,welet

v—1

(13105) S’ = ZT@[J@L@ =ropoLo +rip1L1+ -+ 7ry_1pp—1Lp_1.
£=0

Using the rules of residue arithmetic, we show next that () , = i for every k:

k

(13.106) £=0
£k .

= TkPkLk> + 0

i

<

_ <<rk,okLk>Fk + V_1<WPZ>Fk Z_Lj’r>
<
{

Although S is asolution, it will not be the only solution. Because (S — C“N>Fk = <S>Fk for

any integer o, wecandene S = (S) sothat0 < S < N — 1 isthe solution in the desired
range.

To provethat S = (S)  is the unique solution between 0 and N — 1, let us assume that
S5 is another solution. Since r, = <52>Fk = <S>Fk implies that Fy, divides (S; — S9),
k=0,1,...,v — 1, we establish that (S, — S) isamultipleof N = Fy x Fy X --- X F},_1;
i.e, Sy =S5+ ON,wheregisaninteger. With0 < S < N —-1and0 < Sy, < N —1,we
must have 3 = 0; hence, S; = S, and S is the unique solution in the range between 0 and
N —1. |

13.5.4 The v-dimensional CRT index map

Aswe proved in Theorem 13.7 Chinese Remainder Theorem (CRT): under the condition that

v—1
N =[] Fv, where v >2, ged(Fj,Fy) =1if j #k,
k=0
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there is exactly one integer 0 < » < N — 1 that satis es the congruences <T>Fk = 7y, for
0 <y < F,—1,0<k<v—1andwehaveshownthatr = (S)_, where

v—1

(13.107) S=> pelrin, pr=(Ly)p!, Mp=N/F.
k=0

Observethat if wede ne

(13.108) X, = Blig, f1, ..., 1], forr=(S)_,
then there is exactly one index 0 < r < N — 1 corresponding to one location, denoted by
[, 1, - . ., Ry—1], IN the v-dimensiona array B[Fy, F1,...,F,_1], and we may obtain r
using the so-called CRT map:
v—1 N —1N
(13.109) r= <Z <Fk> 7 nk> ., wherev > 2.
k=0 F N
The inverse CRT map, which determines the corresponding element Blg, 71, . . . , Ty—1]

for every X,., isde ned by the v given linear congruences:
(13.110) ﬁk:<r>pk, k=0,1,...,v—1.

Example 13.8 For N = Fy x F1 x Fo = 3 x4 x5, if the DFT output X of length N has
been mapped to the 3-D array B[ Fy, F1, F»] by the CRT map, we can determine the frequency
index of X, fromitslocationin B according to the formula

r= <<20>3‘1-20 fio + (15), 157 + (12); 12 fz2>

(13.111) 60

= <40 no + 4511 + 36 ﬁ2>60'

For example, the element mapped to B[1, 3, 4] is X1, because r = (40 + 135 + 144), =19.

For each X ., we can determineitslocationin B using theinverse CRT map. For example,
the element in B correspondingto X4~ is B[2, 3, 2], because ng = <47>3 =2,0y = (47), =
3,and iy = (47), = 2.

13.5.5 The v-dimensional Ruritanian index map

The Ruritanian correspondence proposed by Good [24] was also established under the condi-
tion that

v—1

N =[] Fv, where v >2, gcd(Fj, Fy) = 1if j # k.

k=0
For 0 < ¢ < N — 1, the Ruritanian correspondence maps =, to A[ng, n1, ..., n,—1] if
v—1 N
(13.112) (= <kZ_OLk nk>N, where L, = v > 2,

and ¢ is the only solution (in the range from 0 to N — 1) that satises al v congruences
<pk€>Fk =npfor0<n, < F,—1,0<k<v—1,p, = <Lk>;:. The proof of this result
consists of three parts:
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1. Provethat 7' = Zz;é Ly, ny, isasolution by showing that <p;€T> = ny, for every k:

e
) v—1
(oxT),, = <Pk ZLT"T>
7=0 F

-(Efpe),)
(

Fr

0
Vol
<pkLknk> + Z <L7>Fk '<PknT>Fk>
Fy, 7=0

(13.113) =9 .
= <p;€L;€nk> + 0 (. Fy divides L)
- <<pkLk>Fk'<nk>Fk >F
= 1-(m),, (~on=(Li),,")
= Ng.

2. Provethat ¢ = (T') _isasolution: because (T — O‘N>pk = <T>Fk for any integer o, we
candene ¢ = (T) sothat0 < ¢< N — lisasolution.

3. Prove/ = <T>N isthe unique solution in the rangefromOto N — 1.

To show this, we assume / is another solution. Sinceny, = (pil) . = (pxt) . implies
that Fy, divides py (¢ — ¢), and we know gcd(px, Fr) = 1 (from Theorem 13.5), we
concludethat F}, divides (¢ — ¢) for k = 0,1,...,v — 1. Hence ({ — ¢) isamultiple of
N=FyxFyx---xF,_y;i.e,{ ={+ 3N, where Sisaninteger. With0 < £ < N — 1
and0 </ < N — 1, wemust have 8 = 0; hence, ¢ = ¢, and ¢ is the unique solution in
therangefromOto N — 1.

Again the inverse Ruritanian map is de ned by the v given congruences n;, = <pké>F k=
k
0,1,...,v—1.

Example 13.9 For N = Fy x F1 x F» = 3x4 x5, if the DFT input data sequence x of length
N has been mapped to the 3-D array A[Fp, F1, F»] by the Ruritanian map, we can determine
thetimeindex of x, fromitslocationin A according to the formula

(13.114) 0= (20mg + 1571 + 1212,

For example, the element mapped to A[1, 3,4] is 53 because = (20 + 45 + 48>60 =53.
For each x4, we can determineitslocationin A using theinverse CRT map ny, = <pk€> ,

F
with py = <20>;1: 2, p1 = <15>471: 3, po= <12>;1: 3. For example, the element
in A corresponding to z47 is A[1,1,1], because ng = (94), = 1, n1 = (141), = 1, and
ny = (141), = 1.
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13.5.6 Organizing the v-factor PFA computation—Part 3

For arbitrary v > 2, we now have the v-dimensional CRT and Ruritanian index mapping
formulasavailablefrom Sections 13.5.4 and 13.5.5; hence, the recursive equationsrepresenting
amulti-factor PFA can be derived in the same manner as the arbitrary factor mixed-radix FFT.
Forv = 3,wehave N = F, x F} x F5». Assuming that the three factors are pairwise prime, we
map the input x¢ to A[ng, n1, ns] using the 3-D Ruritanian map from Section 13.5.5, and we
map the output X, to B[fg, 711, 22| using the 3-D CRT map from Section 13.5.4. By repeating
the systematic decoupling processes performed in Sections 11.2.1, 11.2.2, and 11.2.3 with the
two new mapping formulas, we obtain the recursive equations describing the three-factor PFA:;

Step 0. Map z; to A[ng, n1,n2] using the 3-D Ruritanian mapping formula.

Step 1. Compute A; [ng, n1, ftg] = ijj;ol Alng, n1,ng] wiz"2.

Step 2. Compute Az[ng, 11, g = Zf:/l_o Ai[ng, n1, g] Wi,

Step 3. Compute As[ig, 711, g = Zf:fo "o Aa[no, iy, Ng] wiome.

Step 4. Map Blng, i1, fia] = As[fg, i1, fi2] 1o X, using the 3-D CRT mapping formula.

The Kronecker matrix equation representing the three-factor PFA is available from Equa-
tion (13.48) in Section 13.4.1, namely,

(13.115) vecB = (4, ® 2, ® Q) VECA,

wherematrix A containsinput sequence {z,} according to the 3-D Ruritanian map, and matrix
B contains output { X} according to the CRT map.

In either form the generalization to arbitrary v-factor PFA isimmediate as we have donein
obtaining the mixed-radix FFT for arbitrary composite N.

13.6 The In-Place and In-Order PFA

13.6.1 The implementation-related concepts

In Section 13.2 we provided full detailsin the derivation of atwo-factor PFA, and weillustrated
the crucial index mapping steps using an examplefor N = Ny x N7 with Ng=3 and N; =4. In
this section we shall use the same example to introduce the concepts of in-place and in-order
implementation.

Recall the rst version of the two-factor PFA givenin Section 13.2:

for ng := 0to Ny — 1do
ﬂfll = Ot_ONl - 1@
Al[no,ﬁl] = nyll:_ol A[no,nl] n1n1
end for
end for
Mﬁl = Ot_ONl —1@
for ng := OtQNQ—ldO
[0, 7] 1= o2y Ai[ng, ] whono
end for
end for

S
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Since each inner for-loop computes a DFT, we can explicitly express it as a matrix-vector
product. By updating each vector to contain the computed matrix-vector product, we immedi-
ately obtain the i n-place implementation of the two-factor PFA. For Ny =3 and N; =4, the
in-place PFA is shown below.

for ng :=01to 2 do

a”l’LQ7O
Ang,1 L
Ang,2

ag,n, 1 1 1 ag,n,
1
1

1 1 1 (ng,0
Qng,1
Wg Wy Wy Ano,2

S e
&
=
&

'y
&
Ny

Wqg Wg Wy Qng,3

w3 W3z | |G1,n,
w3 W3 a2,n,

As explicitly shown inside each for-loop, the PFA is now in-place because each short DFT
computed as a matrix-vector product overwrites the data vector  either arow or a column of
the matrix A, which initially represents the input data sequence according to the Ruritanian
map, and at the end of the PFA computation, the updated matrix A represents the DFT output
according to the CRT map. That is,

ap,0 Qo1 Go2 Q03 To T3 Tg Tg
(13.116) On il’lpUt: A= aio ai1 ai12 @13 = |Tg Ty Tip L1
aso a21 G22 023 Ty T11 T2 Ts
ao,0 Go,1 G022 Q0,3 Xo Xo X6 X3
(13117) On output: A= ajop ai1 ai2 a13| = Xy X1 X9 Xy
az0 G271 a22 023 Xs X5 Xo Xng

Aswe explained in Section 13.2.3, while it is convenient to describe the two-factor PFA
as performing the short DFT on each column and each row of matrix A, in actual implemen-
tation we do not need to physically store the input data in a 2-D matrix, provided that we can
access the right group of elements directly from the input array {x,} in an equally convenient
manner, and we have used the same example with Ny = 3 and N; = 4 to develop the direct
access methods in Section 13.2.3. Using the direct access method described there we would
be overwriting the input elements as shown here;

) 1 1 1 17 [xo T4 1 1 1 1 Ty
zz| |1 wi w? Wil |x3 zr | |1 wi w? Wil | g
ve| |1 w? wi W8 |we| |zwo| |1 w? wi W8 |ziw0l|’
T 1 wi w§ Wil Lo 1 1 wi w§ Wil Lo
(13.118) ]

xIg 1 1 1 1 xIrs

11| |1 wi wz wi T11

ra | |1 Wl owi W8 | 2

Ts5 | 1 wi w§ Wil Lazs
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.73()_ 1 1 17 _J,‘Q I3 1 1 1 T3
= |1 1 2 = |1 1 2
T4l = w3 wz| |T4], T7 | = w3 w3 r7 |,
2 4 2 4
g 11 w3 w3] [zs 11 11 w3 ws] [T11
(13.119) i - - i B -
Te 1 1 1 Te L9 1 1 1 T9
= |1 1 2 = |1 1 2
10 = w3 W3 10| » T, | = w3 W3 X1
To L1 w§ wgf_ L 22 Ts5 | 11 w§ wgf_ LT5

Consequently, the actual in-place computations are performed directly on the input data
array:

(13.120) Oninput: = {zg, 1, z2, T3, T4, T5, T, L7, T8, L9, T10, L11}-

Since the input and output are still linked by the now-absent matrix A as explicitly shown in
Equation (13.116), we know that the updated array = now contains scrambled output, i.e.,

(13121) On output: = = {XQ, X7, Xg, Xg, X4, X11, XG, Xl, Xg, Xg, Xlo, X5}

Therefore, the in-place PFA we obtain is not in-order e.g., the updated x; equals X, the
updated x3 equals X, the updated x5 equals X4, .. ., etc. If wewant to have an in-place and
in-order PFA, we must have the updated input array « contain the DFT output X, Xy, ...,
X711 in consecutive order so that each updated =, equals X forevery k =0,1,...,11.

Since the ordering of the input elements is explicitly linked to the ordering of the output
elements by Equation (13.116), even matrix A is not used in the actual implementation; we
can see that in order to have an in-place and in-order PFA, we must use the same index map
for input and output. For example, if the Ruritanian map is used for input, then it must also be
used for output:

ap,0 @o,1 Qo2 @03 To T3 Te X9
(13122) On input: A= aio ai1 Ai2 Aai3| = |T4 T7 Tio T1
a2,0 0a2;1 a2 a23 rg T11 T2 Ts
ap,0 o1 Gpz2 Go,3 Xo X3 X Xo
(13123) On output: A= aio ai1 ai2 a13| = Xy X7 X0 Xi
az0 G271 G222 023 Xs Xu1 Xo X5

Since we change the output map from CRT to Ruritanian, we need to re-derive the in-order
PFA in Section 13.6.2.
If the CRT map is used for output, then it must also be used for input:

ap,0 @o,1 Qo2 @03 To T9 Te I3
(13124) On input: A= aio ai1 ai2 Aai3| = |T4 T1 Tio X7
a2,0 @21 a2 a23 rg Ts T2 T11
ao,0 Qo1 Go2 Q0,3 Xo Xo X6 X3
(13125) On output: A= aio ai1 ai2 a13| = Xy X1 X9 Xy
az0 G271 G22 023 Xs X5 Xo Xng

Since we change the input map from Ruritanian to CRT, we need to re-derive this version of
the in-order PFA in Section 13.6.3.



13.6. THE IN-PLACE AND IN-ORDER PFA 371

13.6.2 The in-order algorithm based on Ruritanian map

For N = Ny x N1, where Ny and N; are relatively prime, the decoupling process in Sec-
tion 13.2.2 must now be redone using the Ruritanian mapping formula on both index ¢ and
index r; hence, we modify (13.12) as below.
¢
——
r- (Nl’fl() + Nonl) = (lel@ + Nofll) . (N1n0 + N()?”Ll)
= N%’flong + N1Ngngni + N1 Noning + Ngﬁlnl

= N%flono + Nngny + Niyng + Ngﬁlnl.

(13.126)
Usingw? = 1, together with wy' = wy, and wy® = wy, , we obtain
(13'127) wTN'(N1no+Non1) _ w]l\\jllﬁonolel\\]loﬁlnl.
0 1
Themodi ed two-factor PFA can now be easily described:
Step 0. Map z; to A[ng, n1] using the Ruritanian index map.

Step 1. Compute A, [no, 7iy] = S22 Alng, na] wio™ ™.

n1:O
Step 2. Compute B[hg, 71| = Zg(;);(} Ay [no, hy] wiimomo.

Step 3. Map Blng, 1] to X, using the Ruritanian index map.

When the direct indexing method described in Section 13.2.3 is used in actual implemen-
tation as explained in Section 13.6.1, the in-place implementation of this version of the PFA
overwritesevery input x, by output X, for 0 < £ < N — 1, and we have obtained an in-order
PFA. Note that the decoupled transformsin Step 1 and Step 2 are not exactly DFTs, and we
will address how to compute such DFT-like short transformsin Section 13.7.

13.6.3 The in-order algorithm based on CRT map

Alternatively, we may use the CRT index map on both input and output to obtain another in-
place and in-order PFA. For N = Ny x N1, where Ny and V; are relatively prime, we modify
Equation (13.126) as below.

¢

- (pN1ng + gNon1)
(13.128) = (pN1fo + qNof1) - (pN1no + gNon1)
= p’Ninono + pgNoN1hony + pgNoNifung + > Nifiina
= pN1(sNy + 1)nono + pNngn1 + ¢N7iing + ¢No(tEN1 + 1)y ng.

For N = Ny x Ny, usingw? = 1, together withwy! = wy, andwy® = wy, , we obtain
(13129) wJTV'(PNl’"oJquo n1) wﬁzono _w%}lnl )
Themodi ed two-factor PFA can now be easily described:

Step 0. Map z; to A[ng, n1] using the CRT index map.
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Step 1. Compute A, [ng, 1] = SN2 Alng, ny] wd™.

711:0

Step 2. Compute Bfig, 1] = S0y A1[no, in] whro™.

’I’L():O
Step 3. Map B[y, 1] to X, using the CRT index map.

Again, when the direct indexing method described in Section 13.2.3 is used in actual im-
plementation as explained in Section 13.6.1, the in-place implementation of this version of
the PFA overwrites every input xj, by output X for 0 < k£ < N — 1, and we have obtained
another in-order PFA. Note that the decoupled transformsin Step 1 and Step 2 of this version
of thein-order PFA are not exactly DFTS, either, and we will address how to compute themin
Section 13.7.

13.7 Efficient Implementation of the PFA

When the DFT length NV is composite with three or more factors, we know that a mixed-radix
FFT can be implemented through a sequence of index mappings to 3-D arrays with the DFT-
like transforms computed by nested multiplication (as proposed by de Boor [18] and described
by Chu and George with detailsin [13]). When the three or more factors are pairwise prime, a
multi-factor prime factor FFT can be implemented as a sequence of two-factor PFAs as noted
by Burrus and Eschenbacher [9] and Temperton [45].

Note that for the arbitrary factor mixed-radix FFT, three-dimensional arrays are used in
the actual implementation [13, 18]. However, for the multi-factor prime factor FFT, the data
are not physically stored in a two-dimensional matrix, because we can use the direct indexing
methodsdescribed in Section 13.2.3to accessthe 1-D input array x, and we have demonstrated
how the direct indexing methods are used in the actual in-place implementation of two-factor
PFAs by an examplein Section 13.6.1. Recall that both Ruritanian and CRT maps are unique,
and they identify each unique group of elementsfor the DFT or DFT-like computation.

Suppose N = Fy x Fy x Fy, where the three factors are pairwise prime; hence, each factor
and the product of the other two factors are also relatively prime, and we can de ne three
two-factor PFAs by expressing N = Ny x Ny with Ny =Fy, and No=N/Fj, fork =0, 1, 2.

Thein-place and in-oder implementation of the three-factor PFA consists of the following
three stages:

Stage A. Let N; = Fpy, and Ny = F1 x Fy; compute the Ny length N; DFT-like transforms
in-place. The arithmetic operations required are proportional to No x N2 = N x Fy.
Remarks: Thegroupsof elementsidenti ed by the direct indexing schemefor thelength
N7 transformsin this stage and the next two stages are the groups uniquely determined
by the chosen three-factor mapping scheme.

Stage B. Let Ny = Fy, and Ny = Fj x Fy; compute the Ny length N; DFT-like transforms
in-place. The arithmetic operations required are proportional to No x N2 = N x F}.

Stage C. Let N; = F5, and Ny = Fy x Fy; compute the Ny length N; DFT-like transforms
in-place. The arithmetic operations required are proportional to No x N2 = N x F.

Accordingly, the total arithmetic operations required by the three-factor PFA are proportional
to N(Fy + Fy + F5). If the DFT length N is composite with arbitrary v > 3 pairwise-prime
factors, a sequence of v two-factor PFA can be de ned with Ny = F, and Ny = N/F}
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fork =0,1,...,v — 1, and the v-stage PFA algorithm would require arithmetic operations
proportional to N(Fy + Fy + -+ F,_1).

The ef ciency of the PFA depends on the size of each factor, because in every stage the
N/Fy, DFT or DFT-like transforms are of length F; hence, the factors are desired to be rel-
atively small. For example, the collection of the so-called small-n DFTs provided by Nuss-
baumer in [35] are for factors from the set {2, 3,4, 5,7,8,9,16}. Note that we can choose at
most four pairwise-prime factorsfrom this set, and the largest N = 5x7x 9 x 16 = 5040. (As
mentioned at the beginning of this chapter, the PFA based on these small-n DFT modules can
be combined with radix-2 FFT or mixed-radix FFT to perform much larger transforms.)

Asto the DFT-like transformsin the two versions of the in-order PFA, they arereferred to
inthe literature as r otated DFT for reasons given below.

Version (i) Ruritanian map based in-order PFA For N = 3 x 4 with Ny =3 and N; = 4,

Nore

the three DFT-like transformsinvolving w,°"" are

o 1 1 1 1 o
1 3 6 9
(13.130) = wé u1142 w148 i efc.
T6 L wy wi® wy Z6
9 1owi wi® wi’] Lao
The four DFT-like transformsinvolving wy!™ are
ZTo 1 1 1 ZTo
(13131) Ty | = 1 wél wg x4, cee cee ceey etc.
T8 1w wif] |as

Version (ii) CRT map based in-order PFA For N = Nox N1 = 3 x 4, recall p = 1 and

q = 3; hence, we have three DFT transformsinvolving w?{‘f = w%’ ¢

_[IJ()- Bt 1 1 1 To
: 1 owi wf Wi |e

(13.132) S T e e S I Il IO
Tg 1 wy wi® wy Tg
o] L1 wi wi® wiT] Lo

Thefour DFT-like transform involving wfi{f with p = 1 representsthe DFT itself:
_JJ()— 1 1 1 o

(13.133) za| = |1 wl W2 |aa|, -, -, o, et
L T8 ] 11 w? wi] |os

Observethat each of the DFT-like matricesin Equations(13.130), (13.131),(13.132), and (13.133)
can be expressed as the product of a DFT matrix and a permutation matrix. For example, by
making use of w} = 1, we obtain

1 1 1 1 Ml 1 1 1
1 w W Wi 1 wi W Wi
1 w§ wi? wi® 1 w? wi Wb
(13.134) 1 w) wi® ¥ 11 w] w? wi
1 0 o o] 1 1 1
10 0 0 1 w w? Wi
100 10 w? wi W§
0 1 0 0] [1 wi wf wi
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Because this can be done for every DFT-like matrix in the two in-order PFASs, the DFT-like
matrices are referred to as the rotated DFT. If welet P denote the permutation matrix and let
Q2 denote the DFT matrix, the result of arotated DFT given by

(13.135) z=(PQ)y
can be obtained by permuting the DFT result, that is,
(13.136) z = P(Qy).

Therefore, by adding a permutation step, all specially designed small-n DFT modules can be
used to compute the rotated DFTs needed in the ef cient implementation of the prime factor
FFT agorithms. Among the two in-order PFAS, the one based on CRT map has simpler direct
indexing scheme, and the Fortran code implementing the algorithm was described in [45],
where the small-n rotated DFTs for factors of 2, 3, and 4 are included and they are explicitly
coded to minimize the arithmetic operations.



Chapter 14

On Computing the DFT of Large
Prime Length

The conventional FFT usually refersto the family of mixed-radix algorithmsfor rapidly com-
puting the DFT de ned by the formula (excluding division by N):
(14.2) Xp = wpe N forr=0,1,--- N -1,

£=0

and the IDFT de ned by the formula (including division by N):

1 N—-1 ,
_ = j2nrl /N _ _
Ty = N;:OXre , fore=0,1,--- /N -1,

(14.2)

where j =+/—1, and the sequences =, and X, each consists of N complex data samples.
Thevarious FFTsare tailored to the DFT/IDFT of different lengths. Asdiscussed in Chap-
ter 11, when the length N is a power of two, the familiar radix-2 FFT achieves a complex-
ity of O(Nlog,N); when N is not a power of two, the DFT/IDFT can be computed by the
FFT generalized for composite N = [];", F}, and the complexity becomes O(N (Fy + F» +
-+ F,)). When some or al of the factors are pairwise prime, the prime factor FFT ago-
rithms presented in Chapter 13 can be used, possibly in combination with the radix-2 FFT
or mixed-radix FFT. For general composite IV, various forms of the mixed-radix FFT and
the prime factor FFT were proposed during the four decades from the late 1950s to the early
1990s [4, 9, 16, 18, 24, 31, 41, 44, 45, 50, 55]. These algorithms are particularly ef cient
when N isthe product of small factors. For example, the mutually prime factors of N must be
selected from the set {2, 3,4,5,7,8,9,16} in most published prime factor FFT agorithms.
Accordingly, the performance of the FFT for composite N depends on the sizes of the
factors: at one extreme, when all factors are identical and equal to two, we have the highly
ef cient O(Nlog,N) radix-2 FFT; at the other extreme, when N/2 is a large prime number,
the complexity becomes O(N (2 + N/2)), and the execution time grows with N2, which is at
the same rate as computing the DFT/IDFT directly according to Equations (14.1) and (14.2).
Therefore, for transformswith length N being a large prime or containing large prime factors,
little improvement can be expected from the various mixed-radix FFTs. In this chapter we
shall present two alternatives which can improve the performance of FFT when its length N

375
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isalarge prime or contains large prime factors, and we provide MATLAB implementation to
demonstrate the merits of these algorithmsimplemented in a high-level language.

14.1 Performance of FFT for Prime N

Numerical experiments in MATLAB 5.3 and MATLAB 7.4: While many available FFT
programs can handle non-power-of-two lengths, users are usually warned that such data sets
may be processed by much slower algorithms[28, 29, 39]. For FFT of large prime length, we
could face the situation that neither the speed nor the accuracy is acceptable. In this section we
experiment with built-in FFT codes from two versions of MATLAB®?. Our results demon-
strate the great improvement made in MATLAB 7.4 in the computation of prime-length FFT.
Because the FFT codes provided by both versions of MATLAB are built-in functions, a fair
comparison of length-2" FFT and prime-length FFT can be made using the same executable
codein all cases.

In MATLAB 5.3, the FFT code runs at drastically different speeds depending on whether
the length is a power of two or alarge prime. For example, given in Tables 14.1 and 14.2 are
some testswe ran using MATLAB 5.3 built-in FFT and inverse FFT functions, namely, fft and
ifft. In Table 14.1 we compare the cpu times and the total number of  oating-point operations
(' ops) required to computeifft(fft(z)) for complex series x of length N1 =2° and prime length
Ns. For each power-of-two N1, we select the largest prime Ny < N1, which can be obtained
by Ny =max(primes(N1)) in MATLAB.

Table 14.1 Performance of MATLAB 5.3 built-in FFT.

Computing ifft(fft(x)) for complex series
of length N; =2 and prime length N,
Built-in Code Built-in Code
Timings | ArithmeticCost | Prime| Timings | Arithmetic Cost

N7 = 2% | (CPU1.3GH2) Total Flops Ny | (CPU13GHz) Total Flops
2048 | 0.0010sec 0.25million 2039 0.87 sec 67 million
4096 | 0.0025 sec 0.54 million 40093 3.44 sec 268 million

8192 | 0.0058 sec 1.16 million 8191 | 13.73sec 1 billion

16384 | 0.0130sec 2.49 million | 16381| 54.78sec 4 billion
32768 | 0.0290 sec 5.31million | 32749 | 218.09 sec 16 billion

From the timing resultsin Table 14.1, we see that the computing time for prime N, grows
with N3 (instead of Nilog,N; for N; = 2%), and that for Ny = 4093, the time required is
already more than a thousand times longer than the radix-2 FFT time for N; = 212 = 4096.
Since the O (N3) time quadrupled when N, is doubled, it quickly grows to 218 seconds for
prime Ny = 32749, which is more than 7,000 times longer than the 0.029 seconds needed to
complete both forward and inverse FFT for N; =21° =32768.

Since the number of oating-point operations grows with N2 for prime N, we are also
concerned with the loss of accuracy in the computed resultswhen Ns islarge. To measure the
error, we compare the result y = ifft(fft(x)) with the input series x, and we report the relative

IMATLAB is aregistered trademark of The MathWorks, Inc.
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error
= 7=yl

2] oo
in Table 14.2. Because ifft(fft(x)) should reproduce x, the difference between y and « re ects
the loss of accuracy in the computing process. From the results in Table 14.2, we see that
for Ny = 2%, the full double-precision accuracy is maintained for all N, values ranging from
2048 to 32768; however, for prime N» values in the same range, the loss of accuracy is quite
signi cant only single-precision accuracy remains for No > 16381. (Note that since MAT-
LAB supports IEEE 16-digit precision, al results are computed in standard double precision
0 ating point arithmetic. If the fft and ifft functions were implemented for a single-precision
environment, werisk losing all signi can t digitsin y when N2 >16381.)

Table 14.2 Measuring error in computing ifft(fft(x)) in MATLAB 5.3.
Measuring error in computing y =ifft(fft(x))
for complex series of length V; =2 and prime length N,
Relative Prime Relative
Ny =2° Error £ No Error E
2048 2.6407e—15 2039 1.8057e—11
4096 2.3728e—15 4093 7.1580e—10

8192 4.3739e—15 8191 1.1085e—9
16384 4.0839e—15 16381 1.4637e—8
32768 6.0783e—15 32749 5.7189e—8

Thisis no longer the case with MATLAB 7.4, which includes executable code (based on
the FFTW library [20, 30]) for computing the DFT of large prime length IV ef cien tly and
accurately as demonstrated by the results in Tables 14.3 and 14.4. Note that the function
Flops is no longer available in MATLAB 7.4; hence, the total  oating-point operations are
not reported in Table 14.3.

Table 14.3 Performance of MATLAB 7.4 built-in FFT.

Computing ifft(fft(z)) for complex series
of length N; =2°% and prime length N,
Built-in Code Built-in Code
Timings Prime Timings
Ny = 2% (CPU 3.2 GHz) No (CPU 3.2 GHz)
2048 0.0005 sec 2039 0.0019 sec
4096 0.0011 sec 4093 0.0039 sec
8192 0.0025 sec 8191 0.0050 sec
16384 0.0059 sec 16381 0.0128 sec
32768 0.0173 sec 32749 0.0625 sec

To gain the knowledge concerning the design and implementation of fast algorithms for
computing the prime-length DFT, we shall explore two approaches in the remainder of this
chapter, and we provide MATLAB implementation to demonstrate the merits of these algo-
rithms.



378 CHAPTER 14. COMPUTING DFT OF LARGE PRIME LENGTH

Table 14.4 Measuring error in computing ifft(fft(z)) in MATLAB 7.4.
Measuring error in computing y = ifft(fft(z))
for complex series of length V; =2 and prime length N,
Relative Prime Relative
N1=2° Error E Ny Error E,
2048 4.2611e—16 2039 1.0699e—15
4096 5.0700e—16 4093 1.3466e—15
8192 4.8105e—16 8191 1.8412e—15
16384 5.9934e—16 16381 5.4653e—15
32768 6.0071e—16 32749 1.5449e—15

14.2 Fast Algorithm I: Approximating the FFT

To describe this approach, we interpret the DFT results from Equation (14.1) as the function
values of

(14.3) F(0) = NE xe™ 9%

at equispaced 6, = r(2n/N) between 0 and 27, yielding X,, = F(0,) forr = 0,1,---,
N-—1.

The approximate FFT algorithm proposed by Anderson and Dahleh [2] combinesthe radix-
2 FFT and local Taylor series expansion to approximate X,. = F'(6,.) in the following manner:

Step 1. Expressthe kth derivative of F'(0) as

2

(14.4)  F®@) =S (—jl)rze 1 = Zm 30 wherezy = (—jl)* .

~
Il
o

Notethat F(©)(9) = F(8).

Step 2. Evaluate F'(6), F'(6), F"(9), ---, and F'(¥ ( ) at aset of M =2° (M > N) equis-
pacedevaluabetweenOand 2m;i.e, use{eo,el, e ,éM,l} with 4, = r(2m /M), and

compute
R N-—-1 L N-—1 )
145)  F®™(0,) = a0 = " ge M forr =0,1,-- M — 1.
=0 £=0

To convert (14.5) to an M-point (and M -term) DFT, we need to add more terms with
zero coef cients. That is, wede neay, = Z,for0 < ¢ < N — 1,and add &, = 0 for
N < ¢ < M — 1toobtain the properly de ned DFT, namely,

M—1
(14.6) F®(0,) =" ape ™M forr=0,1,--- , M — 1.

£=0

Since M is a power of two, the function F(6) and each of its derivatives can now be
evaluated on the M equispaced 6, values by a radix-2 FFT agorithm at the cost of
O (M log, M) arithmetic operations.
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Step 3. For every 6, = r(2r/N),0 < r < N — 1, we determine the nearest 6,, = n(27/M),
and we approximate X, = F(6,.) by computing X, ~ T(6,, + ), where § = 6, — 6,,,
and

52 5"

(14.7) T(0, +06) = F(6,) + 0F'(0,,) + 5F”(én) +ot EF(’“) (6,)

is the degree-k Taylor polynomial expanded at each chosen 6,,.

The complexity of this agorithmis O(kMlog, M), where k is the degree of Taylor s polyno-
mia in (14.7), and M = 2° > N isthe length of the extended DFT in (14.6). To approximate
the IDFT results from Equation (14.2), the corresponding steps can be similarly devel oped.

14.2.1 Array-smart implementation in MATLAB

In this section we give the approximate FFT/IFFT agorithmsin the form of MATLAB® func-
tions Tfft and i Tfft. To obtain an array-smart implementation, we have made use of MATLAB
vectorized operations and built-in functions (including the fft/ifft) in processing al data ar-
rays. To make the vectorized algorithm easy to understand, we connect the pseudo-codeto our
mathematical derivation by using the same Greek letters as array names, and we identify the
elements of each array in a comment immediately after the array is named. For example, we
haveused @ tonamethearray containing [y, 61, - ,05—1] inthe pseudo-codefor function
Tfft. Notethat 6 canbesimply replaced by theta in the actual code.
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Algorithm 14.1 The approximate FFT algorithm Tfft in MATL AB-style pseudo-code

function FX = Tfft(x, degree)
begin

= length(z);

= 2 nextpow2(N);

= [z, zeros(1, M—N];
= linspace(0, 2xm, N+1);
O(1:N);

= linspace(0, 2xm, M+1);
= 2x7/M;

IDX = round(8/h) + 1;

§ = (6 —0(IDX));

S>> oT =

f= fft(a);
f =1 £
FX = f(IDX);
S =4d;

for k = 1 to degree
a = d.x(—jx[0:M—ID;
fprime = fft(&);
fprime = [fprime, fprime(1)];
FX = FX + S.«fprime(IDX);
S=5x(/(k+1));

end for

end

compute smallest M =27 > N
array & = &, @, -+, Gar—1]

arrayAa 21907 917 'A' . 7€NA71]
array 6 = [0, -~ ,0n—1,00])

compute . for all nearest ,,

computeall §=6, — 6,

cal built-in fft to compute M function values
include function value at boundary 6,; =27
extract al F(6,,) values

initialize S by array 0

j = +/—1 isabuilt-in constant in MATLAB
call built-in fft to compute M derivative values
include derivative value at 6,y = 2

compute T'(6,, + ) term by term
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Algorithm 14.2 The approximate |FFT algorithm iTfft in MATLAB pseudo-code
function FXINV = iTfft(X, degree)

begin
N = length(X);
M =2 nextpow2(N); compute smallest M =27 > N
a =[X, zeros(1, M—N]; array & = [a, 1, -, Gpr—1)
0 = linspace(0, 2xm, N+1);
0 9(1N)7 arrayG:[eo,Ql,--- ,6‘]\],1]
0 = linspace(0,2xm, M+1); array 0 = [0, -, Orr—1, 00]
h = 2xw/M,
IDX = round(6/h) + 1; compute . for all nearest 4,
§ = (0 —6(IDX)); computeal §=6, — 6,
[ =ifft(&); cal built-in ifft to compute A function values
f=1f fQ); include function value at boundary 6,; = 2
FXINV = f(IDX); extract al F(6,,) values
S =4d; initialize S by array ¢
for k = 1 to degree
& = a.*(j*[0:M—]); j = +v/—1isabuilt-in constantin MATLAB
fprime = ifft(&); call built-in ifft to compute M derivative values
fprime = [fprime, fprime(1)]; include derivative value at boundary 6, = 27
FXINV = FXINV + S.xfprime(IDX); compute 7'(4,, + ) term by term
S=8x(5/(k+1));
end for
FXINV = FXINV x M/N; including division by N
end

14.2.2 Numerical results

We evaluate the two function M- les Tfft.m and i Tfft.m on computing the DFT/IDFT of data
sets with prime length Vo, and we present the resultsin Table 14.5. In coding the algorithm,
we have chosen the smallest M =2°> N to be the length of the extended DFT/IDFT, and we
leave the degree k of Taylor s polynomial as an input parameter. Since the execution time and
the accuracy of the algorithm are determined by both M and &, we identify the values used in
our experiment in Table 14.5.

In Table 14.5, we choose degree k£ to gain the maximum accuracy in the results. For
computing the DFT/IDFT of the same data (with results more accurate than Table 14.2), the
Tfft and iTfft times for prime N, > 4093 are signi cantly faster than those for prime N in
Table 14.1, eventhe user M- leisinterpreted and expected to run more slowly than executable
code, and they re ect the expected difference between an O (kM log, M) agorithm and an
O(N2%) algorithm. Compared with theresultsin Tables 14.3 and 14.4, the approximated results
are less accurate than those computed by the built-in FFT in MATLAB 7.4, and they are also
less accurate than those computed by the Bluestein s FFT to be presented in the next section.
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Table 14.5 Evaluating function M- les Tfft.m and i Tfft.m for large prime .

Computing X =Tfft(z, k) and y =iTfft(X, k)
for complex x of primelength Ns.

MATLAB5.3 | MATLAB 7.4
Prime Method Parameters M-FileTimes | M-FileTimes Relative
No M=2° degree k (CPU 1.3 GHz) (CPU 3.2 GHz) Error
2039 2048 22 0.06 sec 0.03 sec 7.1549e—13
4093 4096 22 0.14 sec 0.06 sec 1.4760e—12
8191 8192 22 0.31sec 0.13 sec 2.9721e—12
16381 16384 22 0.65 sec 0.28 sec 6.7510e—12
32749 32768 22 1.55sec 0.67 sec 1.5064e—11

14.3 Fast Algorithm I1: Using Bluestein’s FFT

Shortly after Cooley and Tukey published their original paper [16] on radix-2 FFT and its
potential generalization to mixed-radix FFT, Bluestein presented an FFT for arbitrary NV in-
cluding primes [5]. Bluestein s algorithm resurfaced in 1991 through a theoretical study of
its performance on the hypercube [43], where it was shown to require fewer communication
cycles than Bergland s mixed radix FFT [4] for composite N. Although Bluestein s FFT
handles sequences of prime length N with a desirable complexity of O(M log, M), where
M =2%>2N — 2, itsimplementation and performance results seem to have been absent in the
FFT literature.

In this section, we shall derive Bluestein s FFT and provide array-smart implementations
for both FFT and itsinversein MATLAB. The MATLAB programs are then used to compute
the DFT/IDFT of prime length in the numerical experimentsthat follow.

14.3.1 Bluestein’s FFT and the chirp Fourier transform

We indicated in Chapter 9 that the discrete cyclic convolution is useful in the devel opment
of the chirp Fourier transform as well as the fast Fourier transform algorithm for arbitrary
(possibly prime) N. The chirp Fourier transform was covered in Section 9.3 in Chapter 9,
where we showed it to represent a partial DFT, which can be converted to a partial linear
convolution, and the latter can be converted to a partial cyclic convolution computable by two
FFTsand oneinverse FFT. Bluestein sFFT makes use of the sameideasto turnaDFT of length
N into apartia linear convolution, and the latter can be turned into a partial cyclic convolution
computable by two FFTs and one inverse FFT of lengths all equal to M =2°>2N —2.
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14.3.2 The equivalent partial linear convolution
We begin by rewriting the DFT den ed by (14.1) as

X, = xgwgé, wy =e /N forr=0,1,---,N —1,

(14.8) =Y i)

1,2 192 1 2
sr B4 —s(r—¢
Tywi wNz( ) .

£=0

To convert the DFT de ned by (14.8) to a partia linear convolution, we de ne

1,2 142 1l p)2
(14.9) Z, = w;é X, , Yo = a:gw%,/ , hp_g = wN;( 2 ,
and rewrite (14.8) as
N-1
(14.10) Zr= wyehr¢, r=01,...,N—1.
£=0

Observe that {Zy, Z1,- - , Zy_, } computed according to Formula (14.10) are the middie N
(beginning with the Nth) elements obtained from the linear convolution of the length-N se-
quence

{yOa Y, -y yN—l}
and thelength-(2N — 1) sequence
{an fla T f2N—2} - {h—N+1a h‘—N+2 ) h—17 h’Ov h17 T h‘N—l}-

Aswedid in Section 9.3 before, we have explicitly stored the data
{h—N+17 h—N+2a ) h—lv hOv hla T hN—l}

inthe array f inthe speci ed order, so that f; refersto the rst element in the sequence, and
fx refersto the (k+1)st element in the sequence. Accordingly, for prime N = 5, we need
themiddle ve elements (beginning with the fth) from the linear convolution de ned by the
stationary sequence

{yO; Y1, Y2, Y3, y4}7
whichisof length N =5, and the moving sequence (to be reversed as shown in Figure 9.11)

{an f17 f27 f37 f47 f57 fGa f77 f8} = {h747 h737 h*?u h717 h07 h17 h27 h37 h4}7

whichisof length2N —1 = 9. (See Figure 9.11 for avery similar example.)

Remark 1: Note that we have h,, = w]_V%"Q here, which is different from h,, = wég}j de ned
in the chirp Fourier transform presented in Section 9.3, and we now have h,, = hy+y.
Therefore, with h,, = hy+ny = hnts, We have

{h—47 h‘—37 h—27 h—l} = {h‘la h‘Qa h‘3a h4}7
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and the formula given by (14.10) can be interpreted as a cyclic convolution of
{y(), Y2, Y1, Ys, y4} and {h(), hl, hg, hg, h4} as den ed in Section 9.2.3. However,
since the length N # 2%, we still have to extend it to a cyclic convolution of length
M = 2%. Notethat for N =5, theresults {Zy, Z1, Z2, Z3, Z4} computed by (14.10)
arethe rst N =5 elements obtained from the cyclic convolution of the following two
sequences of length M =2N —2=23: the stationary sequenceis given by

{2407 Y1, Y2, Y3, Ya, 07 07 0}7

and the moving sequenceis given by

{fo, f1, f2, f35 fas f5, fo, fr}
= {ho, h1, ha, h3, h1, ha, h3, ha}
= {ho, h1, ha, h3, h_1, h_o, h_3, h_4} (. he=h_y)
= {ho, h1, ha, h3, hq, hs, ha, h1}, (oh_e=h_sin)

where N —2 = 3 zeros are appended to {yo, y1, ..., ya}, and N —2 = 3 elements
{hs, ha, h1} areappendedto {ho, h1, ..., ha}.

Ingeneral, if 2N—2 isapower of two, then M =2N—2 =27 isthe shortest power-of-two
length we may use to implement the cyclic convolution of length V.

Remark 2: When 2N —2 # 2", we must choose M = 25 > 2N —1. It turns out that
we obtain the same result (which is to be derived in the next section) whether we treat
Formula (14.10) as a partia linear convolution or a cyclic convolution of length N, we
have chosen not to convert h_; to h_x 5 in the development so that the extension (to
length M = 2° > 2N — 1) strategy can be easily adapted for implementing the chirp
Fourier transform (as de ned in Chapter 9) if it is needed.

14.3.3 The equivalent partial cyclic convolution

We haveindicated abovethat if 2V —2 isapower of two, then M =2N —2 =25 isthe shortest
power-of-two length we may use to implement the equivalent cyclic convolution of length V.
The fact that we shall do exactly that for N = 5 does not prevent us from using the same
example to explain what the algorithm ought to do when we must choose M = 2° > 2N —1.
Indeed, for N = 5, if we re-examine the partia linear convolution de ned by (14.10), it is
not dif culttoseethat {Zy, Z1, Z»2, Zs, Z,} arealsothe rst veelementsresulting from the
cyclic convolution of the stationary sequence

{y07 Y1, Y2, Y3, Y4, 07 07 07 O}

and the moving segquence (to be reversed as shown in Figure 9.12)
{ho, ha, ho, hg, ha, h_y, h_3, h_o, h_1}.

(See Figure 9.12 for avery similar example.)

Since both sequences are of length 2N —1 = 9 # 2™, we must obtain an equivalent cyclic
convolution of length M =2° > 2N —1, so that it can be computed by two radix-2 FFTs and
oneradix-2 IFFT. For 2N —1 = 9, we use the next power of two for M; hence, M =16. To
obtain the equivalent cyclic convolution, we simply pad the stationary sequence with zeros,
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and movethelast N —1 =4 elements of the moving sequence to the end; i.e., we perform the
cyclic convolution of the sequences

{y07 Y1, Y2, Y3, Ya, 07 07 07 07 07 07 07 07 07 07 0}

and
{h07 h17 h27 h37 h47 07 07 07 07 07 07 07 h—4a h—37 h—27 h—l}-

Assuming that the moving sequence {hg, h1, ..., h4, 0, ..., 0, h—y, ..., h_1} isstored

as{fo, f1, -+, f15}, we can now invoke the time-domain Cyclic Convolution Theorem 9.1,
to compute

(14.11) {2} = IDFT({Y;-F}.}),

where

(14.12) {Y;} =DFT ({ye}), {F-} =DFT({fe}).

Remark: Note that the scaling factor in Theorem 9.1 has been removed because the IDFT
de ned by Formula (14.2) includes division by M, while the DFT de n ed by Formula (14.1)
excludesdivisionby M.

Therefore, Bluestein s FFT requires the computation of afull cyclic convolution of length
M = 2% viaFFT/IFFT at a cost proportional to M log, M. We shall take the rst N results

1,2
from the convolution results {Zy, Z1,--- , Z,,_,}, and we obtain X, = Zywi' forr =
0,1,...,N—1.

14.3.4 The algorithm

Bluestein’s Algorithm for computing the discrete Fourier transform

N-—1

£=0

Step 1. Compute the elements needed in the moving sequence:
1,2

(14.13) he=wy?', £=0,1,...,N -1,

_ 1,2 .
where w 2t w;lfz, and way = e~77/N . Note that because h_, = hy, only h, needsto
be computed.

Step 2. Den e M as the smallest power of two that is greater than or equal to 2N — 2, and
compute the extended moving sequence of length M de ned by

he, £=0,1,...,N—1;

(14.14) fo=R by, b=M—-N+1,...,M—1;
0, ¢=N,...,M—N, if M >2N —2.

Step 3. Usetheradix-2 FFT to computethe DFT de ned by

M-—1

(14.15) Fo=>"fewl, r=01,...,M-1.
£=0
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Step 4. Given {x,}, compute the zero-padded stationary sequence de ned by

2 y—01,.. N—1
(1416) Yo = Tewyn 07 gy )
0, {=N,...,.M-—1,
2 .
Wherewéé = wgfv, and we,y = e I7/N

Step 5. Usetheradix-2 FFT to compute the DFT de ned by

M—1

(14.17) Y, =Y ywi, r=01,...,M-1,
£=0

wherew,, = e=427/M,
Step 6. Compute

(14.18) U =Y, F., r=0,1,...,M—1.

Step 7. Usetheradix-2 IFFT to computethe IDFT de ned by

M—1

1
(14.19) ZT:MZUM;;[Z, r=0,1,...,M—1,
£=0

wherew,, = e=J927/

Step 8. Extract the X,. s fromthetop IV elementsin {Z,.} by

1,.2

(14.20) X, =Zw2 , r=0,...,N—1,

377 r2 —jn/N
wherewz? = wj,, and woy = ™7™/,

14.3.5 Array-smart implementation in MATLAB

In this section we give Bluestein s FFT/IFFT agorithmsin the form of MATLAB® functions
Bfft and iBfft, which implement the steps outlined above. In coding the algorithm, we have
made use of MATLAB vectorized operations and built-in functions (including fft/ifft) in pro-
cessing all data arrays. By examining the steps in the Bfft algorithm, we see that it calls the
built-in fft (twice) and ifft (once) on three data sets with length extended to M =2°>2N —2.
In the iBfft, the roles of fft and ifft are reversed, but the number of calls remainsthreein total.
The complexity of the Bfft and iBfft is thus O(Mlog, M).
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Algorithm 14.3 Bluestein s FFT algorithm Bfft in MATLAB-style pseudo-code
function Z = Bfft(x)

begin
N = length(x);
0 =m7/N;
p =rem((O:N-2).2, 2« N);
h = exp(jx0xp); j = /—1isabuilt-in constantin MATLAB
[ ="h;
M =2 nextpow2(2xN —2); compute smallest M =2%>2N —2

f(M—N+2:M = h(N:—2);
ifM>2+%«N—-2
f(N+1:M-N+1) = zeros(1, M —2xN +1);

end
fout = fft(f); call built-in fft
Wp = exp(—j*0xp);
Yy =x. % Wp;
y(N+1:M) = zeros(1,M N );
yout = fft(y); call built-in fft
u = yout.  fout;
w = ifft(u); call built-in ifft
Z =w(1L:N). x wp;

end

Algorithm 14.4 Bluestein s IFFT agorithm iBfft in MATLAB-style pseudo-code
functionY = iBfft(z)

begin
N = length(z);
0 =—7/N; (i) changethe sign of ¢
p=rem((O:N 1).2, 2«N);
h = exp(j*0xp); j=+—-1inMATLAB
f=n
M =2 nextpow2(2xN —2); compute smallest M =25>2N —2

f(M N+2:M ) = h(N: 1: 2);
ifM>2%«N—-2
F(N+1:M N+1) = zeros(1, M —2xN +1);

end

fout = ifft(f); (ii) change fft to ifft

WP = exp(—j*0xp);

g =z.x Wp;

g(N+1:M) = zeros(1,M N );

gout = ifft(g); (iii) change fft to ifft

u = gout. x fout;

w = fft(u); (iv) changeifft to fft

Y = w(1:N). x wp;

Y =Y« M/N; including division by N
end
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14.3.6 Numerical results

We report the performanceof function M- lesBfft.m and iBfft.minthissection. For DFT/IDFT
of prime lengths N, the results for computing iBfft(Bfft(x)) are given in Table 14.6. Note that
the values for N, in Tables 14.6 are those used to evauate i Tfft/Tfft in Table 14.5, and the
same sets of values were used to evaluate ifft/fft in Tables 14.1, 14.2, 14.3, and 14.4. For the
same length, an identical complex array « is used in all tables.

Table 14.6 Performance of Bluestein s FFT for large prime N.

Computing y =iBfft(Bfft(x))
for complex z of primelength Ns.
MATLAB 5.3 (CPU 1.3 GHz) MATLAB 7.4 (CPU 3.2 GHz)

Prime M- le Relative M- le Relative

Ny Timings Error £ Timings Error E

2039 0.02 sec 6.6436e 15 0.009 sec 1.1239% 15

4093 0.04 sec 1.2546e 14 0.018 sec 1.1887e 15

8191 0.08 sec 1.2104e 14 0.036 sec 1.2467e 15
16381 0.16 sec 1.9542e 14 0.088 sec 1.3126e 15
32749 0.37 sec 3.6524e 14 0.286 sec 1.4063e 15

The performance of the functions Bfft and iBfft in Table 14.6 is consistent with our ex-
pectation from an O(M log, M) agorithm, where M = 2° > 2N, —2. (For each N> givenin
Table 14.6, the smallest M = 2¢ is obtained by setting the exponent s = nextpow(2 x Ny — 2)
in the M- le functions Bfft and iBfft.) To assess the different approaches for prime N2, we
compare Table 14.6 with Tables 14.1 and 14.2, and we see that very signi cant improvement
in both execution time and accuracy is gained by functions Bfft and iBfft when using MAT-
LAB 5.3. When comparing the MATLAB 7.4 results in Table 14.6 with those in Tables 14.3
and 14.4, note that the interpreted M- le functions Bfft and iBfft are expected to run more
slowly than the built-in executable code. Compared with the approximate FFT resultsin Ta-
ble 14.5, Bluestein s FFT runsfaster and provides more accurate resultsin all cases.
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Absolute integrability, 158
Aliased frequencies, 32, 239
anti-aliasing, 36
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Amplitude, 4
Analog signals, 25

B
Band-limited signal
almost band-limited, 179
Fourier transform of, 158
nonperiodic, 158
periodic, 27
DFT, 27
sampling theorem, 160, 161, 207
Band-pass signals
sampling of, 209
Band-stop FIR Iter, 294
Bartlett window, 247
Fourier transform of, 248
normalized, 248
magnitude spectrum, 248
Bessel sinequality, 76 78
Bezout srelation, 357
Blackman window, 251
Fourier transform of, 251
normalized, 251
magnitude spectrum, 253
Bluestein s FFT, 382
Bounded closed interval, 46
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Cauchy Schw arz inequality, 68
used in examples, 70
Cesaro sum, 95
Chinese remainder theorem, 364
Chirp Fourier transform, 284, 382
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Circulant matrix, 278
Comb function, 211
Commensurate sum, 23, 117, 124
DFT coef cientsof, 117
Complex exponential modes, 8
Fourier series, 24, 60
phases, 13
Conventional convolution, discrete
by sectioned DFT, 273
of two nite sequences, 267
with stepsillustrated, 269
Convolutionintegral, 191
Convolution theorems, 191
invoked, 248, 292
Convolution, continuous, 189
of nite-duration signals, 267
Cosine modes, 6, 25
disguised, 20
Fourier series, 24
phase shifts, 9, 13, 26
shifted, 25
phase angle, 25
time shifts, 9, 13, 26
CRT (Chinese remainder theorem) index
map, 344, 365
Cyclic convolution, 275, 286, 384
de ned, 278
in matrix form, 278
with stepsillustrated, 279
Cyclic convolution theorems, 280

D

dB (decibel) units, 246

DC (direct current) term, 9, 48

DFT (Discrete Fourier Transform), 109
aliased frequencies, 102, 129
aternate forms, 39, 41, 114

conversion between, 114

computed DFT coef cients, 126
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de nition, 29
deriving the formulas, 109
examples, 29
n ite Fourier series, 27, 38
frequency leakage, 126
matrix equation, 111
of concatenated sequences, 116
of windowed sequence, 239
programming in MATLAB, 147
reconstructed signal, 127
sample size, 41
sampling at jump discontinuities, 104
DIF (decimation-in-frequency) FFT
mixed-radix, 317
radix-2, 319
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DFT applicationin, 291
Digital Iters
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n ite-impulse response (FIR), 293
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nonrecursive, 293
transfer function of, 294
Digital frequency, 21, 22, 26, 211
angular, 21, 212
frequency grids, 31
Nyquist interval, 31
Dimension-lessvariable §, 5, 26, 61, 118
Diophantine equation, 357
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Dirichlet kernel, 91
aternate forms, 92
mainlobe, 92
sidelobes, 92
Dirichlet stheorem, 45, 212
Discrete convolution theorem, 193
time-domain, 228
Discrete exponentia function, 219
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Discrete frequency, 26
Discrete-time signals
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Fourier transform of, 211, 221, 226,
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Fourier transform pairs, 219
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ideally sampled, 202
nonperiodic
windowing of, 244
periodic convolution theorem, 227
Discrete-time sinusoid, 21
Fourier transform of, 226
nonperiodic, 23
periodic, 22, 23
periodicity of, 22
DIT (decimation-in-time) FFT
mixed-radix, 315
radix-2, 315
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used in examples, 14, 16, 84
Euler Fourier formulas, 48

used in examples, 52
Even functions, 51

Fourier coef cients
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Fejer kernel, 96
properties of, 97
FFT (Fast Fourier Transform)
Bluestein s, 382
Cooley T ukey, 305
large prime length, 375
mixed-radix, 305
three-factor example, 307
prime factor, 341
radix-2, 315, 319
Filter, analog
frequency response of, 293
impul se response of, 292
magnitude response of, 293
phase response of, 293
transfer function of, 293
zero-phase-shift, 293
Finite Fourier series
as |least-squares approximation, 61
Fourier integral, 157
Fourier series, 23, 45
band-limited, 27
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complex exponential modes, 60 as least-squares solution, 63
complex-valued functions, 60 Fourier transform, 157, 159
constant (or DC) term, 48 Frequency leakage, 126, 128, 131
convergence of, 79 Frequency, analog, 4
Dirichlet stheorem, 45 aliased by sampling, 32
discrete convolution, 193 angular, 5, 26
examples, 48, 53 fundamental, 12
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half-range expansions, 53 Frequency, digital, 21, 26
in other variables, 61 angular, 21
of even functions, 51, 54, 55 Frequency-domain plots, 6
of nonharmonic component, 128 complex exponential, 8
of odd functions, 51, 52, 54, 55 Fourier transform, 157
orthogonal projections, 63 polar coordinates, 9
periodic convolution, 192 rectangular coordinates, 8
pointwise convergence, 85 Frequency-domain windows, 100, 102
rate of convergence, 87 for Fejer kernel, 101
truncated, 61 for Lanczos smoothing, 102
Fourier transform, 157 Frequency-grid spacing, 30
aternate form, 177 reciprocity relation, 30
band-limited, 158 Function contents, 3
periodic extension, 159 frequency-domain, 4, 5
convolution theorems, 191 bandwidth, 25
cosine contents, 164 time-domain, 3
examples, 167, 175, 217 periodic, 5
impulse sampling of, 244
of asequence, 211 G
aternate forms, 214 Gaussian function, 167
DFT interpretation, 232 Generalized function, 195
duality results, 226 Generalized Poisson sum, 199
of discrete-time sinusoid, 226 Gibbs phenomenon, 50, 63, 89
of impulse function, 188 Cesaro sum smoothing, 95
of impulsetrain, 198 Dirichlet kernel perspective, 91
of Kronecker delta sequence, 218 Iter ing viewpoint, 294
of periodic sequence, 229, 244 Fourier series of square wave, 89
properties, 171, 215 Lanczos smoothing, 99
utilities of, 175 overshoot, 91
sine contents, 164 undershoot, 91
Fourier transform pairs, 165, 167, 175, 219,
221,244 H
involving Kronecker delta, 217 Half-range expansions, 53
involving unit impulse, 188 as even functions, 54
Frequency contents as odd functions, 54
band-limited, 27 examples, 53, 58
distortion by leakage, 128 Hamming window, 250

Fourier coef cients, 46 magnitude spectrum, 252
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Ideally sampled signal, 202
IDFT (Inverse DFT)

alternate form, 39, 42

de nition, 38

deriving the formulas, 109

sample size, 42
IFFT (Inverse FFT), 306
Impulse function, 185

convolution with, 194

Fourier transform of, 188
Impulse sampling, 202
Impulsetrain, 195, 240

Fourier transform of, 198

weighted, 202
Index mapping, 305

by permutation, 363

column-major, 306

CRT, 344, 365

relevant number theory, 353

row-major, 312

Ruritanian, 343, 366

three-factor example, 307
Inner product, 63

de ned, 64

expressed in norms, 66
Inner product linear space, 65
Inverse Fourier transform, 157, 159
Inverse Poisson sums, 205

J
Jump discontinuity, 46, 51
examples, 49, 57, 58
normalized, 47
one-sided limits, 46
sampling function with, 104

K
Kronecker delta sequence, 217, 218
Fourier transform of, 218
Kronecker product
de ned, 322
factorization
of DFT matrix, 331, 334
of permuted DFT matrix, 350
properties, 329

INDEX

L
L Hospital srule, 16, 18, 87, 91, 160, 161
Lanczos smoothing, 99
L east-squares approximation, 75
of periodic functions, 61
Linear convolution, 285, 383
Linear convolution, discrete
by sectioned DFT, 273, 283
converting to cyclic, 280
converting to periodic, 275
of two nite sequences, 267
with stepsillustrated, 269
Linear space, 63
examples, 63, 64

M
M agnitude spectrum
of Bartlett window, 248
of Blackman window, 253
of Hamming window, 252
of rectangular window, 246
of triangular window, 248
of von Hann window, 250
Minkowski inequality, 71
used in examples, 71
Mixed-radix FFT
decimation-in-frequency, 317
decimation-in-time, 315
recursive egquation approach, 313, 318
sparse matrix formulation, 321, 333
three-factor example, 307
unordered DIF, 337
unordered DIT, 335
Mutually prime factors, 354

N
Negative frequency, 21, 120
Neutral variable 6, 26
Nonharmonic component, 128, 129
aliased DFT coef cients, 129
Normed linear space, 65
| east-squares approximation, 75
orthogonal sequence, 66
examples, 66, 67
orthonormal sequence, 66
examples, 67, 68
Notch FIR Iter , 294
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Nyquist frequency, 30, 35
Nyquist interval, 30, 35, 103, 119, 158
Nyquist sampling rate, 30, 159, 161, 203
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Odd functions, 51

Fourier coef cients

of sineterms, 52, 54

One-sided derivatives, 48
One-sided limits, 46
Orthogonal projections, 63
Orthogonal sequences, 66, 67
Orthogonality

de ned, 63

examples, 65
Orthonormal sequences, 66 68
Overshoot, 91

P
Pairwise prime factors, 341
Parallelogram theorem, 65
Parseval stheorem, 67
Periodic convolution theorem, 192
for discrete-time signals, 227
Periodic convolution, discrete, 273
de nition, 273
equivalent cyclic convolution, 275
with stepsillustrated, 276
Periodic extension, 46, 50
Periodic sequence, 230
convolution of, 273
discrete-time sinusoid, 22
Fourier transform of, 229, 244
Periodic signals, 45
Dirichlet stheorem, 45
Fourier series expansion, 45
jump discontinuity, 46
normalized, 47
|east-squares approximation, 61
Periodicity
commensurate frequencies, 12
of sequences, 22
Phasereversal, 21, 120
Piecewise continuous function, 46
Piecewise smooth function, 48, 85, 87
Pointwise convergence, 48, 82
nonuniform, 89

of Fourier series, 85
Poisson sum formula, 195
Prime factor FFT, 341

in-place and in-order, 368, 371

matrix formulation, 348, 350
Projections

de ned, 72

into subspace, 72

R
Radix-2 FFT
decimation-in-frequency, 319
decimation-in-time, 315
Reciprocity relation, 30
Rectangular window, 239
improper truncation, 243
magnitude spectrum, 246
mainlobe, 246
normalized, 246
sidelobes, 246
of nitelength, 241, 242
spectral properties of, 246
Regular convolution, discrete
by sectioned DFT, 273
of two nite sequences, 267
with steps illustrated, 269
Relative primality, 354
Riemann integrable, 47
Riemann integral
properties of, 82
Riemann slemma, 77, 78
used in examples, 78, 79
Ruritanian index map, 343, 366

S

Sampled composite signals, 123

common period, 123
Sampling rate, 30, 239

determination of, 122, 123

fundamental interval, 30

Nyquist frequency, 30

Nyquist interval, 30
Sampling theorem, 160, 161, 207
Sawtooth function, 46
Scrambled input

for unordered FFT, 337
Sifting property
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Sinc function, 161, 168, 171, 176, 180

182
de nition, 160
Sine modes, 6, 25
Sinusoidal function, 11, 13
sampled sequence, 21, 22
Spatial variable, 25
Spectral analysis, 23
Spectral decomposition, 23
Spectral windows, 100, 102
for Fejer kernel, 101
for Lanczos smoothing, 102
Spike, 186

T
Temporal variable, 25
Time-domain plots, 5,79
Time-grid spacing, 30
reciprocity relation, 30
Time-limited function, 50
almost time-limited, 179
periodic extension, 50
protracted, 50
Triangular window, 247
Fourier transform of, 248
normalized, 248
magnitude spectrum, 248
Twiddle factor, 314
exponent of, 314, 315

U
Uncertainty principle, 162
Undershoot, 91
Unit impulse function, 186
convolution with, 194
Fourier transform of, 188

\Y
von Hann window, 248
Fourier transform of, 249
normalized, 249
magnitude spectrum, 250

W
Wavelength, 25
Weighted impulse train, 202, 211
Window characteristics

asummary, 252
Windowed DFT

applications of, 252
Windowed sequence

DFT of, 239

zero padding of, 264
Windows, 239

Bartlett, 247

Blackman, 251

Hamming, 250
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Zero padding
the DFT, 141
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